File size: 16,588 Bytes
1d30d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
#ifndef SLANG_PRELUDE_SCALAR_INTRINSICS_H
#define SLANG_PRELUDE_SCALAR_INTRINSICS_H
#if !defined(SLANG_LLVM) && SLANG_PROCESSOR_X86_64 && SLANG_VC
// If we have visual studio and 64 bit processor, we can assume we have popcnt, and can include x86 intrinsics
# include <intrin.h>
#endif
#ifndef SLANG_FORCE_INLINE
# define SLANG_FORCE_INLINE inline
#endif
#ifdef SLANG_PRELUDE_NAMESPACE
namespace SLANG_PRELUDE_NAMESPACE {
#endif
#ifndef SLANG_PRELUDE_PI
# define SLANG_PRELUDE_PI 3.14159265358979323846
#endif
union Union32
{
uint32_t u;
int32_t i;
float f;
};
union Union64
{
uint64_t u;
int64_t i;
double d;
};
// 32 bit cast conversions
SLANG_FORCE_INLINE int32_t _bitCastFloatToInt(float f) { Union32 u; u.f = f; return u.i; }
SLANG_FORCE_INLINE float _bitCastIntToFloat(int32_t i) { Union32 u; u.i = i; return u.f; }
SLANG_FORCE_INLINE uint32_t _bitCastFloatToUInt(float f) { Union32 u; u.f = f; return u.u; }
SLANG_FORCE_INLINE float _bitCastUIntToFloat(uint32_t ui) { Union32 u; u.u = ui; return u.f; }
// ----------------------------- F16 -----------------------------------------
// This impl is based on FloatToHalf that is in Slang codebase
SLANG_FORCE_INLINE uint32_t f32tof16(const float value)
{
const uint32_t inBits = _bitCastFloatToUInt(value);
// bits initially set to just the sign bit
uint32_t bits = (inBits >> 16) & 0x8000;
// Mantissa can't be used as is, as it holds last bit, for rounding.
uint32_t m = (inBits >> 12) & 0x07ff;
uint32_t e = (inBits >> 23) & 0xff;
if (e < 103)
{
// It's zero
return bits;
}
if (e == 0xff)
{
// Could be a NAN or INF. Is INF if *input* mantissa is 0.
// Remove last bit for rounding to make output mantissa.
m >>= 1;
// We *assume* float16/float32 signaling bit and remaining bits
// semantics are the same. (The signalling bit convention is target specific!).
// Non signal bit's usage within mantissa for a NAN are also target specific.
// If the m is 0, it could be because the result is INF, but it could also be because all the
// bits that made NAN were dropped as we have less mantissa bits in f16.
// To fix for this we make non zero if m is 0 and the input mantissa was not.
// This will (typically) produce a signalling NAN.
m += uint32_t(m == 0 && (inBits & 0x007fffffu));
// Combine for output
return (bits | 0x7c00u | m);
}
if (e > 142)
{
// INF.
return bits | 0x7c00u;
}
if (e < 113)
{
m |= 0x0800u;
bits |= (m >> (114 - e)) + ((m >> (113 - e)) & 1);
return bits;
}
bits |= ((e - 112) << 10) | (m >> 1);
bits += m & 1;
return bits;
}
static const float g_f16tof32Magic = _bitCastIntToFloat((127 + (127 - 15)) << 23);
SLANG_FORCE_INLINE float f16tof32(const uint32_t value)
{
const uint32_t sign = (value & 0x8000) << 16;
uint32_t exponent = (value & 0x7c00) >> 10;
uint32_t mantissa = (value & 0x03ff);
if (exponent == 0)
{
// If mantissa is 0 we are done, as output is 0.
// If it's not zero we must have a denormal.
if (mantissa)
{
// We have a denormal so use the magic to do exponent adjust
return _bitCastIntToFloat(sign | ((value & 0x7fff) << 13)) * g_f16tof32Magic;
}
}
else
{
// If the exponent is NAN or INF exponent is 0x1f on input.
// If that's the case, we just need to set the exponent to 0xff on output
// and the mantissa can just stay the same. If its 0 it's INF, else it is NAN and we just copy the bits
//
// Else we need to correct the exponent in the normalized case.
exponent = (exponent == 0x1F) ? 0xff : (exponent + (-15 + 127));
}
return _bitCastUIntToFloat(sign | (exponent << 23) | (mantissa << 13));
}
// ----------------------------- F32 -----------------------------------------
// Helpers
SLANG_FORCE_INLINE float F32_calcSafeRadians(float radians);
#ifdef SLANG_LLVM
SLANG_PRELUDE_EXTERN_C_START
// Unary
float F32_ceil(float f);
float F32_floor(float f);
float F32_round(float f);
float F32_sin(float f);
float F32_cos(float f);
float F32_tan(float f);
float F32_asin(float f);
float F32_acos(float f);
float F32_atan(float f);
float F32_sinh(float f);
float F32_cosh(float f);
float F32_tanh(float f);
float F32_log2(float f);
float F32_log(float f);
float F32_log10(float f);
float F32_exp2(float f);
float F32_exp(float f);
float F32_abs(float f);
float F32_trunc(float f);
float F32_sqrt(float f);
bool F32_isnan(float f);
bool F32_isfinite(float f);
bool F32_isinf(float f);
// Binary
SLANG_FORCE_INLINE float F32_min(float a, float b) { return a < b ? a : b; }
SLANG_FORCE_INLINE float F32_max(float a, float b) { return a > b ? a : b; }
float F32_pow(float a, float b);
float F32_fmod(float a, float b);
float F32_remainder(float a, float b);
float F32_atan2(float a, float b);
float F32_frexp(float x, int* e);
float F32_modf(float x, float* ip);
// Ternary
SLANG_FORCE_INLINE float F32_fma(float a, float b, float c) { return a * b + c; }
SLANG_PRELUDE_EXTERN_C_END
#else
// Unary
SLANG_FORCE_INLINE float F32_ceil(float f) { return ::ceilf(f); }
SLANG_FORCE_INLINE float F32_floor(float f) { return ::floorf(f); }
SLANG_FORCE_INLINE float F32_round(float f) { return ::roundf(f); }
SLANG_FORCE_INLINE float F32_sin(float f) { return ::sinf(f); }
SLANG_FORCE_INLINE float F32_cos(float f) { return ::cosf(f); }
SLANG_FORCE_INLINE float F32_tan(float f) { return ::tanf(f); }
SLANG_FORCE_INLINE float F32_asin(float f) { return ::asinf(f); }
SLANG_FORCE_INLINE float F32_acos(float f) { return ::acosf(f); }
SLANG_FORCE_INLINE float F32_atan(float f) { return ::atanf(f); }
SLANG_FORCE_INLINE float F32_sinh(float f) { return ::sinhf(f); }
SLANG_FORCE_INLINE float F32_cosh(float f) { return ::coshf(f); }
SLANG_FORCE_INLINE float F32_tanh(float f) { return ::tanhf(f); }
SLANG_FORCE_INLINE float F32_log2(float f) { return ::log2f(f); }
SLANG_FORCE_INLINE float F32_log(float f) { return ::logf(f); }
SLANG_FORCE_INLINE float F32_log10(float f) { return ::log10f(f); }
SLANG_FORCE_INLINE float F32_exp2(float f) { return ::exp2f(f); }
SLANG_FORCE_INLINE float F32_exp(float f) { return ::expf(f); }
SLANG_FORCE_INLINE float F32_abs(float f) { return ::fabsf(f); }
SLANG_FORCE_INLINE float F32_trunc(float f) { return ::truncf(f); }
SLANG_FORCE_INLINE float F32_sqrt(float f) { return ::sqrtf(f); }
SLANG_FORCE_INLINE bool F32_isnan(float f) { return SLANG_PRELUDE_STD isnan(f); }
SLANG_FORCE_INLINE bool F32_isfinite(float f) { return SLANG_PRELUDE_STD isfinite(f); }
SLANG_FORCE_INLINE bool F32_isinf(float f) { return SLANG_PRELUDE_STD isinf(f); }
// Binary
SLANG_FORCE_INLINE float F32_min(float a, float b) { return ::fminf(a, b); }
SLANG_FORCE_INLINE float F32_max(float a, float b) { return ::fmaxf(a, b); }
SLANG_FORCE_INLINE float F32_pow(float a, float b) { return ::powf(a, b); }
SLANG_FORCE_INLINE float F32_fmod(float a, float b) { return ::fmodf(a, b); }
SLANG_FORCE_INLINE float F32_remainder(float a, float b) { return ::remainderf(a, b); }
SLANG_FORCE_INLINE float F32_atan2(float a, float b) { return float(::atan2(a, b)); }
SLANG_FORCE_INLINE float F32_frexp(float x, int* e) { return ::frexpf(x, e); }
SLANG_FORCE_INLINE float F32_modf(float x, float* ip)
{
return ::modff(x, ip);
}
// Ternary
SLANG_FORCE_INLINE float F32_fma(float a, float b, float c) { return ::fmaf(a, b, c); }
#endif
SLANG_FORCE_INLINE float F32_calcSafeRadians(float radians)
{
// Put 0 to 2pi cycles to cycle around 0 to 1
float a = radians * (1.0f / float(SLANG_PRELUDE_PI * 2));
// Get truncated fraction, as value in 0 - 1 range
a = a - F32_floor(a);
// Convert back to 0 - 2pi range
return (a * float(SLANG_PRELUDE_PI * 2));
}
SLANG_FORCE_INLINE float F32_rsqrt(float f) { return 1.0f / F32_sqrt(f); }
SLANG_FORCE_INLINE float F32_sign(float f) { return ( f == 0.0f) ? f : (( f < 0.0f) ? -1.0f : 1.0f); }
SLANG_FORCE_INLINE float F32_frac(float f) { return f - F32_floor(f); }
SLANG_FORCE_INLINE uint32_t F32_asuint(float f) { Union32 u; u.f = f; return u.u; }
SLANG_FORCE_INLINE int32_t F32_asint(float f) { Union32 u; u.f = f; return u.i; }
// ----------------------------- F64 -----------------------------------------
SLANG_FORCE_INLINE double F64_calcSafeRadians(double radians);
#ifdef SLANG_LLVM
SLANG_PRELUDE_EXTERN_C_START
// Unary
double F64_ceil(double f);
double F64_floor(double f);
double F64_round(double f);
double F64_sin(double f);
double F64_cos(double f);
double F64_tan(double f);
double F64_asin(double f);
double F64_acos(double f);
double F64_atan(double f);
double F64_sinh(double f);
double F64_cosh(double f);
double F64_tanh(double f);
double F64_log2(double f);
double F64_log(double f);
double F64_log10(double f);
double F64_exp2(double f);
double F64_exp(double f);
double F64_abs(double f);
double F64_trunc(double f);
double F64_sqrt(double f);
bool F64_isnan(double f);
bool F64_isfinite(double f);
bool F64_isinf(double f);
// Binary
SLANG_FORCE_INLINE double F64_min(double a, double b) { return a < b ? a : b; }
SLANG_FORCE_INLINE double F64_max(double a, double b) { return a > b ? a : b; }
double F64_pow(double a, double b);
double F64_fmod(double a, double b);
double F64_remainder(double a, double b);
double F64_atan2(double a, double b);
double F64_frexp(double x, int* e);
double F64_modf(double x, double* ip);
// Ternary
SLANG_FORCE_INLINE double F64_fma(double a, double b, double c) { return a * b + c; }
SLANG_PRELUDE_EXTERN_C_END
#else // SLANG_LLVM
// Unary
SLANG_FORCE_INLINE double F64_ceil(double f) { return ::ceil(f); }
SLANG_FORCE_INLINE double F64_floor(double f) { return ::floor(f); }
SLANG_FORCE_INLINE double F64_round(double f) { return ::round(f); }
SLANG_FORCE_INLINE double F64_sin(double f) { return ::sin(f); }
SLANG_FORCE_INLINE double F64_cos(double f) { return ::cos(f); }
SLANG_FORCE_INLINE double F64_tan(double f) { return ::tan(f); }
SLANG_FORCE_INLINE double F64_asin(double f) { return ::asin(f); }
SLANG_FORCE_INLINE double F64_acos(double f) { return ::acos(f); }
SLANG_FORCE_INLINE double F64_atan(double f) { return ::atan(f); }
SLANG_FORCE_INLINE double F64_sinh(double f) { return ::sinh(f); }
SLANG_FORCE_INLINE double F64_cosh(double f) { return ::cosh(f); }
SLANG_FORCE_INLINE double F64_tanh(double f) { return ::tanh(f); }
SLANG_FORCE_INLINE double F64_log2(double f) { return ::log2(f); }
SLANG_FORCE_INLINE double F64_log(double f) { return ::log(f); }
SLANG_FORCE_INLINE double F64_log10(float f) { return ::log10(f); }
SLANG_FORCE_INLINE double F64_exp2(double f) { return ::exp2(f); }
SLANG_FORCE_INLINE double F64_exp(double f) { return ::exp(f); }
SLANG_FORCE_INLINE double F64_abs(double f) { return ::fabs(f); }
SLANG_FORCE_INLINE double F64_trunc(double f) { return ::trunc(f); }
SLANG_FORCE_INLINE double F64_sqrt(double f) { return ::sqrt(f); }
SLANG_FORCE_INLINE bool F64_isnan(double f) { return SLANG_PRELUDE_STD isnan(f); }
SLANG_FORCE_INLINE bool F64_isfinite(double f) { return SLANG_PRELUDE_STD isfinite(f); }
SLANG_FORCE_INLINE bool F64_isinf(double f) { return SLANG_PRELUDE_STD isinf(f); }
// Binary
SLANG_FORCE_INLINE double F64_min(double a, double b) { return ::fmin(a, b); }
SLANG_FORCE_INLINE double F64_max(double a, double b) { return ::fmax(a, b); }
SLANG_FORCE_INLINE double F64_pow(double a, double b) { return ::pow(a, b); }
SLANG_FORCE_INLINE double F64_fmod(double a, double b) { return ::fmod(a, b); }
SLANG_FORCE_INLINE double F64_remainder(double a, double b) { return ::remainder(a, b); }
SLANG_FORCE_INLINE double F64_atan2(double a, double b) { return ::atan2(a, b); }
SLANG_FORCE_INLINE double F64_frexp(double x, int* e) { return ::frexp(x, e); }
SLANG_FORCE_INLINE double F64_modf(double x, double* ip)
{
return ::modf(x, ip);
}
// Ternary
SLANG_FORCE_INLINE double F64_fma(double a, double b, double c) { return ::fma(a, b, c); }
#endif // SLANG_LLVM
SLANG_FORCE_INLINE double F64_rsqrt(double f) { return 1.0 / F64_sqrt(f); }
SLANG_FORCE_INLINE double F64_sign(double f) { return (f == 0.0) ? f : ((f < 0.0) ? -1.0 : 1.0); }
SLANG_FORCE_INLINE double F64_frac(double f) { return f - F64_floor(f); }
SLANG_FORCE_INLINE void F64_asuint(double d, uint32_t* low, uint32_t* hi)
{
Union64 u;
u.d = d;
*low = uint32_t(u.u);
*hi = uint32_t(u.u >> 32);
}
SLANG_FORCE_INLINE void F64_asint(double d, int32_t* low, int32_t* hi)
{
Union64 u;
u.d = d;
*low = int32_t(u.u);
*hi = int32_t(u.u >> 32);
}
SLANG_FORCE_INLINE double F64_calcSafeRadians(double radians)
{
// Put 0 to 2pi cycles to cycle around 0 to 1
double a = radians * (1.0f / (SLANG_PRELUDE_PI * 2));
// Get truncated fraction, as value in 0 - 1 range
a = a - F64_floor(a);
// Convert back to 0 - 2pi range
return (a * (SLANG_PRELUDE_PI * 2));
}
// ----------------------------- I32 -----------------------------------------
SLANG_FORCE_INLINE int32_t I32_abs(int32_t f) { return (f < 0) ? -f : f; }
SLANG_FORCE_INLINE int32_t I32_min(int32_t a, int32_t b) { return a < b ? a : b; }
SLANG_FORCE_INLINE int32_t I32_max(int32_t a, int32_t b) { return a > b ? a : b; }
SLANG_FORCE_INLINE float I32_asfloat(int32_t x) { Union32 u; u.i = x; return u.f; }
SLANG_FORCE_INLINE uint32_t I32_asuint(int32_t x) { return uint32_t(x); }
SLANG_FORCE_INLINE double I32_asdouble(int32_t low, int32_t hi )
{
Union64 u;
u.u = (uint64_t(hi) << 32) | uint32_t(low);
return u.d;
}
// ----------------------------- U32 -----------------------------------------
SLANG_FORCE_INLINE uint32_t U32_abs(uint32_t f) { return f; }
SLANG_FORCE_INLINE uint32_t U32_min(uint32_t a, uint32_t b) { return a < b ? a : b; }
SLANG_FORCE_INLINE uint32_t U32_max(uint32_t a, uint32_t b) { return a > b ? a : b; }
SLANG_FORCE_INLINE float U32_asfloat(uint32_t x) { Union32 u; u.u = x; return u.f; }
SLANG_FORCE_INLINE uint32_t U32_asint(int32_t x) { return uint32_t(x); }
SLANG_FORCE_INLINE double U32_asdouble(uint32_t low, uint32_t hi)
{
Union64 u;
u.u = (uint64_t(hi) << 32) | low;
return u.d;
}
SLANG_FORCE_INLINE uint32_t U32_countbits(uint32_t v)
{
#if SLANG_GCC_FAMILY && !defined(SLANG_LLVM)
return __builtin_popcount(v);
#elif SLANG_PROCESSOR_X86_64 && SLANG_VC
return __popcnt(v);
#else
uint32_t c = 0;
while (v)
{
c++;
v &= v - 1;
}
return c;
#endif
}
// ----------------------------- U64 -----------------------------------------
SLANG_FORCE_INLINE uint64_t U64_abs(uint64_t f) { return f; }
SLANG_FORCE_INLINE uint64_t U64_min(uint64_t a, uint64_t b) { return a < b ? a : b; }
SLANG_FORCE_INLINE uint64_t U64_max(uint64_t a, uint64_t b) { return a > b ? a : b; }
// TODO(JS): We don't define countbits for 64bit in stdlib currently.
// It's not clear from documentation if it should return 32 or 64 bits, if it exists.
// 32 bits can always hold the result, and will be implicitly promoted.
SLANG_FORCE_INLINE uint32_t U64_countbits(uint64_t v)
{
#if SLANG_GCC_FAMILY && !defined(SLANG_LLVM)
return uint32_t(__builtin_popcountl(v));
#elif SLANG_PROCESSOR_X86_64 && SLANG_VC
return uint32_t(__popcnt64(v));
#else
uint32_t c = 0;
while (v)
{
c++;
v &= v - 1;
}
return c;
#endif
}
// ----------------------------- I64 -----------------------------------------
SLANG_FORCE_INLINE int64_t I64_abs(int64_t f) { return (f < 0) ? -f : f; }
SLANG_FORCE_INLINE int64_t I64_min(int64_t a, int64_t b) { return a < b ? a : b; }
SLANG_FORCE_INLINE int64_t I64_max(int64_t a, int64_t b) { return a > b ? a : b; }
// ----------------------------- Interlocked ---------------------------------
#if SLANG_LLVM
#else // SLANG_LLVM
# ifdef _WIN32
# include <intrin.h>
# endif
SLANG_FORCE_INLINE void InterlockedAdd(uint32_t* dest, uint32_t value, uint32_t* oldValue)
{
# ifdef _WIN32
*oldValue = _InterlockedExchangeAdd((long*)dest, (long)value);
# else
*oldValue = __sync_fetch_and_add(dest, value);
# endif
}
#endif // SLANG_LLVM
// ----------------------- fmod --------------------------
SLANG_FORCE_INLINE float _slang_fmod(float x, float y)
{
return F32_fmod(x, y);
}
SLANG_FORCE_INLINE double _slang_fmod(double x, double y)
{
return F64_fmod(x, y);
}
#ifdef SLANG_PRELUDE_NAMESPACE
}
#endif
#endif
|