File size: 14,215 Bytes
1d30d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
#pragma once
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "utils.h"
#include "model_adapter.h"
//for sampler params
struct kcpp_params {
uint32_t seed = 0xFFFFFFFF; // RNG seed
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int n_threads = -1;
int n_blasthreads = -1;
// sampling parameters
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.0f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float nsigma = 0.00f; // 0.0 - disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
float smoothing_factor = 0.00f; // 0.00 = disabled
float repeat_penalty = 1.10f; // 1.0 = disabled
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float rep_pen_slope = 1.0f;
float presence_penalty = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
float dry_multiplier = 0.0f; // penalty multiplier, 0.0 = disabled
float dry_base = 1.75f; // exponential base
int32_t dry_allowed_length = 2; // repeated sequences longer than this are penalized
int32_t dry_penalty_last_n = 0; // how many tokens to scan for repetitions (0 = entire context)
std::vector<std::string> dry_sequence_breakers; // DRY sequence breakers
float xtc_threshold = 0;
float xtc_probability = 0;
float dynatemp_range = 0.0f; // enables DynaTemp if neq 0. dynatemp_min = temperature - dt_range, dynatemp_max = temperature + dt_range
float dynatemp_exponent = 1.0f;
std::string model_filename = ""; // model path
std::string prompt = "";
bool flash_attn = false; // flash attention
bool use_smartcontext = false;
bool use_contextshift = false;
bool use_fastforward = false;
};
// default hparams (GPT-J 6B)
struct gptj_hparams {
int32_t n_vocab = 50400;
int32_t n_ctx = 2048;
int32_t n_embd = 4096;
int32_t n_head = 16;
int32_t n_layer = 28;
int32_t n_rot = 64;
int32_t ftype = 1;
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
};
struct gptj_layer {
// normalization
struct ggml_v3_tensor * ln_1_g;
struct ggml_v3_tensor * ln_1_b;
// attention
struct ggml_v3_tensor * c_attn_q_proj_w;
struct ggml_v3_tensor * c_attn_k_proj_w;
struct ggml_v3_tensor * c_attn_v_proj_w;
struct ggml_v3_tensor * c_attn_proj_w;
// ff
struct ggml_v3_tensor * c_mlp_fc_w;
struct ggml_v3_tensor * c_mlp_fc_b;
struct ggml_v3_tensor * c_mlp_proj_w;
struct ggml_v3_tensor * c_mlp_proj_b;
};
struct gptj_layer_v2 {
// normalization
struct ggml_v2_tensor * ln_1_g;
struct ggml_v2_tensor * ln_1_b;
// attention
struct ggml_v2_tensor * c_attn_q_proj_w;
struct ggml_v2_tensor * c_attn_k_proj_w;
struct ggml_v2_tensor * c_attn_v_proj_w;
struct ggml_v2_tensor * c_attn_proj_w;
// ff
struct ggml_v2_tensor * c_mlp_fc_w;
struct ggml_v2_tensor * c_mlp_fc_b;
struct ggml_v2_tensor * c_mlp_proj_w;
struct ggml_v2_tensor * c_mlp_proj_w_trans; //for backwards compatibility
struct ggml_v2_tensor * c_mlp_proj_b;
};
struct gptj_layer_v1 {
// normalization
struct ggml_v1_tensor * ln_1_g;
struct ggml_v1_tensor * ln_1_b;
// attention
struct ggml_v1_tensor * c_attn_q_proj_w;
struct ggml_v1_tensor * c_attn_k_proj_w;
struct ggml_v1_tensor * c_attn_v_proj_w;
struct ggml_v1_tensor * c_attn_proj_w;
// ff
struct ggml_v1_tensor * c_mlp_fc_w;
struct ggml_v1_tensor * c_mlp_fc_b;
struct ggml_v1_tensor * c_mlp_proj_w;
struct ggml_v1_tensor * c_mlp_proj_w_trans; //for backwards compatibility
struct ggml_v1_tensor * c_mlp_proj_b;
};
struct gptj_v1_model {
gptj_hparams hparams;
// normalization
struct ggml_v1_tensor * ln_f_g;
struct ggml_v1_tensor * ln_f_b;
struct ggml_v1_tensor * wte; // position embedding
struct ggml_v1_tensor * lmh_g; // language model head
struct ggml_v1_tensor * lmh_b; // language model bias
std::vector<gptj_layer_v1> layers;
// key + value memory
struct ggml_v1_tensor * memory_k;
struct ggml_v1_tensor * memory_v;
//
struct ggml_v1_context * ctx;
std::map<std::string, struct ggml_v1_tensor *> tensors;
};
struct gptj_v2_model {
gptj_hparams hparams;
// normalization
struct ggml_v2_tensor * ln_f_g;
struct ggml_v2_tensor * ln_f_b;
struct ggml_v2_tensor * wte; // position embedding
struct ggml_v2_tensor * lmh_g; // language model head
struct ggml_v2_tensor * lmh_b; // language model bias
std::vector<gptj_layer_v2> layers;
// key + value memory
struct ggml_v2_tensor * memory_k;
struct ggml_v2_tensor * memory_v;
//
struct ggml_v2_context * ctx;
std::map<std::string, struct ggml_v2_tensor *> tensors;
};
struct gptj_model {
gptj_hparams hparams;
// normalization
struct ggml_v3_tensor * ln_f_g;
struct ggml_v3_tensor * ln_f_b;
struct ggml_v3_tensor * wte; // position embedding
struct ggml_v3_tensor * lmh_g; // language model head
struct ggml_v3_tensor * lmh_b; // language model bias
std::vector<gptj_layer> layers;
// key + value memory
struct ggml_v3_tensor * memory_k;
struct ggml_v3_tensor * memory_v;
//
struct ggml_v3_context * ctx;
std::map<std::string, struct ggml_v3_tensor *> tensors;
};
// default hparams (GPT-2 117M)
struct gpt2_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 1024;
int32_t n_embd = 768;
int32_t n_head = 12;
int32_t n_layer = 12;
int32_t ftype = 1;
};
struct gpt2_v1_layer {
// normalization
struct ggml_v1_tensor * ln_1_g;
struct ggml_v1_tensor * ln_1_b;
struct ggml_v1_tensor * ln_2_g;
struct ggml_v1_tensor * ln_2_b;
// attention
struct ggml_v1_tensor * c_attn_attn_w;
struct ggml_v1_tensor * c_attn_attn_b;
struct ggml_v1_tensor * c_attn_proj_w;
struct ggml_v1_tensor * c_attn_proj_b;
// mlp
struct ggml_v1_tensor * c_mlp_fc_w;
struct ggml_v1_tensor * c_mlp_fc_b;
struct ggml_v1_tensor * c_mlp_proj_w_trans; // transposed for efficiency
struct ggml_v1_tensor * c_mlp_proj_b;
};
struct gpt2_v1_model {
gpt2_hparams hparams;
// normalization
struct ggml_v1_tensor * ln_f_g;
struct ggml_v1_tensor * ln_f_b;
struct ggml_v1_tensor * wte; // position embedding
struct ggml_v1_tensor * wpe; // token embedding
std::vector<gpt2_v1_layer> layers;
// key + value memory
struct ggml_v1_tensor * memory_k;
struct ggml_v1_tensor * memory_v;
//
struct ggml_v1_context * ctx;
std::map<std::string, struct ggml_v1_tensor *> tensors;
};
struct gpt2_layer_v2 {
// normalization
struct ggml_v2_tensor * ln_1_g;
struct ggml_v2_tensor * ln_1_b;
struct ggml_v2_tensor * ln_2_g;
struct ggml_v2_tensor * ln_2_b;
// attention
struct ggml_v2_tensor * c_attn_attn_w;
struct ggml_v2_tensor * c_attn_attn_b;
struct ggml_v2_tensor * c_attn_proj_w;
struct ggml_v2_tensor * c_attn_proj_b;
// mlp
struct ggml_v2_tensor * c_mlp_fc_w;
struct ggml_v2_tensor * c_mlp_fc_b;
struct ggml_v2_tensor * c_mlp_proj_w;
struct ggml_v2_tensor * c_mlp_proj_b;
};
struct gpt2_v2_model {
gpt2_hparams hparams;
// normalization
struct ggml_v2_tensor * ln_f_g;
struct ggml_v2_tensor * ln_f_b;
struct ggml_v2_tensor * wte; // position embedding
struct ggml_v2_tensor * wpe; // token embedding
struct ggml_v2_tensor * lm_head; // language model head
std::vector<gpt2_layer_v2> layers;
// key + value memory
struct ggml_v2_tensor * memory_k;
struct ggml_v2_tensor * memory_v;
//
struct ggml_v2_context * ctx;
std::map<std::string, struct ggml_v2_tensor *> tensors;
};
struct gpt2_layer {
// normalization
struct ggml_v3_tensor * ln_1_g;
struct ggml_v3_tensor * ln_1_b;
struct ggml_v3_tensor * ln_2_g;
struct ggml_v3_tensor * ln_2_b;
// attention
struct ggml_v3_tensor * c_attn_attn_w;
struct ggml_v3_tensor * c_attn_attn_b;
struct ggml_v3_tensor * c_attn_proj_w;
struct ggml_v3_tensor * c_attn_proj_b;
// mlp
struct ggml_v3_tensor * c_mlp_fc_w;
struct ggml_v3_tensor * c_mlp_fc_b;
struct ggml_v3_tensor * c_mlp_proj_w;
struct ggml_v3_tensor * c_mlp_proj_b;
};
struct gpt2_model {
gpt2_hparams hparams;
// normalization
struct ggml_v3_tensor * ln_f_g;
struct ggml_v3_tensor * ln_f_b;
struct ggml_v3_tensor * wte; // position embedding
struct ggml_v3_tensor * wpe; // token embedding
struct ggml_v3_tensor * lm_head; // language model head
std::vector<gpt2_layer> layers;
// key + value memory
struct ggml_v3_tensor * memory_k;
struct ggml_v3_tensor * memory_v;
//
struct ggml_v3_context * ctx;
std::map<std::string, struct ggml_v3_tensor *> tensors;
};
// default hparams (StableLM 3B)
struct gpt_neox_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 4096;
int32_t n_embd = 4096;
int32_t n_head = 32;
int32_t n_layer = 16;
int32_t n_rot = 32; // rotary_pct * (n_embd / n_head)
int32_t par_res = 1; // 1 = true, 0 = false
int32_t ftype = 1;
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
};
struct gpt_neox_layer_v2 {
// pre normalization
struct ggml_v2_tensor * ln_1_g;
struct ggml_v2_tensor * ln_1_b;
// attention
struct ggml_v2_tensor * c_attn_attn_w;
struct ggml_v2_tensor * c_attn_attn_b;
struct ggml_v2_tensor * c_attn_proj_w;
struct ggml_v2_tensor * c_attn_proj_b;
// post normalization
struct ggml_v2_tensor * ln_2_g;
struct ggml_v2_tensor * ln_2_b;
// ff
struct ggml_v2_tensor * c_mlp_fc_w;
struct ggml_v2_tensor * c_mlp_fc_b;
struct ggml_v2_tensor * c_mlp_proj_w;
struct ggml_v2_tensor * c_mlp_proj_b;
};
struct gpt_neox_v2_model {
gpt_neox_hparams hparams;
// normalization
struct ggml_v2_tensor * ln_f_g;
struct ggml_v2_tensor * ln_f_b;
struct ggml_v2_tensor * wte; // position embedding
struct ggml_v2_tensor * lmh_g; // language model head
//struct ggml_v3_tensor * lmh_b; // language model bias
std::vector<gpt_neox_layer_v2> layers;
// key + value memory
struct ggml_v2_tensor * memory_k;
struct ggml_v2_tensor * memory_v;
//
struct ggml_v2_context * ctx;
std::map<std::string, struct ggml_v2_tensor *> tensors;
};
struct gpt_neox_layer {
// pre normalization
struct ggml_v3_tensor * ln_1_g;
struct ggml_v3_tensor * ln_1_b;
// attention
struct ggml_v3_tensor * c_attn_attn_w;
struct ggml_v3_tensor * c_attn_attn_b;
struct ggml_v3_tensor * c_attn_proj_w;
struct ggml_v3_tensor * c_attn_proj_b;
// post normalization
struct ggml_v3_tensor * ln_2_g;
struct ggml_v3_tensor * ln_2_b;
// ff
struct ggml_v3_tensor * c_mlp_fc_w;
struct ggml_v3_tensor * c_mlp_fc_b;
struct ggml_v3_tensor * c_mlp_proj_w;
struct ggml_v3_tensor * c_mlp_proj_b;
};
struct gpt_neox_model {
gpt_neox_hparams hparams;
// normalization
struct ggml_v3_tensor * ln_f_g;
struct ggml_v3_tensor * ln_f_b;
struct ggml_v3_tensor * wte; // position embedding
struct ggml_v3_tensor * lmh_g; // language model head
//struct ggml_v3_tensor * lmh_b; // language model bias
std::vector<gpt_neox_layer> layers;
// key + value memory
struct ggml_v3_tensor * memory_k;
struct ggml_v3_tensor * memory_v;
//
struct ggml_v3_context * ctx;
std::map<std::string, struct ggml_v3_tensor *> tensors;
};
// no defaults for now
struct mpt_hparams {
int32_t d_model = 0;
int32_t max_seq_len = 0;
int32_t n_heads = 0;
int32_t n_layers = 0;
int32_t n_vocab = 0;
float alibi_bias_max = 0;
float clip_qkv = 0;
int32_t ftype = 0;
int32_t n_ctx = 0;
};
struct mpt_layer {
// pre normalization
struct ggml_v3_tensor * norm_1_weight;
// attention
struct ggml_v3_tensor * c_attn_wqkv_weight;
struct ggml_v3_tensor * c_attn_out_proj_weight;
// post normalization
struct ggml_v3_tensor * norm_2_weight;
// ff
struct ggml_v3_tensor * ffn_up_proj;
struct ggml_v3_tensor * ffn_down_proj;
};
struct mpt_model {
mpt_hparams hparams;
struct ggml_v3_tensor * wte_weight; // position embedding
struct ggml_v3_tensor * norm_f_weight; // language model head
std::vector<mpt_layer> layers;
// key + value memory
struct ggml_v3_tensor * memory_k;
struct ggml_v3_tensor * memory_v;
struct ggml_v3_context * ctx;
std::map<std::string, struct ggml_v3_tensor *> tensors;
};
struct llava_image
{
std::string b64data = "";
int32_t clp_image_tokens = 0; //holds number of tokens llava used
float * clp_img_embd = nullptr; //this holds dynamic memory and must be freed each use!
};
struct speculative_draft_result
{
std::vector<int32_t> draftids;
std::vector<float *> actual_logits;
bool draft_success = false;
int drafted_amount = 0;
};
const float default_norm_eps = 1e-5f;
|