File size: 6,419 Bytes
1d30d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
from typing import Dict

import torch
import numpy as np
from gguf import *
from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2VLProcessor,
    AutoProcessor,
    Qwen2VLConfig
)


VISION = "clip.vision"


def k(raw_key: str, arch: str) -> str:
    return raw_key.format(arch=arch)


def to_gguf_name(name: str) -> str:
    og = name
    name = name.replace("text_model", "t").replace("vision_model", "v")
    name = name.replace("blocks", "blk").replace("embeddings.", "")
    name = name.replace("attn.", "attn_")
    name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
    # name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
    name = name.replace("norm1", "ln1").replace("norm2", "ln2")
    name = name.replace("merger.mlp", 'mm')
    print(f"[to_gguf_name] {og} --> {name}")
    return name


def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]:
    vision_model = qwen2vl.visual
    tensor_map = {}
    for name, ten in vision_model.state_dict().items():
        ten = ten.numpy()
        if 'qkv' in name:
            if ten.ndim == 2: # weight
                c3, _ = ten.shape
            else:             # bias
                c3 = ten.shape[0]
            assert c3 % 3 == 0
            c = c3 // 3
            wq = ten[:c]
            wk = ten[c: c * 2]
            wv = ten[c * 2:]
            tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
            tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
            tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
        elif 'merger' in name:
            if name.endswith("ln_q.weight"):
                tensor_map['v.post_ln.weight'] = ten
            elif name.endswith("ln_q.bias"):
                tensor_map['v.post_ln.bias'] = ten
            else:
                # "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
                tensor_map[to_gguf_name(name)] = ten
        elif 'patch_embed.proj.weight' in name:
            # NOTE: split Conv3D into Conv2Ds
            c1, c2, kt, kh, kw = ten.shape
            assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
            tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
            tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
        else:
            tensor_map[to_gguf_name(f"vision_model.{name}")] = ten

    for new_name, ten in tensor_map.items():
        if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
            tensor_map[new_name] = ten.astype(np.float32)
        else:
            tensor_map[new_name] = ten.astype(dtype)
    tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32)  # dummy tensor, just here as a placeholder
    return tensor_map


def main(args):
    if args.data_type == 'fp32':
        dtype = torch.float32
        np_dtype = np.float32
        ftype = 0
    elif args.data_type == 'fp16':
        dtype = torch.float32
        np_dtype = np.float16
        ftype = 1
    else:
        raise ValueError()

    local_model = False
    model_path = ""
    model_name = args.model_name
    print("model_name: ", model_name)
    qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
        model_name, torch_dtype=dtype, device_map="cpu"
    )
    cfg: Qwen2VLConfig = qwen2vl.config  # type: ignore[reportAssignmentType]
    vcfg = cfg.vision_config

    if os.path.isdir(model_name):
        local_model = True
        if model_name.endswith(os.sep):
            model_name = model_name[:-1]
        model_path = model_name
        model_name = os.path.basename(model_name)
    fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"

    fout = GGUFWriter(path=fname_out, arch="clip")
    fout.add_description("image encoder for Qwen2VL")

    fout.add_file_type(ftype)
    fout.add_bool("clip.has_text_encoder", False)
    fout.add_bool("clip.has_vision_encoder", True)
    fout.add_bool("clip.has_qwen2vl_merger", True)
    fout.add_string("clip.projector_type", "qwen2vl_merger")

    print(cfg.vision_config)
    if 'silu' in cfg.vision_config.hidden_act.lower():
        fout.add_bool("clip.use_silu", True)
        fout.add_bool("clip.use_gelu", False)
    elif 'gelu' in cfg.vision_config.hidden_act.lower():
        fout.add_bool("clip.use_silu", False)
        fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
    else:
        raise ValueError()

    tensor_map = find_vision_tensors(qwen2vl, np_dtype)
    for name, data in tensor_map.items():
        fout.add_tensor(name, data)

    fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
    fout.add_uint32("clip.vision.image_size", 14 * 40)  # some reasonable size that is divable by (14*2)
    fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
    fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
    fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
    fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
    fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
    fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0)  # not sure what this does, put 0 here as a placeholder
    fout.add_name(model_name)
    """
    HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
            it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
    """

    if local_model:
        processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
    else:
        processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
    fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
    fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]

    fout.write_header_to_file()
    fout.write_kv_data_to_file()
    fout.write_tensors_to_file()
    fout.close()
    print("save model as: ", fname_out)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
    parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
    args = parser.parse_args()
    main(args)