File size: 142,941 Bytes
1d30d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
#include "ggml.h"
#include "ggml-cpp.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "gguf.h"

#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_VULKAN
#include "ggml-vulkan.h"
#endif

#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "stb_image_resize.h"

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
#include <unordered_set>
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>

#if defined(LLAVA_LOG_OFF)
#   define LOG_INF(...)
#   define LOG_WRN(...)
#   define LOG_ERR(...)
#   define LOG_DBG(...)
#else // defined(LLAVA_LOG_OFF)
#   define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#   define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#   define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#   define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#endif // defined(LLAVA_LOG_OFF)

//#define CLIP_DEBUG_FUNCTIONS

// RGB uint8 image
struct clip_image_u8 {
    int nx;
    int ny;

    std::vector<uint8_t> buf;
};

// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
    int nx;
    int ny;

    std::vector<float> buf;
};

static std::string format(const char * fmt, ...) {
    va_list ap;
    va_list ap2;
    va_start(ap, fmt);
    va_copy(ap2, ap);
    int size = vsnprintf(NULL, 0, fmt, ap);
    GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
    std::vector<char> buf(size + 1);
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
    GGML_ASSERT(size2 == size);
    va_end(ap2);
    va_end(ap);
    return std::string(buf.data(), buf.size());
}

//
// key constants
//

#define KEY_FTYPE               "general.file_type"
#define KEY_NAME                "general.name"
#define KEY_DESCRIPTION         "general.description"
#define KEY_HAS_TEXT_ENC        "clip.has_text_encoder"
#define KEY_HAS_VIS_ENC         "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ      "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ   "clip.has_minicpmv_projector"
#define KEY_HAS_GLM_PROJ        "clip.has_glm_projector"
#define KEY_MINICPMV_VERSION    "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER  "clip.has_qwen2vl_merger"
#define KEY_USE_GELU            "clip.use_gelu"
#define KEY_USE_SILU            "clip.use_silu"
#define KEY_N_EMBD              "clip.%s.embedding_length"
#define KEY_N_FF                "clip.%s.feed_forward_length"
#define KEY_N_BLOCK             "clip.%s.block_count"
#define KEY_N_HEAD              "clip.%s.attention.head_count"
#define KEY_LAYER_NORM_EPS      "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM            "clip.%s.projection_dim"
#define KEY_TOKENS              "tokenizer.ggml.tokens"
#define KEY_N_POSITIONS         "clip.text.context_length"
#define KEY_IMAGE_SIZE          "clip.vision.image_size"
#define KEY_PATCH_SIZE          "clip.vision.patch_size"
#define KEY_IMAGE_MEAN          "clip.vision.image_mean"
#define KEY_IMAGE_STD           "clip.vision.image_std"
#define KEY_PROJ_TYPE           "clip.projector_type"
#define KEY_FEATURE_LAYER       "clip.vision.feature_layer"

#define KEY_MM_PATCH_MERGE_TYPE   "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS  "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"


//
// tensor name constants
//

#define TN_TOKEN_EMBD      "%s.token_embd.weight"
#define TN_POS_EMBD        "%s.position_embd.weight"
#define TN_CLASS_EMBD      "v.class_embd"
#define TN_PATCH_EMBD      "v.patch_embd.weight"  // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1    "v.patch_embd.weight.1"
#define TN_PATCH_BIAS      "v.patch_embd.bias"
#define TN_ATTN_K          "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q          "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V          "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT     "%s.blk.%d.attn_out.%s"
#define TN_FFN_DOWN        "%s.blk.%d.ffn_down.%s"
#define TN_FFN_UP          "%s.blk.%d.ffn_up.%s"
#define TN_LN_1            "%s.blk.%d.ln1.%s"
#define TN_LN_2            "%s.blk.%d.ln2.%s"
#define TN_LN_PRE          "%s.pre_ln.%s"
#define TN_LN_POST         "%s.post_ln.%s"
#define TN_TEXT_PROJ       "text_projection.weight"
#define TN_VIS_PROJ        "visual_projection.weight"
#define TN_LLAVA_PROJ      "mm.%d.%s"
#define TN_MVLM_PROJ_MLP   "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG   "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE   "model.image_newline"
#define TN_MM_INP_PROJ     "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N   "mm.soft_emb_norm.weight"    // gemma3

#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
#define TN_MINICPMV_QUERY "resampler.query"
#define TN_MINICPMV_PROJ "resampler.proj.weight"
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
#define TN_MINICPMV_LN "resampler.ln_%s.%s"

#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
#define TN_GLM_BOI_W "adapter.boi"
#define TN_GLM_EOI_W "adapter.eoi"


enum projector_type {
    PROJECTOR_TYPE_MLP,
    PROJECTOR_TYPE_MLP_NORM,
    PROJECTOR_TYPE_LDP,
    PROJECTOR_TYPE_LDPV2,
    PROJECTOR_TYPE_RESAMPLER,
    PROJECTOR_TYPE_GLM_EDGE,
    PROJECTOR_TYPE_MERGER,
    PROJECTOR_TYPE_GEMMA3,
    PROJECTOR_TYPE_UNKNOWN,
};

static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
    { PROJECTOR_TYPE_MLP, "mlp" },
    { PROJECTOR_TYPE_LDP, "ldp" },
    { PROJECTOR_TYPE_LDPV2, "ldpv2"},
    { PROJECTOR_TYPE_RESAMPLER, "resampler"},
    { PROJECTOR_TYPE_GLM_EDGE, "adapter"},
    { PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
    { PROJECTOR_TYPE_GEMMA3, "gemma3"},
};


//
// utilities to get data from a gguf file
//

static int get_key_idx(const gguf_context * ctx, const char * key) {
    int i = gguf_find_key(ctx, key);
    if (i == -1) {
        LOG_ERR("key %s not found in file\n", key);
        throw std::runtime_error(format("Missing required key: %s", key));
    }

    return i;
}

static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
    const int i = get_key_idx(ctx, key.c_str());

    return gguf_get_val_u32(ctx, i);
}

static float get_f32(const gguf_context * ctx, const std::string & key) {
    const int i = get_key_idx(ctx, key.c_str());

    return gguf_get_val_f32(ctx, i);
}

static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
    struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
    if (!cur) {
        throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
    }

    return cur;
}

static std::string get_ftype(int ftype) {
    return ggml_type_name(static_cast<ggml_type>(ftype));
}

static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
    switch (type) {
        case GGUF_TYPE_UINT8:   return std::to_string(((const uint8_t  *)data)[i]);
        case GGUF_TYPE_INT8:    return std::to_string(((const int8_t   *)data)[i]);
        case GGUF_TYPE_UINT16:  return std::to_string(((const uint16_t *)data)[i]);
        case GGUF_TYPE_INT16:   return std::to_string(((const int16_t  *)data)[i]);
        case GGUF_TYPE_UINT32:  return std::to_string(((const uint32_t *)data)[i]);
        case GGUF_TYPE_INT32:   return std::to_string(((const int32_t  *)data)[i]);
        case GGUF_TYPE_UINT64:  return std::to_string(((const uint64_t *)data)[i]);
        case GGUF_TYPE_INT64:   return std::to_string(((const int64_t  *)data)[i]);
        case GGUF_TYPE_FLOAT32: return std::to_string(((const float    *)data)[i]);
        case GGUF_TYPE_FLOAT64: return std::to_string(((const double   *)data)[i]);
        case GGUF_TYPE_BOOL:    return ((const bool *)data)[i] ? "true" : "false";
        default:                return format("unknown type %d", type);
    }
}

static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
    if (search.empty()) {
        return;
    }
    std::string builder;
    builder.reserve(s.length());
    size_t pos = 0;
    size_t last_pos = 0;
    while ((pos = s.find(search, last_pos)) != std::string::npos) {
        builder.append(s, last_pos, pos - last_pos);
        builder.append(replace);
        last_pos = pos + search.length();
    }
    builder.append(s, last_pos, std::string::npos);
    s = std::move(builder);
}

static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
    const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);

    switch (type) {
        case GGUF_TYPE_STRING:
            return gguf_get_val_str(ctx_gguf, i);
        case GGUF_TYPE_ARRAY:
            {
                const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
                int arr_n = gguf_get_arr_n(ctx_gguf, i);
                const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
                std::stringstream ss;
                ss << "[";
                for (int j = 0; j < arr_n; j++) {
                    if (arr_type == GGUF_TYPE_STRING) {
                        std::string val = gguf_get_arr_str(ctx_gguf, i, j);
                        // escape quotes
                        replace_all(val, "\\", "\\\\");
                        replace_all(val, "\"", "\\\"");
                        ss << '"' << val << '"';
                    } else if (arr_type == GGUF_TYPE_ARRAY) {
                        ss << "???";
                    } else {
                        ss << gguf_data_to_str(arr_type, data, j);
                    }
                    if (j < arr_n - 1) {
                        ss << ", ";
                    }
                }
                ss << "]";
                return ss.str();
            }
        default:
            return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
    }
}

static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
    size_t tensor_size = ggml_nbytes(tensor);
    LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
            prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
            tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
}

static projector_type clip_projector_type_from_string(const std::string & name) {
    for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
        if (kv.second == name) {
            return kv.first;
        }
    }
    throw std::runtime_error(format("Unknown projector type: %s", name.c_str()));
}

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

struct clip_hparams {
    int32_t image_size;
    int32_t patch_size;
    int32_t hidden_size;
    int32_t n_intermediate;
    int32_t projection_dim;
    int32_t n_head;
    int32_t n_layer;

    float eps;

    char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)

    std::vector<int32_t> image_grid_pinpoints;
    int32_t image_crop_resolution;
    std::unordered_set<int32_t> vision_feature_layer;
};

struct clip_layer {
    // attention
    struct ggml_tensor * k_w;
    struct ggml_tensor * k_b;
    struct ggml_tensor * q_w;
    struct ggml_tensor * q_b;
    struct ggml_tensor * v_w;
    struct ggml_tensor * v_b;

    struct ggml_tensor * o_w;
    struct ggml_tensor * o_b;

    // layernorm 1
    struct ggml_tensor * ln_1_w;
    struct ggml_tensor * ln_1_b;

    // ff
    struct ggml_tensor * ff_i_w;
    struct ggml_tensor * ff_i_b;

    struct ggml_tensor * ff_o_w;
    struct ggml_tensor * ff_o_b;

    // layernorm 2
    struct ggml_tensor * ln_2_w;
    struct ggml_tensor * ln_2_b;
};

struct clip_vision_model {
    struct clip_hparams hparams;

    // embeddings
    struct ggml_tensor * class_embedding;
    struct ggml_tensor * patch_embeddings_0;
    struct ggml_tensor * patch_embeddings_1;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    struct ggml_tensor * patch_bias;
    struct ggml_tensor * position_embeddings;

    struct ggml_tensor * pre_ln_w;
    struct ggml_tensor * pre_ln_b;

    std::vector<clip_layer> layers;

    struct ggml_tensor * post_ln_w;
    struct ggml_tensor * post_ln_b;

    struct ggml_tensor * projection;

    // LLaVA projection
    struct ggml_tensor * mm_0_w = NULL;
    struct ggml_tensor * mm_0_b = NULL;
    struct ggml_tensor * mm_2_w = NULL;
    struct ggml_tensor * mm_2_b = NULL;

    struct ggml_tensor * image_newline = NULL;

    // Yi type models with mlp+normalization projection
    struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
    struct ggml_tensor * mm_1_b = NULL;
    struct ggml_tensor * mm_3_w = NULL;
    struct ggml_tensor * mm_3_b = NULL;
    struct ggml_tensor * mm_4_w = NULL;
    struct ggml_tensor * mm_4_b = NULL;

    //GLMV-Edge projection
    struct ggml_tensor * mm_model_adapter_conv_w;
    struct ggml_tensor * mm_model_adapter_conv_b;
    struct ggml_tensor * boi_w;
    struct ggml_tensor * eoi_w;

    // MobileVLM projection
    struct ggml_tensor * mm_model_mlp_1_w;
    struct ggml_tensor * mm_model_mlp_1_b;
    struct ggml_tensor * mm_model_mlp_3_w;
    struct ggml_tensor * mm_model_mlp_3_b;
    struct ggml_tensor * mm_model_block_1_block_0_0_w;
    struct ggml_tensor * mm_model_block_1_block_0_1_w;
    struct ggml_tensor * mm_model_block_1_block_0_1_b;
    struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
    struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
    struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
    struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
    struct ggml_tensor * mm_model_block_1_block_2_0_w;
    struct ggml_tensor * mm_model_block_1_block_2_1_w;
    struct ggml_tensor * mm_model_block_1_block_2_1_b;
    struct ggml_tensor * mm_model_block_2_block_0_0_w;
    struct ggml_tensor * mm_model_block_2_block_0_1_w;
    struct ggml_tensor * mm_model_block_2_block_0_1_b;
    struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
    struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
    struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
    struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
    struct ggml_tensor * mm_model_block_2_block_2_0_w;
    struct ggml_tensor * mm_model_block_2_block_2_1_w;
    struct ggml_tensor * mm_model_block_2_block_2_1_b;

    // MobileVLM_V2 projection
    struct ggml_tensor * mm_model_mlp_0_w;
    struct ggml_tensor * mm_model_mlp_0_b;
    struct ggml_tensor * mm_model_mlp_2_w;
    struct ggml_tensor * mm_model_mlp_2_b;
    struct ggml_tensor * mm_model_peg_0_w;
    struct ggml_tensor * mm_model_peg_0_b;

    // MINICPMV projection
    struct ggml_tensor * mm_model_pos_embed_k;
    struct ggml_tensor * mm_model_query;
    struct ggml_tensor * mm_model_proj;
    struct ggml_tensor * mm_model_kv_proj;
    struct ggml_tensor * mm_model_attn_q_w;
    struct ggml_tensor * mm_model_attn_q_b;
    struct ggml_tensor * mm_model_attn_k_w;
    struct ggml_tensor * mm_model_attn_k_b;
    struct ggml_tensor * mm_model_attn_v_w;
    struct ggml_tensor * mm_model_attn_v_b;
    struct ggml_tensor * mm_model_attn_o_w;
    struct ggml_tensor * mm_model_attn_o_b;
    struct ggml_tensor * mm_model_ln_q_w;
    struct ggml_tensor * mm_model_ln_q_b;
    struct ggml_tensor * mm_model_ln_kv_w;
    struct ggml_tensor * mm_model_ln_kv_b;
    struct ggml_tensor * mm_model_ln_post_w;
    struct ggml_tensor * mm_model_ln_post_b;

    // gemma3
    struct ggml_tensor * mm_input_proj_w;
    struct ggml_tensor * mm_soft_emb_norm_w;
};

bool enable_gpu_clip = true;
void set_clip_uses_gpu(bool usegpu)
{
    enable_gpu_clip = usegpu;
}

struct clip_ctx {
    bool has_text_encoder    = false;
    bool has_vision_encoder  = false;
    bool has_llava_projector = false;
    bool has_minicpmv_projector = false;
    bool has_glm_projector = false;
    bool has_qwen2vl_merger = false;
    int minicpmv_version = 2;

    struct clip_vision_model vision_model;
    projector_type proj_type = PROJECTOR_TYPE_MLP;

    int32_t max_feature_layer; // unused in newer models like gemma3
    float image_mean[3];
    float image_std[3];
    bool use_gelu = false;
    bool use_silu = false;
    int32_t ftype = 1;

    bool has_class_embedding = true;
    bool has_pre_norm = true;
    bool has_post_norm = false;
    bool has_patch_bias = false;

    struct gguf_context * ctx_gguf = nullptr;
    struct ggml_context * ctx_data = nullptr;

    std::vector<uint8_t> buf_compute_meta;

    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

    ggml_backend_t backend     = nullptr;
    ggml_backend_buffer_t buf  = nullptr;

    ggml_backend_sched_ptr sched;

    struct clip_image_size * load_image_size = nullptr;

    clip_ctx(clip_context_params & ctx_params) {

        if(enable_gpu_clip)
        {
        #ifdef GGML_USE_CUDA
            backend = ggml_backend_cuda_init(0);
            LOG_INF("%s: CLIP using CUDA backend\n", __func__);
        #endif
        #ifdef GGML_USE_METAL
            backend = ggml_backend_metal_init();
            LOG_INF("%s: CLIP using Metal backend\n", __func__);
        #endif
        #ifdef GGML_USE_VULKAN
            backend = ggml_backend_vk_init(0);
            LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
        #endif
        }

        if (!backend) {
            backend = ggml_backend_cpu_init();
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

        backend_ptrs.push_back(backend);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));

        sched.reset(
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
        );
    }

    ~clip_ctx() {
        ggml_free(ctx_data);
        gguf_free(ctx_gguf);
        ggml_backend_buffer_free(buf);
        ggml_backend_free(backend);
    }
};

static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    const int image_size = hparams.image_size;
    int image_size_width  = image_size;
    int image_size_height = image_size;

    const int patch_size           = hparams.patch_size;
    const int num_patches          = ((image_size_width / patch_size) * (image_size_height / patch_size));
    const int hidden_size          = hparams.hidden_size;
    const int n_head               = hparams.n_head;
    const int d_head               = hidden_size / n_head;
    const int n_layer              = hparams.n_layer;
    const float eps                = hparams.eps;

    GGML_ASSERT(imgs->size == 1); // batch_size == 1

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    struct ggml_context * ctx0 = ggml_init(params);
    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    // input raw
    struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
    ggml_set_name(inp_raw, "inp_raw");
    ggml_set_input(inp_raw);

    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
    inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
    inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
    inp = ggml_add(ctx0, inp, model.patch_bias);

    // position embeddings
    struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);

    // loop over layers
    for (int il = 0; il < n_layer; il++) {
        struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states

        // layernorm1
        {
            cur = ggml_norm(ctx0, cur, eps);
            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
        }

        // self-attention
        {

            struct ggml_tensor * Q =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));

            struct ggml_tensor * K =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);

            K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));

            struct ggml_tensor * V =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);

            V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));

            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
            KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
            KQ = ggml_soft_max_inplace(ctx0, KQ);

            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
        }

        // attention output
        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, embeddings);

        embeddings = cur; // embeddings = residual, cur = hidden_states

        // layernorm2
        {
            cur = ggml_norm(ctx0, cur, eps);
            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);

        // siglip uses gelu
        cur = ggml_gelu(ctx0, cur);

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);

        // residual 2
        cur = ggml_add(ctx0, embeddings, cur);

        embeddings = cur;
    }

    // post-layernorm
    if (ctx->has_post_norm) {
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "post_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
    }

    if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        const int batch_size = 1;
        const int mm_tokens_per_image = 256; // default value for gemma3
        const int tokens_per_side = sqrt(mm_tokens_per_image);
        const int patches_per_image = sqrt(num_patches);
        const int kernel_size = patches_per_image / tokens_per_side;

        embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
        embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);

        // doing a pool2d to reduce the number of output tokens to 256
        embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
        embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
        embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));

        // apply norm before projection
        embeddings = ggml_rms_norm(ctx0, embeddings, eps);
        embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);

        // apply projection
        embeddings = ggml_mul_mat(ctx0,
            ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
            embeddings);
    }

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    ggml_free(ctx0);

    return gf;
}

static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
    if (!ctx->has_vision_encoder) {
        LOG_ERR("This gguf file seems to have no vision encoder\n");
        return nullptr;
    }

    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    const int image_size = hparams.image_size;
    int image_size_width  = image_size;
    int image_size_height = image_size;
    if (ctx->has_minicpmv_projector) {
        if (load_image_size == nullptr) {
            load_image_size = clip_image_size_init();
        }
        LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
        image_size_width  = load_image_size->width;
        image_size_height = load_image_size->height;
        if (is_inf) {
            image_size_width  = imgs->data->nx;
            image_size_height = imgs->data->ny;
        }
    }
    else if (ctx->has_qwen2vl_merger) {
        // use the image's native resolution when image is avaible
        if (is_inf) {
        // if (imgs->data->nx && imgs->data->ny) {
            image_size_width  = imgs->data->nx;
            image_size_height = imgs->data->ny;
        }
    }
    const int patch_size           = hparams.patch_size;
    const int num_patches          = ((image_size_width / patch_size) * (image_size_height / patch_size));
    const int patches_w            = image_size_width / patch_size;
    const int patches_h            = image_size_height / patch_size;
    const int num_positions        = num_patches + (ctx->has_class_embedding ? 1 : 0);
    const int num_position_ids     = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
    const int hidden_size          = hparams.hidden_size;
    const int n_head               = hparams.n_head;
    const int d_head               = hidden_size / n_head;
    const float eps                = hparams.eps;
    int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};

    const int batch_size = imgs->size;

    if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
        GGML_ASSERT(batch_size == 1);
    }

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    struct ggml_context * ctx0 = ggml_init(params);
    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
    ggml_set_name(inp_raw, "inp_raw");
    ggml_set_input(inp_raw);

    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);

    if (ctx->has_qwen2vl_merger) {
        GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
        GGML_ASSERT(image_size_height % (patch_size * 2) == 0);

        auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_add(ctx0, inp, inp_1);
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3));  // [w, h, c, b] -> [c, w, h, b]
        inp = ggml_reshape_4d(
            ctx0, inp,
            hidden_size * 2, patches_w / 2, patches_h, batch_size);
        inp = ggml_reshape_4d(
            ctx0, inp,
            hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
        inp = ggml_reshape_3d(
            ctx0, inp,
            hidden_size, patches_w * patches_h, batch_size);
    }
    else {
        inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
        inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
    }

    if (ctx->has_patch_bias) {
        // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
        inp = ggml_add(ctx0, inp, model.patch_bias);
    }
    struct ggml_tensor * embeddings = inp;
    struct ggml_tensor * pos_embed = nullptr;

    if (ctx->has_llava_projector) {
        // concat class_embeddings and patch_embeddings
        if (ctx->has_class_embedding) {
            embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
            ggml_set_name(embeddings, "embeddings");
            ggml_set_input(embeddings);
            embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
                    embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
            embeddings = ggml_acc(ctx0, embeddings, inp,
                    embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
        }
    }

    struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
    ggml_set_name(positions, "positions");
    ggml_set_input(positions);

    if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
        embeddings =
            ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
    }

    if (ctx->has_minicpmv_projector) {
        int pos_w = image_size_width/patch_size;
        int pos_h = image_size_height/patch_size;
        if (ctx->minicpmv_version == 2) {
            pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
        }
        else if (ctx->minicpmv_version == 3) {
            pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
        }
        else if (ctx->minicpmv_version == 4) {
            pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
        }
        ggml_set_name(pos_embed, "pos_embed");
        ggml_set_input(pos_embed);
    }

    // pre-layernorm
    if (ctx->has_pre_norm) {
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "pre_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
    }

    std::vector<struct ggml_tensor *> embedding_stack;
    const auto & vision_feature_layer = hparams.vision_feature_layer;

    // loop over layers
    for (int il = 0; il < ctx->max_feature_layer; il++) {
        struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states

        // If this is an embedding feature layer, save the output.
        // NOTE: 0 index here refers to the input to the encoder.
        if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
            embedding_stack.push_back(embeddings);
        }

        //const size_t nb_q_w = model.layers[il].q_w->nb[0];

        // layernorm1
        {
            cur = ggml_norm(ctx0, cur, eps);

            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
                           model.layers[il].ln_1_b);
        }

        // self-attention
        {

            struct ggml_tensor * Q =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);

            Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
            if (ctx->has_qwen2vl_merger) {
                Q = ggml_rope_multi(
                    ctx0, Q, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            }
            Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
            Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);

            struct ggml_tensor * K =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);

            K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
            if (ctx->has_qwen2vl_merger) {
                K = ggml_rope_multi(
                    ctx0, K, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            }
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
            K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);

            struct ggml_tensor * V =
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);

            V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
            V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);

            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
            KQ = ggml_soft_max_inplace(ctx0, KQ);
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
            KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
        }

        // attention output
        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, embeddings);

        embeddings = cur; // embeddings = residual, cur = hidden_states

        // layernorm2
        {
            cur = ggml_norm(ctx0, cur, eps);

            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);

        if (ctx->use_gelu) {
            cur = ggml_gelu_inplace(ctx0, cur);
        } else if (ctx->use_silu) {
            cur = ggml_silu_inplace(ctx0, cur);
        } else {
            cur = ggml_gelu_quick_inplace(ctx0, cur);
        }

        cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
        cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);

        // residual 2
        cur = ggml_add(ctx0, embeddings, cur);

        embeddings = cur;
    }

    // post-layernorm
    if (ctx->has_post_norm) {
        embeddings = ggml_norm(ctx0, embeddings, eps);
        ggml_set_name(embeddings, "post_ln");

        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
    }

    // final layer is a vision feature layer
    if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
        embedding_stack.push_back(embeddings);
    }

    // If feature layers are explicitly set, stack them (if we have multiple)
    if (!embedding_stack.empty()) {
        embeddings = embedding_stack[0];
        for (size_t i = 1; i < embedding_stack.size(); i++) {
            embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
        }
    }

    // llava projector
    if (ctx->has_llava_projector) {
        embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);

        struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
        ggml_set_name(patches, "patches");
        ggml_set_input(patches);

        // shape [1, 576, 1024]
        // ne is whcn, ne = [1024, 576, 1, 1]
        embeddings = ggml_get_rows(ctx0, embeddings, patches);

        // print_tensor_info(embeddings, "embeddings");

        // llava projector
        if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

            embeddings = ggml_gelu(ctx0, embeddings);
            embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
            // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
            // First LayerNorm
            embeddings = ggml_norm(ctx0, embeddings, eps);
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                model.mm_1_b);

            // GELU activation
            embeddings = ggml_gelu(ctx0, embeddings);

            // Second linear layer
            embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
            embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

            // Second LayerNorm
            embeddings = ggml_norm(ctx0, embeddings, eps);
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                model.mm_4_b);
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
            // MobileVLM projector
            int n_patch = 24;
            struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
            mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
            mlp_1 = ggml_gelu(ctx0, mlp_1);
            struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
            mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
            // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

            // block 1
            struct ggml_tensor * block_1 = nullptr;
            {
                // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
                mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
                mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
                // stride = 1, padding = 1, bias is nullptr
                block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);

                // layer norm
                // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                // hardswish
                struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                // pointwise conv
                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                block_1 = ggml_relu(ctx0, block_1);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                block_1 = ggml_hardsigmoid(ctx0, block_1);
                // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                int w = block_1->ne[0], h = block_1->ne[1];
                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                // residual
                block_1 = ggml_add(ctx0, mlp_3, block_1);
            }

            // block_2
            {
                // stride = 2
                block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);

                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                // layer norm
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                // hardswish
                struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                // not sure the parameters is right for globalAvgPooling
                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                // pointwise conv
                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                block_1 = ggml_relu(ctx0, block_1);
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                block_1 = ggml_hardsigmoid(ctx0, block_1);

                // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                int w = block_1->ne[0], h = block_1->ne[1];
                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                block_1 = ggml_norm(ctx0, block_1, eps);
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
            }
            embeddings = block_1;
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
        {
            int n_patch = 24;
            struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
            mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
            mlp_0 = ggml_gelu(ctx0, mlp_0);
            struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
            mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
            // mlp_2 ne = [2048, 576, 1, 1]
            // // AVG Pool Layer 2*2, strides = 2
            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
            // mlp_2 ne = [576, 2048, 1, 1]
            mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
            // mlp_2 ne [24, 24, 2048, 1]
            mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
            // weight ne = [3, 3, 2048, 1]
            struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
            peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
            peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
            peg_0 = ggml_add(ctx0, peg_0, mlp_2);
            peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
            embeddings = peg_0;
        }
        else {
            GGML_ABORT("fatal error");
        }
    }
    // minicpmv projector
    else if (ctx->has_minicpmv_projector)
    {
        if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
            struct ggml_tensor * q = model.mm_model_query;
            { // layernorm
                q = ggml_norm(ctx0, q, eps);
                q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
            }
            struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
            { // layernorm
                v = ggml_norm(ctx0, v, eps);
                v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
            }
            struct ggml_tensor * k;
            { // position
                // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
                k = ggml_add(ctx0, v, pos_embed);
            }

            { // attention
                int hidden_size = 4096;
                const int d_head = 128;
                int n_head = hidden_size/d_head;
                int num_query = 96;
                if (ctx->minicpmv_version == 2) {
                    hidden_size = 4096;
                    n_head = hidden_size/d_head;
                    num_query = 96;
                }
                else if (ctx->minicpmv_version == 3) {
                    hidden_size = 3584;
                    n_head = hidden_size/d_head;
                    num_query = 64;
                }
                else if (ctx->minicpmv_version == 4) {
                    hidden_size = 3584;
                    n_head = hidden_size/d_head;
                    num_query = 64;
                }

                struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
                Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
                struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
                struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
                // permute
                Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
                Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
                Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
                K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
                K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
                K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
                V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
                V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
                V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
                struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
                KQ = ggml_soft_max_inplace(ctx0, KQ);
                struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
                KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
                KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
                KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);

                embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
            }
            { // layernorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
            }
            embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
        }
        else {
            GGML_ASSERT(false);
        }
    }
    // glm projector
    else if (ctx->has_glm_projector) {
        if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
            embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
            //GLU
            {
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
                embeddings = ggml_gelu_inplace(ctx0, embeddings);
                struct ggml_tensor * x = embeddings;
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
                embeddings = ggml_silu_inplace(ctx0, embeddings);
                embeddings = ggml_mul(ctx0, embeddings,x);
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
            }
        } else {
            GGML_ABORT("fatel error");
        }
    }
    else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
        embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);

        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
    }

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    ggml_free(ctx0);

    return gf;
}

static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
    if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        return clip_image_build_graph_siglip(ctx, imgs);
    } else {
        // TODO: we should have one build_* function per model
        return clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
    }
}

// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
    return clip_init(fname, clip_context_params{
        /* use_gpu */   true,
        /* verbosity */ verbosity,
    });
}

struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
    int verbosity = ctx_params.verbosity;
    struct ggml_context * meta = NULL;

    struct gguf_init_params params = {
        /*.no_alloc = */ true,
        /*.ctx      = */ &meta,
    };

    struct gguf_context * ctx = gguf_init_from_file(fname, params);
    if (!ctx) {
        throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
    }

    if (verbosity >= 1) {
        try {
        const int n_tensors = gguf_get_n_tensors(ctx);
        const int n_kv = gguf_get_n_kv(ctx);
        const int ftype = get_u32(ctx, KEY_FTYPE);
        const std::string ftype_str = get_ftype(ftype);
        const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
        const std::string description = gguf_get_val_str(ctx, idx_desc);
        const int idx_name = gguf_find_key(ctx, KEY_NAME);
        if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
            const std::string name = gguf_get_val_str(ctx, idx_name);
            LOG_INF("%s: model name:   %s\n", __func__, name.c_str());
        }
        LOG_INF("%s: description:  %s\n", __func__, description.c_str());
        LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
        LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx));
        LOG_INF("%s: n_tensors:    %d\n", __func__, n_tensors);
        LOG_INF("%s: n_kv:         %d\n", __func__, n_kv);
        LOG_INF("%s: ftype:        %s\n", __func__, ftype_str.c_str());
        LOG_INF("\n");
        } catch (std::runtime_error & /*e*/) {
            LOG_INF("Could not list CLIP model properties.\n");
        }
    }
    const int n_tensors = gguf_get_n_tensors(ctx);

    // kv
    const int n_kv = gguf_get_n_kv(ctx);
    LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
        __func__, n_kv, n_tensors, fname);
    {
        std::map<enum ggml_type, uint32_t> n_type;

        for (int i = 0; i < n_tensors; i++) {
            enum ggml_type type = gguf_get_tensor_type(ctx, i);

            n_type[type]++;
        }

        LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
        for (int i = 0; i < n_kv; i++) {
            const char * name           = gguf_get_key(ctx, i);
            const enum gguf_type type   = gguf_get_kv_type(ctx, i);
            const std::string type_name =
                type == GGUF_TYPE_ARRAY
                ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
                : gguf_type_name(type);

            std::string value          = gguf_kv_to_str(ctx, i);
            const size_t MAX_VALUE_LEN = 40;
            if (value.size() > MAX_VALUE_LEN) {
                value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
            }
            replace_all(value, "\n", "\\n");

            LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
        }

        // print type counts
        for (auto & kv : n_type) {
            if (kv.second == 0) {
                continue;
            }

            LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
        }
    }

    // data
    size_t model_size = 0;
    {
        for (int i = 0; i < n_tensors; ++i) {
            const char * name = gguf_get_tensor_name(ctx, i);
            const size_t offset = gguf_get_tensor_offset(ctx, i);
            enum ggml_type type = gguf_get_tensor_type(ctx, i);
            struct ggml_tensor * cur = ggml_get_tensor(meta, name);
            size_t tensor_size = ggml_nbytes(cur);
            model_size += tensor_size;
            if (verbosity >= 3) {
                LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                       __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
            }
        }
    }

    clip_ctx * new_clip = new clip_ctx(ctx_params);

    // update projector type
    {
        int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
        if (idx != -1) {
            const std::string proj_type = gguf_get_val_str(ctx, idx);
            new_clip->proj_type = clip_projector_type_from_string(proj_type);
        } else {
            new_clip->proj_type = PROJECTOR_TYPE_MLP;
        }

        if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
            if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
                new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
            }
        }
    }

    // model size and capabilities
    {
        int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
        new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);

        idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
        new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);

        idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
        if (idx != -1) {
            new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
        }

        idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
        if (idx != -1) {
            new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
        }

        idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
        if (idx != -1) {
            new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
        }

        idx = gguf_find_key(ctx, KEY_HAS_GLM_PROJ);
        if (idx != -1) {
            new_clip->has_glm_projector = gguf_get_val_bool(ctx, idx);
        }

        idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
        if (idx != -1) {
            new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
        }
        // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search

        GGML_ASSERT(new_clip->has_vision_encoder);
        GGML_ASSERT(!new_clip->has_text_encoder);

        try {
            idx = get_key_idx(ctx, KEY_USE_GELU);
            new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
        } catch (std::runtime_error & /*e*/) {
            new_clip->use_gelu = false;
        }

        try {
            idx = get_key_idx(ctx, KEY_USE_SILU);
            new_clip->use_silu = gguf_get_val_bool(ctx, idx);
        } catch (std::runtime_error & /*e*/) {
            new_clip->use_silu = false;
        }

        if (verbosity >= 1) {
            LOG_INF("%s: text_encoder:   %d\n", __func__, new_clip->has_text_encoder);
            LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
            LOG_INF("%s: llava_projector:  %d\n", __func__, new_clip->has_llava_projector);
            LOG_INF("%s: minicpmv_projector:  %d\n", __func__, new_clip->has_minicpmv_projector);
            LOG_INF("%s: minicpmv_version:  %d\n", __func__, new_clip->minicpmv_version);
            LOG_INF("%s: glm_projector:  %d\n", __func__, new_clip->has_glm_projector);
            LOG_INF("%s: model size:     %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:  %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
        }
    }

    LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);

    // load tensors
    {
        std::vector<uint8_t> read_buf;
        struct ggml_init_params params = {
            /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };

        new_clip->ctx_data = ggml_init(params);
        if (!new_clip->ctx_data) {
            LOG_ERR("%s: ggml_init() failed\n", __func__);
            clip_free(new_clip);
            gguf_free(ctx);
            return nullptr;
        }

        auto fin = std::ifstream(fname, std::ios::binary);
        if (!fin) {
            LOG_ERR("cannot open model file for loading tensors\n");
            clip_free(new_clip);
            gguf_free(ctx);
            return nullptr;
        }

        // add tensors to context
        for (int i = 0; i < n_tensors; ++i) {
            const char * name = gguf_get_tensor_name(ctx, i);
            struct ggml_tensor * t = ggml_get_tensor(meta, name);
            struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
            ggml_set_name(cur, name);
        }

        // alloc memory and offload data
        ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(new_clip->backend);
        new_clip->buf = ggml_backend_alloc_ctx_tensors_from_buft(new_clip->ctx_data, buft);
        ggml_backend_buffer_set_usage(new_clip->buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
        for (int i = 0; i < n_tensors; ++i) {
            const char * name = gguf_get_tensor_name(ctx, i);
            struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
            const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
            fin.seekg(offset, std::ios::beg);
            if (!fin) {
                LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
                clip_free(new_clip);
                gguf_free(ctx);
                return nullptr;
            }
            int num_bytes = ggml_nbytes(cur);
            if (ggml_backend_buft_is_host(buft)) {
                // for the CPU and Metal backend, we can read directly into the tensor
                fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
            } else {
                // read into a temporary buffer first, then copy to device memory
                read_buf.resize(num_bytes);
                fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
            }
        }
        fin.close();
    }

    // vision model
    if (new_clip->has_vision_encoder) {
        // load vision model
        auto & vision_model = new_clip->vision_model;
        auto & hparams = vision_model.hparams;
        hparams.hidden_size    = get_u32(ctx, format(KEY_N_EMBD, "vision"));
        hparams.n_head         = get_u32(ctx, format(KEY_N_HEAD, "vision"));
        hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
        hparams.n_layer        = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
        hparams.image_size     = get_u32(ctx, KEY_IMAGE_SIZE);
        hparams.patch_size     = get_u32(ctx, KEY_PATCH_SIZE);
        hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
        hparams.eps            = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));

        try {
            int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
            int n = gguf_get_arr_n(ctx, idx);
            const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
            for (int i = 0; i < n; ++i) {
                hparams.image_grid_pinpoints.push_back(pinpoints[i]);
            }
        } catch (std::runtime_error & /*e*/) { }

        // Load the vision feature layer indices if they are explicitly provided;
        // if multiple vision feature layers are present, the values will be concatenated
        // to form the final visual features.
        // NOTE: gguf conversions should standardize the values of the vision feature layer to
        // be non-negative, since we use -1 to mark values as unset here.
        try {
            int idx = get_key_idx(ctx, KEY_FEATURE_LAYER);
            int n = gguf_get_arr_n(ctx, idx);

            const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx);

            for (int i = 0; i < n; ++i) {
                hparams.vision_feature_layer.insert(vision_feature_layer[i]);
            }
        } catch (std::runtime_error & /*e*/) { }

        try {
            int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
            strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
        } catch (std::runtime_error & /*e*/) {
            strcpy(hparams.mm_patch_merge_type, "flat");
        }

        try {
            hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
        } catch(const std::exception& /*e*/) {
            hparams.image_crop_resolution = hparams.image_size;
        }

        int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
        int idx_std  = get_key_idx(ctx, KEY_IMAGE_STD);

        const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
        const float * std_data  = (const float *)gguf_get_arr_data(ctx, idx_std);

        for (int i = 0; i < 3; ++i) {
            new_clip->image_mean[i] = mean_data[i];
            new_clip->image_std[i]  = std_data[i];
        }

        // Calculate the deepest feature layer based on hparams and projector type
        new_clip->max_feature_layer = get_deepest_feature_layer(new_clip);

        if (verbosity >= 2) {
            LOG_INF("\n%s: vision model hparams\n", __func__);
            LOG_INF("image_size         %d\n", hparams.image_size);
            LOG_INF("patch_size         %d\n", hparams.patch_size);
            LOG_INF("v_hidden_size      %d\n", hparams.hidden_size);
            LOG_INF("v_n_intermediate   %d\n", hparams.n_intermediate);
            LOG_INF("v_projection_dim   %d\n", hparams.projection_dim);
            LOG_INF("v_n_head           %d\n", hparams.n_head);
            LOG_INF("v_n_layer          %d\n", hparams.n_layer);
            LOG_INF("v_eps              %f\n", hparams.eps);
            LOG_INF("v_image_mean       %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
            LOG_INF("v_image_std        %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
            LOG_INF("v_image_grid_pinpoints: ");
            for (const auto & pp : hparams.image_grid_pinpoints) {
                LOG_INF("%d ", pp);
            }
            LOG_INF("\n");
            LOG_INF("v_vision_feature_layer: ");
            for (const auto & feature_layer: hparams.vision_feature_layer) {
                LOG_INF("%d ", feature_layer);
            }
            LOG_INF("\n");
            LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);

        }

        try {
            vision_model.class_embedding  = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
            new_clip->has_class_embedding = true;
        } catch (const std::exception& /*e*/) {
            new_clip->has_class_embedding = false;
        }

        try {
            vision_model.pre_ln_w  = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
            vision_model.pre_ln_b  = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
            new_clip->has_pre_norm = true;
        } catch (std::exception & /*e*/) {
            new_clip->has_pre_norm = false;
        }

        try {
            vision_model.post_ln_w  = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
            vision_model.post_ln_b  = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
            new_clip->has_post_norm = true;
        } catch (std::exception & /*e*/) {
            new_clip->has_post_norm = false;
        }

        try {
            vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
            new_clip->has_patch_bias = true;
        } catch (std::exception & /*e*/) {
            new_clip->has_patch_bias = false;
        }

        try {
            vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
        } catch(const std::exception& /*e*/) {
            vision_model.patch_embeddings_0 = nullptr;
        }

        try {
            vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
        } catch(const std::exception& /*e*/) {
            vision_model.position_embeddings = nullptr;
        }

        try {
            vision_model.patch_embeddings_1    = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1);
        } catch(const std::exception& /*e*/) {
            new_clip->has_qwen2vl_merger = false;
        }

        // LLaVA projection
        if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
            vision_model.mm_0_w              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
            vision_model.mm_0_b              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
            try {
                // Yi-type llava
                vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
                vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
            } catch (std::runtime_error & /*e*/) { }
            try {
                // missing in Yi-type llava
                vision_model.mm_2_w              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
                vision_model.mm_2_b              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
            } catch (std::runtime_error & /*e*/) { }
            try {
                // Yi-type llava
                vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
                vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
            } catch (std::runtime_error & /*e*/) { }
            try {
                // Yi-type llava
                vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
                vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
            } catch (std::runtime_error & /*e*/) { }
            try {
                vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
                // LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
            } catch (std::runtime_error & /*e*/) { }
        } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
            // MobileVLM projection
            vision_model.mm_model_mlp_1_w               = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
            vision_model.mm_model_mlp_1_b               = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
            vision_model.mm_model_mlp_3_w               = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
            vision_model.mm_model_mlp_3_b               = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
            vision_model.mm_model_block_1_block_0_0_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
            vision_model.mm_model_block_1_block_0_1_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
            vision_model.mm_model_block_1_block_0_1_b   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
            vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
            vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
            vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
            vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
            vision_model.mm_model_block_1_block_2_0_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
            vision_model.mm_model_block_1_block_2_1_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
            vision_model.mm_model_block_1_block_2_1_b   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
            vision_model.mm_model_block_2_block_0_0_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
            vision_model.mm_model_block_2_block_0_1_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
            vision_model.mm_model_block_2_block_0_1_b   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
            vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
            vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
            vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
            vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
            vision_model.mm_model_block_2_block_2_0_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
            vision_model.mm_model_block_2_block_2_1_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
            vision_model.mm_model_block_2_block_2_1_b   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
        }
        else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
        {
            // MobilVLM_V2 projection
            vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
            vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
            vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
            vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
            vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
            vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
        }
        else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
            // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
            vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
            vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
            vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
            vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
            vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
            vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
            vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
            vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
            vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
            vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
            vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
            vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
            vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
            vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
            vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
            vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
            vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
            vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
        }
        else if (new_clip->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
            vision_model.mm_model_adapter_conv_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "weight"));
            vision_model.mm_model_adapter_conv_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "bias"));
            vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_LINEAR,"weight"));
            vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"weight"));
            vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"bias"));
            vision_model.mm_model_mlp_1_w =  get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
            vision_model.mm_model_mlp_2_w =  get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_GATE,"weight"));
            vision_model.mm_model_mlp_3_w =  get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
            vision_model.boi_w = get_tensor(new_clip->ctx_data, TN_GLM_BOI_W);
            vision_model.eoi_w = get_tensor(new_clip->ctx_data, TN_GLM_EOI_W);
        }
        else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
            vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
            vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
            vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
            vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
        }
        else if (new_clip->proj_type == PROJECTOR_TYPE_GEMMA3) {
            vision_model.mm_input_proj_w    = get_tensor(new_clip->ctx_data, TN_MM_INP_PROJ);
            vision_model.mm_soft_emb_norm_w = get_tensor(new_clip->ctx_data, TN_MM_SOFT_EMB_N);
        }
        else {
            std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
            throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
        }

        vision_model.layers.resize(hparams.n_layer);

        for (int il = 0; il < hparams.n_layer; ++il) {
            auto & layer = vision_model.layers[il];
            layer.k_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_K,      "v", il, "weight"));
            layer.q_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q,      "v", il, "weight"));
            layer.v_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_V,      "v", il, "weight"));
            layer.o_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
            layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1,        "v", il, "weight"));
            layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2,        "v", il, "weight"));
            layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN,    "v", il, "weight"));
            layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP,      "v", il, "weight"));
            layer.k_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_K,      "v", il, "bias"));
            layer.q_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q,      "v", il, "bias"));
            layer.v_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_V,      "v", il, "bias"));
            layer.o_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
            layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1,        "v", il, "bias"));
            layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2,        "v", il, "bias"));
            layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN,    "v", il, "bias"));
            layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP,      "v", il, "bias"));
        }
    }

    ggml_free(meta);

    new_clip->ctx_gguf = ctx;

    // measure mem requirement and allocate
    {
        new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
        clip_image_f32_batch batch;
        batch.size = 1;
        batch.data = nullptr;
        ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
        ggml_backend_sched_reserve(new_clip->sched.get(), gf);
        for (size_t i = 0; i < new_clip->backend_ptrs.size(); ++i) {
            ggml_backend_t backend = new_clip->backend_ptrs[i];
            ggml_backend_buffer_type_t buft = new_clip->backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(new_clip->sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
            }
        }
    }

    return new_clip;
}

void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
    ctx_clip->load_image_size = load_image_size;
}

struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
    return ctx_clip->load_image_size;
}

struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

void clip_image_u8_free(struct clip_image_u8  * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch  * batch) {
    if (batch->size > 0) {
        delete[] batch->data;
        batch->size = 0;
    }
}
void clip_image_f32_batch_free(struct clip_image_f32_batch  * batch) {
    if (batch->size > 0) {
        delete[] batch->data;
        batch->size = 0;
    }
}

void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
}

bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
    int nx, ny, nc;
    auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
    if (!data) {
        LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
        return false;
    }
    clip_build_img_from_pixels(data, nx, ny, img);
    stbi_image_free(data);
    return true;
}

//note that the memory here must be subsequently freed!
uint8_t* make_new_letterbox_img(uint8_t* input_image, int nx, int ny, int nc, int target_width, int target_height) {
    int new_image_size = target_width * target_height * nc;
    uint8_t* letterboxed_image = (uint8_t*)malloc(new_image_size);
    if(letterboxed_image==nullptr)
    {
        printf("\nWARNING: make_new_letterbox_img MALLOC FAILED\n");
        return nullptr;
    }
    memset(letterboxed_image, 0, new_image_size);  // fill with black (0) or any color you prefer
    int offset_x = (target_width - nx) / 2;
    int offset_y = (target_height - ny) / 2;
    for (int y = 0; y < ny; ++y) {
        memcpy(
            letterboxed_image + ((y + offset_y) * target_width + offset_x) * nc,
            input_image + (y * nx * nc),
            nx * nc
        );
    }
    return letterboxed_image;
}
uint8_t* scale_down_image(uint8_t* input_image, int& nx, int& ny, int nc, int max_width, int max_height) {
    float aspect_ratio = static_cast<float>(nx) / ny;
    int new_width = nx;
    int new_height = ny;
    if (nx > max_width || ny > max_height) {
        if (aspect_ratio > 1.0f) { // wider than tall
            new_width = max_width;
            new_height = static_cast<int>(max_width / aspect_ratio);
        } else { // taller than wide
            new_height = max_height;
            new_width = static_cast<int>(max_height * aspect_ratio);
        }
    }
    uint8_t* resized_image = (uint8_t*)malloc(new_width * new_height * nc);
    int resok = stbir_resize_uint8(input_image, nx, ny, 0, resized_image, new_width, new_height, 0, nc);
    if (!resok) {
        printf("\nKCPP SD: clip resize image failed!\n");
        free(resized_image);
        return nullptr;
    }
    nx = new_width;
    ny = new_height;
    return resized_image;
}

bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img, const int maxdims) {
    int nx, ny, nc;
    auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
    if (!data) {
        LOG_ERR("%s: failed to decode image bytes\n", __func__);
        return false;
    }

    float maxaspect = 4.0f;

    //check if image needs downscaling
    if (nx > maxdims || ny > maxdims) {
        printf("\nImage requires resizing: original size %d x %d scaling to max %d px\n",nx,ny,maxdims);
        uint8_t* resized_image = scale_down_image(data, nx, ny, nc, maxdims, maxdims);
        if(resized_image!=nullptr)
        {
            stbi_image_free(data); // Free the original image buffer and assign the new one
            data = resized_image;
            printf("Resized to clamped to %d x %d\n",nx,ny);
        }
    }

    float aspect_ratio = static_cast<float>(nx) / ny;
    int new_width = nx;
    int new_height = ny;
    bool need_letterbox = false;
    // Check if the image exceeds the aspect ratio limits
    if (aspect_ratio > maxaspect) {
        new_height = (int)(nx / maxaspect);
        need_letterbox = true;
    } else if (aspect_ratio < 1.0f / maxaspect) {
        new_width = (int)(ny / maxaspect);
        need_letterbox = true;
    }

    if (need_letterbox) {
        printf("\nImage requires letterboxing: %d x %d changed to %d x %d\n",nx,ny,new_width, new_height);
        uint8_t* letterboxed_image = make_new_letterbox_img(data, nx, ny, nc, new_width, new_height);
        if(letterboxed_image!=nullptr)
        {
            clip_build_img_from_pixels(letterboxed_image, new_width, new_height, img);
            free(letterboxed_image);
            letterboxed_image = nullptr;
        }
    }
    else
    {
        clip_build_img_from_pixels(data, nx, ny, img);
    }
    stbi_image_free(data);
    return true;
}

// Linear interpolation between two points
inline float clip_lerp(float s, float e, float t) {
    return s + (e - s) * t;
}
// Bilinear resize function
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
    dst.nx = target_width;
    dst.ny = target_height;
    dst.buf.resize(3 * target_width * target_height);

    float x_ratio = static_cast<float>(src.nx - 1) / target_width;
    float y_ratio = static_cast<float>(src.ny - 1) / target_height;

    for (int y = 0; y < target_height; y++) {
        for (int x = 0; x < target_width; x++) {
            float px = x_ratio * x;
            float py = y_ratio * y;
            int x_floor = static_cast<int>(px);
            int y_floor = static_cast<int>(py);
            float x_lerp = px - x_floor;
            float y_lerp = py - y_floor;

            for (int c = 0; c < 3; c++) {
                float top = clip_lerp(
                    static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                    static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                    x_lerp
                );
                float bottom = clip_lerp(
                    static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                    static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                    x_lerp
                );
                dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
            }
        }
    }
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
    dst->nx = src->nx;
    dst->ny = src->ny;
    dst->buf.resize(src->buf.size());

    for (size_t i = 0; i < src->buf.size(); ++i) {
        int c = i % 3; // rgb
        dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
    }
}

inline int clip(int x, int lower, int upper) {
    return std::max(lower, std::min(x, upper));
}

static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
    const int nx = img.nx;
    const int ny = img.ny;

    dst.nx = target_width;
    dst.ny = target_height;
    dst.buf.resize(3 * target_width * target_height);

    float Cc;
    float C[5];
    float d0, d2, d3, a0, a1, a2, a3;
    int i, j, k, jj;
    int x, y;
    float dx, dy;
    float tx, ty;

    tx = (float)nx / (float)target_width;
    ty = (float)ny / (float)target_height;

    // Bicubic interpolation; adapted from ViT.cpp, inspired from :
    //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
    //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

    for (i = 0; i < target_height; i++) {
        for (j = 0; j < target_width; j++) {
            x = (int)(tx * j);
            y = (int)(ty * i);

            dx = tx * j - x;
            dy = ty * i - y;

            for (k = 0; k < 3; k++) {
                for (jj = 0; jj <= 3; jj++) {
                    d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                    d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                    d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                    a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                    a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                    a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                    a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                    C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                    d0 = C[0] - C[1];
                    d2 = C[2] - C[1];
                    d3 = C[3] - C[1];
                    a0 = C[1];
                    a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                    a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                    a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                    Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                    const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                    dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                }
            }
        }
    }

    return true;
}

// llava-1.6 type of resize_and_pad (black)
static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
    int target_width = target_resolution.first;
    int target_height = target_resolution.second;

    float scale_w = static_cast<float>(target_width) / image.nx;
    float scale_h = static_cast<float>(target_height) / image.ny;

    int new_width, new_height;

    if (scale_w < scale_h) {
        new_width = target_width;
        new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
    } else {
        new_height = target_height;
        new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
    }

    clip_image_u8 resized_image;
    // bilinear_resize(image, resized_image, new_width, new_height);
    bicubic_resize(image, resized_image, new_width, new_height);

    clip_image_u8 padded_image;
    padded_image.nx = target_width;
    padded_image.ny = target_height;
    padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black

    // Calculate padding offsets
    int pad_x = (target_width - new_width) / 2;
    int pad_y = (target_height - new_height) / 2;

    // Copy the resized image into the center of the padded buffer
    for (int y = 0; y < new_height; ++y) {
        for (int x = 0; x < new_width; ++x) {
            for (int c = 0; c < 3; ++c) {
                padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
            }
        }
    }
    image_output = std::move(padded_image);
}

/**
 * Selects the best resolution from a list of possible resolutions based on the original size.
 *
 * @param original_size The original size of the image in the format (width, height).
 * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
 * @return The best fit resolution in the format (width, height).
 */
static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
    int original_width = original_size.first;
    int original_height = original_size.second;
    std::pair<int, int> best_fit;
    int max_effective_resolution = 0;
    int min_wasted_resolution = std::numeric_limits<int>::max();

    for (const auto& resolution : possible_resolutions) {
        int width = resolution.first;
        int height = resolution.second;
        float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
        int downscaled_width = static_cast<int>(original_width * scale);
        int downscaled_height = static_cast<int>(original_height * scale);
        int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
        int wasted_resolution = (width * height) - effective_resolution;
        // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
        if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
            max_effective_resolution = effective_resolution;
            min_wasted_resolution = wasted_resolution;
            best_fit = resolution;
        }
    }

    return best_fit;
}

static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
    std::vector<clip_image_u8*> patches;
    int width = image.nx;
    int height = image.ny;
    for (int i = 0; i < height; i += patch_size) {
        for (int j = 0; j < width; j += patch_size) {
            clip_image_u8 *patch = clip_image_u8_init();
            patch->nx = std::min(patch_size, width - j);
            patch->ny = std::min(patch_size, height - i);
            patch->buf.resize(3 * patch->nx * patch->ny);
            for (int y = 0; y < patch->ny; ++y) {
                for (int x = 0; x < patch->nx; ++x) {
                    for (int c = 0; c < 3; ++c) {
                        patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
                    }
                }
            }
            patches.push_back(patch);
        }
    }
    return patches;
}

static int ensure_divide(int length, int patch_size) {
    return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
}

static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
    int width = original_size.first;
    int height = original_size.second;
    if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
        float r = static_cast<float>(width) / height;
        height = static_cast<int>(scale_resolution / std::sqrt(r));
        width = static_cast<int>(height * r);
    }
    int best_width = ensure_divide(width, patch_size);
    int best_height = ensure_divide(height, patch_size);
    return std::make_pair(best_width, best_height);
}

static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
    int width, height;
    std::tie(width, height) = original_size;
    int grid_x, grid_y;
    std::tie(grid_x, grid_y) = grid;

    int refine_width = ensure_divide(width, grid_x);
    int refine_height = ensure_divide(height, grid_y);

    int grid_width = refine_width / grid_x;
    int grid_height = refine_height / grid_y;

   // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
    auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
    int best_grid_width, best_grid_height;
    std::tie(best_grid_width, best_grid_height) = best_grid_size;

  //  std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
    std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
    return refine_size;
}

static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
    std::vector<int> candidate_split_grids_nums;
    for (int i : {multiple - 1, multiple, multiple + 1}) {
        if (i == 1 || i > max_slice_nums) {
            continue;
        }
        candidate_split_grids_nums.push_back(i);
    }

    std::vector<std::pair<int, int>> candidate_grids;
    for (int split_grids_nums : candidate_split_grids_nums) {
        int m = 1;
        while (m <= split_grids_nums) {
            if (split_grids_nums % m == 0) {
                candidate_grids.emplace_back(m, split_grids_nums / m);
            }
            ++m;
        }
    }

    std::pair<int, int> best_grid{1, 1};
    float min_error = std::numeric_limits<float>::infinity();
    for (const auto& grid : candidate_grids) {
        float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
        if (error < min_error) {
            best_grid = grid;
            min_error = error;
        }
    }
    return best_grid;
}

// inspired from LLaVA-UHD:
//    -> https://arxiv.org/pdf/2403.11703
//    -> https://github.com/thunlp/LLaVA-UHD
//    -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
    const std::pair<int, int> original_size={img->nx,img->ny};
    const int original_width = img->nx;
    const int original_height = img->ny;
    const float log_ratio = log(1.0*original_width/original_height);
    const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
    const int multiple = fmin(ceil(ratio), max_slice_nums);

    std::vector<std::vector<clip_image_u8 *>> images;
    LOG_INF("%s: multiple %d\n", __func__, multiple);
    images.push_back(std::vector<clip_image_u8 *>());

    if (multiple <= 1) {
        auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
        clip_image_u8 * source_image = clip_image_u8_init();
        bicubic_resize(*img, *source_image, best_size.first, best_size.second);
        // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
        images[images.size()-1].push_back(source_image);
    }
    else if (multiple > 1) {
        auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
        clip_image_u8 * source_image = clip_image_u8_init();
        bicubic_resize(*img, *source_image, best_size.first, best_size.second);
        // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
        LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
        images[images.size()-1].push_back(source_image);

        std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
        LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);

        auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
        clip_image_u8 * refine_image = clip_image_u8_init();
        bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);

        LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);

        // split_to_patches
        int width = refine_image->nx;
        int height = refine_image->ny;
        int grid_x = int(width / best_grid.first);
        int grid_y = int(height / best_grid.second);
        for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
            images.push_back(std::vector<clip_image_u8 *>());
            for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
                clip_image_u8 * patch = clip_image_u8_init();
                patch->nx = grid_x;
                patch->ny = grid_y;
                patch->buf.resize(3 * patch->nx * patch->ny);
                for (int y = patches_i; y < patches_i + grid_y; ++y) {
                    for (int x = patches_j; x < patches_j + grid_x; ++x) {
                        const int i = 3 * (y * refine_image->nx + x);
                        const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
                        patch->buf[j]   = refine_image->buf[i];
                        patch->buf[j+1] = refine_image->buf[i+1];
                        patch->buf[j+2] = refine_image->buf[i+2];
                    }
                }
                images[images.size()-1].push_back(patch);
            }
        }
        clip_image_u8_free(refine_image);
    }
    return images;
}

int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
    const int max_slice_nums=9;
    const int scale_resolution=448;
    const int original_width = ctx_clip->load_image_size->width;
    const int original_height = ctx_clip->load_image_size->height;
    const float log_ratio = log(1.0*original_width/original_height);
    const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
    const int multiple = fmin(ceil(ratio), max_slice_nums);
    std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
    return best_grid.first;
}

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {

    if(clip_is_minicpmv(ctx)){
        int max_slice_nums = 9;
        std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
        res_imgs->size = 0;
        for (size_t i = 0; i < imgs.size(); ++i){
            res_imgs->size += imgs[i].size();
        }
        res_imgs->data = new clip_image_f32[res_imgs->size];
        int idx = 0;
        for (size_t i = 0; i < imgs.size(); ++i) {
            for (size_t j = 0; j < imgs[i].size(); ++j) {
                LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
                clip_image_f32 * res = clip_image_f32_init();
                normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
                res_imgs->data[idx++] = *res;
                clip_image_f32_free(res);
            }
        }
        for (size_t i = 0; i < imgs.size(); ++i) {
            for (size_t j = 0; j < imgs[i].size(); ++j) {
                if (imgs[i][j] != nullptr) {
                    clip_image_u8_free(imgs[i][j]);
                }
            }
        }
        return true;
    }
    else if (ctx->has_qwen2vl_merger) {
        clip_image_u8 * resized = clip_image_u8_init();
        auto patch_size = clip_patch_size(ctx) * 2;
        int nx = ceil((float)img->nx / patch_size) * patch_size;
        int ny = ceil((float)img->ny / patch_size) * patch_size;
        bicubic_resize(*img, *resized, nx, ny);

        res_imgs->data = new clip_image_f32[1];
        // clip_image_f32 * res = clip_image_f32_init();
        normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std);
        // res_imgs->data[0] = *res;
        res_imgs->size = 1;

        // clip_image_f32_free(res);
        clip_image_u8_free(resized);
        return true;
    }

    if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        res_imgs->size = 1;
        res_imgs->data = new clip_image_f32[res_imgs->size];
        clip_image_u8 resized_image;
        int32_t sz=ctx->vision_model.hparams.image_size;
        bicubic_resize(*img, resized_image,sz,sz);
        clip_image_f32 * res = clip_image_f32_init();
        //clip_image_save_to_bmp(resized_image, "resized.bmp");
        normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std);
        res_imgs->data[0] = *res;
        clip_image_f32_free(res);
        return true;
    }

    bool pad_to_square = true;
    if (!ctx->has_vision_encoder) {
        LOG_ERR("This gguf file seems to have no vision encoder\n");
        return false;
    }
    auto & params = ctx->vision_model.hparams;
    // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
    if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
        pad_to_square = false;
    }
    // free the previous res_imgs if any set
    if (res_imgs->size > 0) {
        clip_image_f32_batch_free(res_imgs);
    }
    res_imgs->data = nullptr;
    res_imgs->size = 0;

    // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156

    clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
    if (pad_to_square && img->nx != img->ny) {
        int longer_side = std::max(img->nx, img->ny);
        temp->nx = longer_side;
        temp->ny = longer_side;
        temp->buf.resize(3 * longer_side * longer_side);
        const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)

        // fill with background color
        for (size_t i = 0; i < temp->buf.size(); i++) {
            temp->buf[i] = bc[i % 3];
        }

        // copy from the input image
        for (int y = 0; y < img->ny; y++) {
            for (int x = 0; x < img->nx; x++) {
                const int i = 3 * (y * img->nx + x);
                const int j = 3 * (y * temp->nx + x);
                temp->buf[j]   = img->buf[i];
                temp->buf[j+1] = img->buf[i+1];
                temp->buf[j+2] = img->buf[i+2];
            }
        }
    } else {
        if (!params.image_grid_pinpoints.empty()) {
            // "spatial_unpad" with "anyres" processing for llava-1.6
            std::vector<std::pair<int, int>> possible_resolutions;
            for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
                possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
            }
            std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
            // clip_image_save_to_bmp(*img, "input.bmp");
            resize_and_pad_image(*img, *temp, best_resolution);  // we do not pad with mean-bg color anymore in llava-1.6
            // clip_image_save_to_bmp(*temp, "resized.bmp");
            // visually verify normalized image:
            // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
            // {
            //     clip_image_u8 * temp2 = clip_image_u8_init();
            //     clip_image_convert_f32_to_u8(*res, *temp2);
            //     clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
            //     clip_image_u8_free(temp2);
            // }

            std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)

            clip_image_u8 *image_original_resize = clip_image_u8_init();
            // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
            bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
            patches.insert(patches.begin(), image_original_resize);
            // clip_image_f32_batch_init(patches.size());
            res_imgs->size = patches.size();
            res_imgs->data = new clip_image_f32[res_imgs->size];
            int num=0;
            for (auto& patch : patches) {
                normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
                num++;
            }

            for (size_t i = 0; i < patches.size(); i++) {
                // LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
                clip_image_u8_free(patches[i]);
            }

            clip_image_u8_free(temp);

            return true;
        } else {
            temp->nx = img->nx;
            temp->ny = img->ny;
            temp->buf.resize(img->buf.size());
            memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
        }
    }

    const int nx = temp->nx;
    const int ny = temp->ny;
    // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");

    const int nx2 = ctx->vision_model.hparams.image_size;
    const int ny2 = ctx->vision_model.hparams.image_size;
    clip_image_f32 * res = clip_image_f32_init();
    res->nx = nx2;
    res->ny = ny2;
    res->buf.resize(3 * nx2 * ny2);

    const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;

    const int nx3 = int(nx / scale + 0.5f);
    const int ny3 = int(ny / scale + 0.5f);

    const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
    const auto & s3 = ctx->image_std;  // {0.26862954f, 0.26130258f, 0.27577711f};

    for (int y = 0; y < ny3; y++) {
        for (int x = 0; x < nx3; x++) {
            for (int c = 0; c < 3; c++) {
                // linear interpolation
                const float sx = (x + 0.5f) * scale - 0.5f;
                const float sy = (y + 0.5f) * scale - 0.5f;

                const int x0 = std::max(0, (int)std::floor(sx));
                const int y0 = std::max(0, (int)std::floor(sy));

                const int x1 = std::min(x0 + 1, nx - 1);
                const int y1 = std::min(y0 + 1, ny - 1);

                const float dx = sx - x0;
                const float dy = sy - y0;

                const int j00 = 3 * (y0 * nx + x0) + c;
                const int j01 = 3 * (y0 * nx + x1) + c;
                const int j10 = 3 * (y1 * nx + x0) + c;
                const int j11 = 3 * (y1 * nx + x1) + c;

                const float v00 = temp->buf[j00];
                const float v01 = temp->buf[j01];
                const float v10 = temp->buf[j10];
                const float v11 = temp->buf[j11];

                const float v0 = v00 * (1.0f - dx) + v01 * dx;
                const float v1 = v10 * (1.0f - dx) + v11 * dx;

                const float v = v0 * (1.0f - dy) + v1 * dy;

                const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);

                const int i = 3 * (y * nx3 + x) + c;

                res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
            }
        }
    }
    clip_image_u8_free(temp);

    // {
    //     clip_image_u8 * temp2 = clip_image_u8_init();
    //     clip_image_convert_f32_to_u8(*res, *temp2);
    //     clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
    //     clip_image_u8_free(temp2);
    // }
    // res_imgs.push_back(res);

    res_imgs->size = 1;
    res_imgs->data = new clip_image_f32[res_imgs->size];
    res_imgs->data[0] = *res;
    clip_image_f32_free(res);

    return true;
}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
    return ctx->vision_model.image_newline;
}

void clip_free(clip_ctx * ctx) {
    delete ctx;
}

size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
    int extra_tokens = ctx->has_glm_projector ? 2 : 0;
    return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
}

size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
    return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
}

int32_t clip_image_size(const struct clip_ctx * ctx) {
    return ctx->vision_model.hparams.image_size;
}

int32_t clip_patch_size(const struct clip_ctx * ctx) {
    return ctx->vision_model.hparams.patch_size;
}

int32_t clip_hidden_size(const struct clip_ctx * ctx) {
    return ctx->vision_model.hparams.hidden_size;
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
    return ctx->vision_model.hparams.mm_patch_merge_type;
}

const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
    if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
        return &ctx->vision_model.hparams.image_grid_pinpoints.front();
    }
    return nullptr;
}

size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
    return ctx->vision_model.hparams.image_grid_pinpoints.size();
}

int clip_n_patches(const struct clip_ctx * ctx) {
    clip_image_f32 img;
    img.nx = ctx->vision_model.hparams.image_size;
    img.ny = ctx->vision_model.hparams.image_size;
    return clip_n_patches_by_img(ctx, &img);
}

int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
    const auto & params = ctx->vision_model.hparams;

    int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
    if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3)
    {
        n_patches = 256; //kcpp hardcode gemma3 vision to 256 size
    }

    if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
        n_patches /= 4;
    } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
        if (ctx->minicpmv_version == 2) {
            n_patches = 96;
        }
        else if (ctx->minicpmv_version == 3) {
            n_patches = 64;
        }
        else if (ctx->minicpmv_version == 4) {
            n_patches = 64;
        }
    } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
        int patch_size = params.patch_size * 2;
        int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
        int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
        n_patches = x_patch * y_patch;
    }

    return n_patches;
}

static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
    assert(embed_dim % 2 == 0);
    int H = pos.size();
    int W = pos[0].size();

    std::vector<float> omega(embed_dim / 2);
    for (int i = 0; i < embed_dim / 2; ++i) {
        omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
    }

    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                float out_value = pos[h][w] * omega[d];
                emb[h][w][d] = sin(out_value);
                emb[h][w][d + embed_dim / 2] = cos(out_value);
            }
        }
    }

    return emb;
}

static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
    assert(embed_dim % 2 == 0);
    std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
    std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)

    int H = emb_h.size();
    int W = emb_h[0].size();
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));

    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                emb[h][w][d] = emb_h[h][w][d];
                emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
            }
        }
    }
    return emb;
}

static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
    int grid_h_size = image_size.first;
    int grid_w_size = image_size.second;

    std::vector<float> grid_h(grid_h_size);
    std::vector<float> grid_w(grid_w_size);

    for (int i = 0; i < grid_h_size; ++i) {
        grid_h[i] = static_cast<float>(i);
    }
    for (int i = 0; i < grid_w_size; ++i) {
        grid_w[i] = static_cast<float>(i);
    }

    std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid[h][w] = grid_w[w];
        }
    }
    std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid_2d[0][h][w] = grid_h[h];
            grid_2d[1][h][w] = grid_w[w];
        }
    }

    std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);

    int H = image_size.first;
    int W = image_size.second;
    std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
        }
    }

    return pos_embed_2d;
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
    if (!ctx->has_vision_encoder) {
        LOG_ERR("This gguf file seems to have no vision encoder\n");
        return false;
    }

    clip_image_f32_batch imgs{};
    imgs.size = 1;
    imgs.data = img;
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
    if (!ctx->has_vision_encoder) {
        LOG_ERR("This gguf file seems to have no vision encoder\n");
        return false;
    }

    int batch_size = imgs->size;
    if (ctx->has_llava_projector) {
        GGML_ASSERT(batch_size == 1); // TODO: support multiple images
    }
    if (ctx->has_minicpmv_projector) {
        GGML_ASSERT(batch_size == 1);
    }
    if (ctx->has_glm_projector) {
        GGML_ASSERT(batch_size == 1);
        ggml_tensor * boi = ctx->vision_model.boi_w;
        ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
        vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
    }

    // build the inference graph
    ggml_backend_sched_reset(ctx->sched.get());
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);

    // set inputs
    const auto & model = ctx->vision_model;
    const auto & hparams = model.hparams;

    const int image_size = hparams.image_size;
    int image_size_width  = image_size;
    int image_size_height = image_size;
    if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
        image_size_width  = imgs->data[0].nx;
        image_size_height = imgs->data[0].ny;
    }
    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
    const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
    if(ctx->load_image_size==nullptr){
        ctx->load_image_size= clip_image_size_init();
    }
    const int pos_w = ctx->load_image_size->width/patch_size;
    const int pos_h = ctx->load_image_size->height/patch_size;

    {
        struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
        float * data = (float *)malloc(ggml_nbytes(inp_raw));

        for (size_t i = 0; i < imgs->size; i++) {
            const int nx = imgs->data[i].nx;
            const int ny = imgs->data[i].ny;
            if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
                GGML_ASSERT(nx == image_size && ny == image_size);
            }

            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
                for (int k = 0; k < 3; k++) {
                    for (int y = 0; y < ny; y++) {
                        for (int x = 0; x < nx; x++) {
                            data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
                        }
                    }
                }
            }
        }
        ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
        free(data);
    }
    if (ctx->has_minicpmv_projector) {
        {
            // inspired from siglip:
            //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
            //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
            struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
            int* positions_data = (int*)malloc(ggml_nbytes(positions));
            int bucket_coords_h[1024];
            int bucket_coords_w[1024];
            for (int i = 0; i < pos_h; i++){
                bucket_coords_h[i] = std::floor(70.0*i/pos_h);
            }
            for (int i = 0; i < pos_w; i++){
                bucket_coords_w[i] = std::floor(70.0*i/pos_w);
            }
            for (int i = 0, id = 0; i < pos_h; i++){
                for (int j = 0; j < pos_w; j++){
                    positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                }
            }
            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
            free(positions_data);
        }

        {
            // inspired from resampler of Qwen-VL:
            //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
            //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
            struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
            int embed_dim = 4096;
            if (ctx->minicpmv_version == 2) {
                embed_dim = 4096;
            }
            else if (ctx->minicpmv_version == 3) {
                embed_dim = 3584;
            }
            else if (ctx->minicpmv_version == 4) {
                embed_dim = 3584;
            }
            auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));

            float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
            for(int i=0;i < pos_w * pos_h; ++i){
                for(int j=0; j < embed_dim; ++j){
                    pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
                }
            }

            ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
            free(pos_embed_data);
        }
    }
    else{
        {
            if (ctx->has_class_embedding) {
                struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");

                void* zero_mem = malloc(ggml_nbytes(embeddings));
                memset(zero_mem, 0, ggml_nbytes(embeddings));
                ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
                free(zero_mem);
            }
        }

        if (ctx->has_qwen2vl_merger) {
            struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");

            const int pw = image_size_width / patch_size;
            const int ph = image_size_height / patch_size;
            int* positions_data = (int*)malloc(ggml_nbytes(positions));

            int ptr = 0;
            for (int y = 0; y < ph; y+=2)
            {
                for (int x = 0; x < pw; x+=2)
                {
                    for (int dy = 0; dy < 2; dy++) {
                        for (int dx = 0; dx < 2; dx++) {
                            positions_data[ptr]                 = y + dy;
                            positions_data[num_patches + ptr]     = x + dx;
                            positions_data[num_patches * 2 + ptr] = y + dy;
                            positions_data[num_patches * 3 + ptr] = x + dx;
                            ptr++;
                        }
                    }
                }
            }

            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
            free(positions_data);
        }
        else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
            // do nothing
        }
        else {
            struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");

            int* positions_data = (int*)malloc(ggml_nbytes(positions));
            for (int i = 0; i < num_positions; i++) {
                positions_data[i] = i;
            }
            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
            free(positions_data);

            if (!ctx->has_glm_projector) {
                struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
                int patch_offset = ctx->has_class_embedding ? 1 : 0;
                int* patches_data = (int*)malloc(ggml_nbytes(patches));
                for (int i = 0; i < num_patches; i++) {
                    patches_data[i] = i + patch_offset;
                }
                ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
                free(patches_data);
            }
        }
    }

    if (ggml_backend_is_cpu(ctx->backend)) {
        ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
    }

    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }

    // the last node is the embedding tensor
    struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

    if (ctx->has_glm_projector) {
        //eoi
        ggml_tensor * eoi = ctx->vision_model.eoi_w;
        int offset = ggml_nelements(embeddings);
        ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
    }

    return true;
}

static bool avoid_problematic_indivisible = true;
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
    assert(itype < GGML_TYPE_COUNT);
    ggml_type type = static_cast<ggml_type>(itype);

    auto * ctx_clip = clip_model_load(fname_inp, 2);

    const auto & ctx_src = ctx_clip->ctx_gguf;
    const auto & ctx_data = ctx_clip->ctx_data;

    auto * ctx_out = gguf_init_empty();
    gguf_set_kv(ctx_out, ctx_src);
    gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
    gguf_set_val_u32(ctx_out, "general.file_type", itype);

    auto fout = std::ofstream(fname_out, std::ios::binary);

    const int n_tensors = gguf_get_n_tensors(ctx_src);

    for (int i = 0; i < n_tensors; ++i) {
        const char * name = gguf_get_tensor_name(ctx_src, i);
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
        gguf_add_tensor(ctx_out, cur);
    }

    const size_t meta_size = gguf_get_meta_size(ctx_out);
    for (size_t i = 0; i < meta_size; ++i) {
        fout.put(0);
    }

    // regexes of tensor names to be quantized
    const std::vector<std::string> k_names = {
        ".*weight",
    };

    std::vector<uint8_t> work(512);
    std::vector<float> conv_buf(512);
    size_t total_size_org = 0;
    size_t total_size_new = 0;

    for (int i = 0; i < n_tensors; ++i) {
        const std::string name = gguf_get_tensor_name(ctx_src, i);
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());

        enum ggml_type new_type;
        void * new_data;
        size_t new_size;

        bool quantize = false;
        for (const auto & s : k_names) {
            if (std::regex_match(name, std::regex(s))) {
                quantize = true;
                break;
            }
        }

        // quantize only 2D tensors and bigger than block size
        quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);

        //kcpp fix: do not quantize certain tensors if they are indivisible!
        if(avoid_problematic_indivisible)
        {
            if(name=="v.position_embd.weight")
            {
                quantize = false;
            }
            // //temp fix for gemma3
            // if(name.find("ffn_up.weight") != std::string::npos)
            // {
            //     quantize = false;
            // }
        }

        if (quantize) {
            new_type = type;
            if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
                new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
                // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
            }
            const size_t n_elms = ggml_nelements(cur);
            float * f32_data;

            switch (cur->type) {
            case GGML_TYPE_F32:
                f32_data = (float *)cur->data;
                break;
            case GGML_TYPE_F16:
                if (conv_buf.size() < n_elms) {
                    conv_buf.resize(n_elms);
                }
                for (size_t j = 0; j < n_elms; ++j) {
                    conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
                }
                f32_data = (float *)conv_buf.data();
                break;
            default:
                LOG_ERR("Please use an input file in f32 or f16\n");
                gguf_free(ctx_out);
                return false;
            }

            if (work.size() < n_elms * 4) {
                work.resize(n_elms * 4);
            }
            new_data = work.data();

            new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
        } else {
            new_type = cur->type;
            new_data = cur->data;
            new_size = ggml_nbytes(cur);
        }
        const size_t orig_size = ggml_nbytes(cur);
        total_size_org += orig_size;
        total_size_new += new_size;
        gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
        GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
        gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
        fout.write((const char *)new_data, new_size);
        size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
        for (size_t j = 0; j < pad; ++j) {
            fout.put(0);
        }

        LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
               orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
    }

    // go back to beginning of file and write the updated metadata
    fout.seekp(0, std::ios::beg);
    std::vector<uint8_t> meta(meta_size);
    gguf_get_meta_data(ctx_out, meta.data());
    fout.write((const char *)meta.data(), meta_size);

    fout.close();

    clip_free(ctx_clip);
    gguf_free(ctx_out);

    {
        LOG_INF("%s: original  size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
        LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
    }

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
    if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
        return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
        return ctx->vision_model.mm_model_peg_0_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
        return ctx->vision_model.mm_2_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
        return ctx->vision_model.mm_3_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
        if (ctx->minicpmv_version == 2) {
            return 4096;
        }
        else if (ctx->minicpmv_version == 3) {
            return 3584;
        }
        else if (ctx->minicpmv_version == 4) {
            return 3584;
        }
    }
    if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
        return ctx->vision_model.mm_model_mlp_3_w->ne[1];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
        return ctx->vision_model.mm_1_b->ne[0];
    }
    if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
        return ctx->vision_model.mm_input_proj_w->ne[0];
    }

    std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
    throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
    if (ctx->has_minicpmv_projector) {
        return ctx->minicpmv_version;
    }
    return 0;
}

bool clip_is_glm(const struct clip_ctx * ctx) {
    return ctx->has_glm_projector;
}
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
    return ctx->has_qwen2vl_merger;
}

// Determine the number of encoder layers to iterate over
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
    // Get the index of the second to last layer; this is the
    // default for models that have a llava projector
    const auto & hparams = ctx->vision_model.hparams;
    int n_layer = hparams.n_layer - 1;
    int deepest_feature_layer = -1;

    // Handle other projectors; incrementing here indicates that we
    // should use the last encoder layer for the vision features.
    if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
        n_layer += 1;
    }

    // If we set explicit vision feature layers, only go up to the deepest one
    for (const auto & feature_layer : hparams.vision_feature_layer) {
        if (feature_layer > deepest_feature_layer) {
            deepest_feature_layer = feature_layer;
        }
    }
    return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
}

bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}