File size: 4,862 Bytes
1d30d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Prelude for PyTorch cpp binding.

#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAUtils.h>
#include <vector>
#include <stdexcept>
#include <string>

#ifdef SLANG_LLVM
#include "slang-llvm.h"
#else // SLANG_LLVM
#   if SLANG_GCC_FAMILY && __GNUC__ < 6
#       include <cmath>
#       define SLANG_PRELUDE_STD std::
#   else
#       include <math.h>
#       define SLANG_PRELUDE_STD
#   endif

#   include <assert.h>
#   include <stdlib.h>
#   include <string.h>
#   include <stdint.h>
#endif // SLANG_LLVM

#include "../source/core/slang-string.h"

#if defined(_MSC_VER)
#   define SLANG_PRELUDE_SHARED_LIB_EXPORT __declspec(dllexport)
#else
#   define SLANG_PRELUDE_SHARED_LIB_EXPORT __attribute__((__visibility__("default")))
//#   define SLANG_PRELUDE_SHARED_LIB_EXPORT __attribute__ ((dllexport)) __attribute__((__visibility__("default")))
#endif    

#ifdef __cplusplus    
#   define SLANG_PRELUDE_EXTERN_C extern "C"
#   define SLANG_PRELUDE_EXTERN_C_START extern "C" {
#   define SLANG_PRELUDE_EXTERN_C_END }
#else
#   define SLANG_PRELUDE_EXTERN_C 
#   define SLANG_PRELUDE_EXTERN_C_START
#   define SLANG_PRELUDE_EXTERN_C_END 
#endif    

#define SLANG_PRELUDE_NAMESPACE

#ifndef SLANG_NO_THROW
#   define SLANG_NO_THROW
#endif
#ifndef SLANG_STDCALL
#   define SLANG_STDCALL
#endif
#ifndef SLANG_MCALL
#   define SLANG_MCALL SLANG_STDCALL
#endif
#ifndef SLANG_FORCE_INLINE
#    define SLANG_FORCE_INLINE inline
#endif
#include "slang-cpp-types-core.h"
#include "slang-cpp-scalar-intrinsics.h"


static const int kSlangTorchTensorMaxDim = 5;

struct TensorView
{
    uint8_t* data;
    uint32_t strides[kSlangTorchTensorMaxDim];
    uint32_t sizes[kSlangTorchTensorMaxDim];
    uint32_t dimensionCount;
};


TensorView make_tensor_view(torch::Tensor val, const char* name, torch::ScalarType targetScalarType, bool requireContiguous)
{
    // We're currently not trying to implicitly cast or transfer to device for two reasons:
    // 1. There appears to be a bug with .to() where successive calls after the first one fail.
    // 2. Silent casts like this can cause large memory allocations & unexpected overheads. 
    //    It's better to be explicit.

    // Expect tensors to be on CUDA device
    if (!val.device().is_cuda())
        throw std::runtime_error(std::string(name).append(": tensor is not on CUDA device.").c_str());

    // Expect tensors to be the right type.
    if (val.dtype() != targetScalarType)
        throw std::runtime_error(std::string(name).append(": tensor is not of the expected type.").c_str());

    // Check that the tensor is contiguous
    if (requireContiguous && !val.is_contiguous())
        throw std::runtime_error(std::string(name).append(": tensor is not contiguous.").c_str());

    TensorView res = {};
    res.dimensionCount = val.dim();
    res.data = nullptr;
    size_t elementSize = 4;

    switch (val.scalar_type())
    {
    case torch::kInt8:
    case torch::kUInt8:
        elementSize = 1;
        res.data = (uint8_t*)val.data_ptr<uint8_t>();
        break;
    case torch::kBFloat16:
        elementSize = 2;
        res.data = (uint8_t*)val.data_ptr<torch::BFloat16>();
        break;
    case torch::kFloat16:
        elementSize = 2;
        res.data = (uint8_t*)val.data_ptr<at::Half>();
        break;
    case torch::kInt16:
        elementSize = 2;
        res.data = (uint8_t*)val.data_ptr<int16_t>();
        break;
    case torch::kFloat32:
        elementSize = 4;
        res.data = (uint8_t*)val.data_ptr<float>();
        break;
    case torch::kInt32:
        elementSize = 4;
        res.data = (uint8_t*)val.data_ptr<int32_t>();
        break;
    case torch::kFloat64:
        elementSize = 8;
        res.data = (uint8_t*)val.data_ptr<double>();
        break;
    case torch::kInt64:
        elementSize = 8;
        res.data = (uint8_t*)val.data_ptr<int64_t>();
        break;
    case torch::kBool:
        elementSize = 1;
        res.data = (uint8_t*)val.data_ptr<bool>();
        break;
    }

    if (val.dim() > kSlangTorchTensorMaxDim)
        throw std::runtime_error(std::string(name).append(": number of dimensions exceeds limit (").append(std::to_string(kSlangTorchTensorMaxDim)).append(")").c_str());

    bool isEmpty = true;
    for (int i = 0; i < val.dim(); ++i)
    {
        res.strides[i] = val.stride(i) * elementSize;
        if (res.strides[i] == 0)
            throw std::runtime_error(std::string(name).append(": tensors with broadcasted dimensions are not supported (use tensor.contiguous() to make tensor whole)").c_str());

        res.sizes[i] = val.size(i);
        if (res.sizes[i] > 0)
            isEmpty = false;
    }

    if (!res.data && !isEmpty)
        throw std::runtime_error(std::string(name).append(": data pointer is invalid.").c_str());

    return res;
}

#define SLANG_PRELUDE_EXPORT