File size: 59,928 Bytes
1d30d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
#ifndef __GGML_EXTEND_HPP__
#define __GGML_EXTEND_HPP__

#include <assert.h>
#include <inttypes.h>
#include <stdarg.h>
#include <algorithm>
#include <cstring>
#include <fstream>
#include <functional>
#include <iostream>
#include <iterator>
#include <map>
#include <memory>
#include <random>
#include <regex>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>

#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-cpu.h"
#include "ggml.h"

#include "model.h"

#ifdef SD_USE_CUBLAS
#include "ggml-cuda.h"
#endif

#ifdef SD_USE_METAL
#include "ggml-metal.h"
#endif

#ifdef SD_USE_VULKAN
#include "ggml-vulkan.h"
#endif

#ifdef SD_USE_SYCL
#include "ggml-sycl.h"
#endif

#include "rng.hpp"
#include "util.h"

#define EPS 1e-05f

#ifndef __STATIC_INLINE__
#define __STATIC_INLINE__ static inline
#endif

__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) {
    (void)level;
    (void)user_data;
    fputs(text, stderr);
    fflush(stderr);
}

__STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr<RNG> rng) {
    uint32_t n                        = (uint32_t)ggml_nelements(tensor);
    std::vector<float> random_numbers = rng->randn(n);
    for (uint32_t i = 0; i < n; i++) {
        ggml_set_f32_1d(tensor, i, random_numbers[i]);
    }
}

// set tensor[i, j, k, l]
// set tensor[l]
// set tensor[k, l]
// set tensor[j, k, l]
__STATIC_INLINE__ void ggml_tensor_set_f32(struct ggml_tensor* tensor, float value, int l, int k = 0, int j = 0, int i = 0) {
    GGML_ASSERT(tensor->nb[0] == sizeof(float));
    *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]) = value;
}

__STATIC_INLINE__ float ggml_tensor_get_f32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
    if (tensor->buffer != NULL) {
        float value;
        ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(float));
        return value;
    }
    GGML_ASSERT(tensor->nb[0] == sizeof(float));
    return *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
}

__STATIC_INLINE__ int ggml_tensor_get_i32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
    if (tensor->buffer != NULL) {
        float value;
        ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(int));
        return value;
    }
    GGML_ASSERT(tensor->nb[0] == sizeof(int));
    return *(int*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
}

__STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
    GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
    return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
}

// static struct ggml_tensor* get_tensor_from_graph(struct ggml_cgraph* gf, const char* name) {
//     struct ggml_tensor* res = NULL;
//     for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
//         struct ggml_tensor* node = ggml_graph_node(gf, i);
//         // printf("%d, %s \n", i, ggml_get_name(node));
//         if (strcmp(ggml_get_name(node), name) == 0) {
//             res = node;
//             break;
//         }
//     }
//     return res;
// }

__STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false, const char* mark = "") {
    printf("%s (%s): shape(%zu, %zu, %zu, %zu)\n", mark, ggml_type_name(tensor->type), tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
    fflush(stdout);
    if (shape_only) {
        return;
    }
    int range = 3;
    for (int i = 0; i < tensor->ne[3]; i++) {
        if (i >= range && i + range < tensor->ne[3]) {
            continue;
        }
        for (int j = 0; j < tensor->ne[2]; j++) {
            if (j >= range && j + range < tensor->ne[2]) {
                continue;
            }
            for (int k = 0; k < tensor->ne[1]; k++) {
                if (k >= range && k + range < tensor->ne[1]) {
                    continue;
                }
                for (int l = 0; l < tensor->ne[0]; l++) {
                    if (l >= range && l + range < tensor->ne[0]) {
                        continue;
                    }
                    if (tensor->type == GGML_TYPE_F32) {
                        printf("  [%d, %d, %d, %d] = %f\n", i, j, k, l, ggml_tensor_get_f32(tensor, l, k, j, i));
                    } else if (tensor->type == GGML_TYPE_F16) {
                        printf("  [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_f16(tensor, l, k, j, i));
                    } else if (tensor->type == GGML_TYPE_I32) {
                        printf("  [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_i32(tensor, l, k, j, i));
                    }
                    fflush(stdout);
                }
            }
        }
    }
}

__STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) {
    std::ifstream file(file_path, std::ios::binary);
    if (!file.is_open()) {
        LOG_ERROR("failed to open '%s'", file_path.c_str());
        return NULL;
    }
    int32_t n_dims;
    int32_t length;
    int32_t ttype;

    file.read(reinterpret_cast<char*>(&n_dims), sizeof(n_dims));
    file.read(reinterpret_cast<char*>(&length), sizeof(length));
    file.read(reinterpret_cast<char*>(&ttype), sizeof(ttype));

    if (file.eof()) {
        LOG_ERROR("incomplete file '%s'", file_path.c_str());
        return NULL;
    }

    int32_t nelements = 1;
    int32_t ne[4]     = {1, 1, 1, 1};
    for (int i = 0; i < n_dims; ++i) {
        file.read(reinterpret_cast<char*>(&ne[i]), sizeof(ne[i]));
        nelements *= ne[i];
    }
    std::string name(length, 0);
    file.read(&name[0], length);
    ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]);
    const size_t bpe    = ggml_type_size(ggml_type(ttype));
    file.read(reinterpret_cast<char*>(tensor->data), ggml_nbytes(tensor));
    return tensor;
}

// __STATIC_INLINE__ void save_tensor_to_file(const std::string& file_name, ggml_tensor* tensor, const std::string & name) {
//     std::string file_name_ = file_name + ".tensor";
//     std::string name_ = name;
//     std::ofstream file("./" + file_name_, std::ios::binary);
//     file.write(reinterpret_cast<char*>(&tensor->n_dims), sizeof(tensor->n_dims));
//     int len = (int)name_.size();
//     file.write(reinterpret_cast<char*>(&len), sizeof(len));
//     int ttype = (int)tensor->type;
//     file.write(reinterpret_cast<char*>(&ttype), sizeof(ttype));
//     for (int i = 0; i < tensor->n_dims; ++i) {
//         int ne_ = (int) tensor->ne[i];
//         file.write(reinterpret_cast<char*>(&ne_), sizeof(ne_));
//     }
//     file.write(&name_[0], len);
//     char* data = nullptr;
//     file.write((char*)tensor->data, ggml_nbytes(tensor));
//     file.close();
// }

__STATIC_INLINE__ void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) {
    if (dst->type == src->type) {
        dst->nb[0] = src->nb[0];
        dst->nb[1] = src->nb[1];
        dst->nb[2] = src->nb[2];
        dst->nb[3] = src->nb[3];

        memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst));
        return;
    }
    struct ggml_init_params params;
    params.mem_size          = 10 * 1024 * 1024;  // for padding
    params.mem_buffer        = NULL;
    params.no_alloc          = false;
    struct ggml_context* ctx = ggml_init(params);
    if (!ctx) {
        LOG_ERROR("ggml_init() failed");
        return;
    }
    ggml_tensor* final = ggml_cpy(ctx, src, dst);

    struct ggml_cgraph* graph = ggml_new_graph(ctx);
    ggml_build_forward_expand(graph, final);
    ggml_graph_compute_with_ctx(ctx, graph, 1);
    ggml_free(ctx);
}

__STATIC_INLINE__ float sigmoid(float x) {
    return 1 / (1.0f + expf(-x));
}

// SPECIAL OPERATIONS WITH TENSORS

__STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input) {
    int64_t width    = input->ne[0];
    int64_t height   = input->ne[1];
    int64_t channels = input->ne[2];
    GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32);
    uint8_t* image_data = (uint8_t*)malloc(width * height * channels);
    for (int iy = 0; iy < height; iy++) {
        for (int ix = 0; ix < width; ix++) {
            for (int k = 0; k < channels; k++) {
                float value                                               = ggml_tensor_get_f32(input, ix, iy, k);
                *(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f);
            }
        }
    }
    return image_data;
}

__STATIC_INLINE__ uint8_t* sd_tensor_to_mul_image(struct ggml_tensor* input, int idx) {
    int64_t width    = input->ne[0];
    int64_t height   = input->ne[1];
    int64_t channels = input->ne[2];
    GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32);
    uint8_t* image_data = (uint8_t*)malloc(width * height * channels);
    for (int iy = 0; iy < height; iy++) {
        for (int ix = 0; ix < width; ix++) {
            for (int k = 0; k < channels; k++) {
                float value                                               = ggml_tensor_get_f32(input, ix, iy, k, idx);
                *(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f);
            }
        }
    }
    return image_data;
}

__STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data,
                                          struct ggml_tensor* output,
                                          bool scale = true) {
    int64_t width    = output->ne[0];
    int64_t height   = output->ne[1];
    int64_t channels = output->ne[2];
    GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
    for (int iy = 0; iy < height; iy++) {
        for (int ix = 0; ix < width; ix++) {
            for (int k = 0; k < channels; k++) {
                float value = *(image_data + iy * width * channels + ix * channels + k);
                if (scale) {
                    value /= 255.f;
                }
                ggml_tensor_set_f32(output, value, ix, iy, k);
            }
        }
    }
}

__STATIC_INLINE__ void sd_mul_images_to_tensor(const uint8_t* image_data,
                                               struct ggml_tensor* output,
                                               int idx,
                                               float* mean = NULL,
                                               float* std  = NULL) {
    int64_t width    = output->ne[0];
    int64_t height   = output->ne[1];
    int64_t channels = output->ne[2];
    GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
    for (int iy = 0; iy < height; iy++) {
        for (int ix = 0; ix < width; ix++) {
            for (int k = 0; k < channels; k++) {
                int value       = *(image_data + iy * width * channels + ix * channels + k);
                float pixel_val = value / 255.0f;
                if (mean != NULL && std != NULL)
                    pixel_val = (pixel_val - mean[k]) / std[k];
                ggml_tensor_set_f32(output, pixel_val, ix, iy, k, idx);
            }
        }
    }
}

__STATIC_INLINE__ void sd_image_f32_to_tensor(const float* image_data,
                                              struct ggml_tensor* output,
                                              bool scale = true) {
    int64_t width    = output->ne[0];
    int64_t height   = output->ne[1];
    int64_t channels = output->ne[2];
    GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
    for (int iy = 0; iy < height; iy++) {
        for (int ix = 0; ix < width; ix++) {
            for (int k = 0; k < channels; k++) {
                int value = *(image_data + iy * width * channels + ix * channels + k);
                if (scale) {
                    value /= 255.f;
                }
                ggml_tensor_set_f32(output, value, ix, iy, k);
            }
        }
    }
}

__STATIC_INLINE__ void ggml_split_tensor_2d(struct ggml_tensor* input,
                                            struct ggml_tensor* output,
                                            int x,
                                            int y) {
    int64_t width    = output->ne[0];
    int64_t height   = output->ne[1];
    int64_t channels = output->ne[2];
    GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
    for (int iy = 0; iy < height; iy++) {
        for (int ix = 0; ix < width; ix++) {
            for (int k = 0; k < channels; k++) {
                float value = ggml_tensor_get_f32(input, ix + x, iy + y, k);
                ggml_tensor_set_f32(output, value, ix, iy, k);
            }
        }
    }
}

// unclamped -> expects x in the range [0-1]
__STATIC_INLINE__ float ggml_smootherstep_f32(const float x) {
    GGML_ASSERT(x >= 0.f && x <= 1.f);
    return x * x * x * (x * (6.0f * x - 15.0f) + 10.0f);
}

__STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
                                            struct ggml_tensor* output,
                                            int x,
                                            int y,
                                            int overlap) {
    int64_t width    = input->ne[0];
    int64_t height   = input->ne[1];
    int64_t channels = input->ne[2];

    int64_t img_width  = output->ne[0];
    int64_t img_height = output->ne[1];

    GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
    for (int iy = 0; iy < height; iy++) {
        for (int ix = 0; ix < width; ix++) {
            for (int k = 0; k < channels; k++) {
                float new_value = ggml_tensor_get_f32(input, ix, iy, k);
                if (overlap > 0) {  // blend colors in overlapped area
                    float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);

                    const float x_f_0 = (x > 0) ? ix / float(overlap) : 1;
                    const float x_f_1 = (x < (img_width - width)) ? (width - ix) / float(overlap) : 1;
                    const float y_f_0 = (y > 0) ? iy / float(overlap) : 1;
                    const float y_f_1 = (y < (img_height - height)) ? (height - iy) / float(overlap) : 1;

                    const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f);
                    const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f);

                    ggml_tensor_set_f32(
                        output,
                        old_value + new_value * ggml_smootherstep_f32(y_f) * ggml_smootherstep_f32(x_f),
                        x + ix, y + iy, k);
                } else {
                    ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k);
                }
            }
        }
    }
}

__STATIC_INLINE__ float ggml_tensor_mean(struct ggml_tensor* src) {
    float mean        = 0.0f;
    int64_t nelements = ggml_nelements(src);
    float* data       = (float*)src->data;
    for (int i = 0; i < nelements; i++) {
        mean += data[i] / nelements * 1.0f;
    }
    return mean;
}

// a = a+b
__STATIC_INLINE__ void ggml_tensor_add(struct ggml_tensor* a, struct ggml_tensor* b) {
    GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
    int64_t nelements = ggml_nelements(a);
    float* vec_a      = (float*)a->data;
    float* vec_b      = (float*)b->data;
    for (int i = 0; i < nelements; i++) {
        vec_a[i] = vec_a[i] + vec_b[i];
    }
}

__STATIC_INLINE__ void ggml_tensor_scale(struct ggml_tensor* src, float scale) {
    int64_t nelements = ggml_nelements(src);
    float* data       = (float*)src->data;
    for (int i = 0; i < nelements; i++) {
        data[i] = data[i] * scale;
    }
}

__STATIC_INLINE__ void ggml_tensor_clamp(struct ggml_tensor* src, float min, float max) {
    int64_t nelements = ggml_nelements(src);
    float* data       = (float*)src->data;
    for (int i = 0; i < nelements; i++) {
        float val = data[i];
        data[i]   = val < min ? min : (val > max ? max : val);
    }
}

__STATIC_INLINE__ struct ggml_tensor* ggml_tensor_concat(struct ggml_context* ctx,
                                                         struct ggml_tensor* a,
                                                         struct ggml_tensor* b,
                                                         int dim) {
    int64_t ne[GGML_MAX_DIMS];
    for (int d = 0; d < GGML_MAX_DIMS; ++d) {
        if (d == dim) {
            ne[d] = a->ne[d] + b->ne[d];
            continue;
        }
        GGML_ASSERT(a->ne[d] == b->ne[d]);
        ne[d] = a->ne[d];
    }
    struct ggml_tensor* result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
    int64_t o[4]               = {0, 0, 0, 0};
    o[dim]                     = a->ne[dim];

    float v;
    for (int i3 = 0; i3 < result->ne[3]; i3++) {
        for (int i2 = 0; i2 < result->ne[2]; i2++) {
            for (int i1 = 0; i1 < result->ne[1]; i1++) {
                for (int i0 = 0; i0 < result->ne[0]; i0++) {
                    if (i0 < a->ne[0] && i1 < a->ne[1] && i2 < a->ne[2] && i3 < a->ne[3]) {
                        v = ggml_tensor_get_f32(a, i0, i1, i2, i3);
                    } else {
                        v = ggml_tensor_get_f32(b, i0 - o[0], i1 - o[1], i2 - o[2], i3 - o[3]);
                    }

                    ggml_tensor_set_f32(result, v, i0, i1, i2, i3);
                }
            }
        }
    }
    return result;
}

// convert values from [0, 1] to [-1, 1]
__STATIC_INLINE__ void ggml_tensor_scale_input(struct ggml_tensor* src) {
    int64_t nelements = ggml_nelements(src);
    float* data       = (float*)src->data;
    for (int i = 0; i < nelements; i++) {
        float val = data[i];
        data[i]   = val * 2.0f - 1.0f;
    }
}

// convert values from [-1, 1] to [0, 1]
__STATIC_INLINE__ void ggml_tensor_scale_output(struct ggml_tensor* src) {
    int64_t nelements = ggml_nelements(src);
    float* data       = (float*)src->data;
    for (int i = 0; i < nelements; i++) {
        float val = data[i];
        data[i]   = (val + 1.0f) * 0.5f;
    }
}

typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process;

// Tiling
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) {
    int input_width   = (int)input->ne[0];
    int input_height  = (int)input->ne[1];
    int output_width  = (int)output->ne[0];
    int output_height = (int)output->ne[1];
    GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0);  // should be multiple of 2

    int tile_overlap     = (int32_t)(tile_size * tile_overlap_factor);
    int non_tile_overlap = tile_size - tile_overlap;

    struct ggml_init_params params = {};
    params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float);                       // input chunk
    params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float);  // output chunk
    params.mem_size += 3 * ggml_tensor_overhead();
    params.mem_buffer = NULL;
    params.no_alloc   = false;

    LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);

    // draft context
    struct ggml_context* tiles_ctx = ggml_init(params);
    if (!tiles_ctx) {
        LOG_ERROR("ggml_init() failed");
        return;
    }

    // tiling
    ggml_tensor* input_tile  = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1);
    ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1);
    on_processing(input_tile, NULL, true);
    int num_tiles = ceil((float)input_width / non_tile_overlap) * ceil((float)input_height / non_tile_overlap);
    LOG_INFO("processing %i tiles", num_tiles);
    pretty_progress(1, num_tiles, 0.0f);
    int tile_count = 1;
    bool last_y = false, last_x = false;
    float last_time = 0.0f;
    for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) {
        if (y + tile_size >= input_height) {
            y      = input_height - tile_size;
            last_y = true;
        }
        for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) {
            if (x + tile_size >= input_width) {
                x      = input_width - tile_size;
                last_x = true;
            }
            int64_t t1 = ggml_time_ms();
            ggml_split_tensor_2d(input, input_tile, x, y);
            on_processing(input_tile, output_tile, false);
            ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale);
            int64_t t2 = ggml_time_ms();
            last_time  = (t2 - t1) / 1000.0f;
            pretty_progress(tile_count, num_tiles, last_time);
            tile_count++;
        }
        last_x = false;
    }
    if (tile_count < num_tiles) {
        pretty_progress(num_tiles, num_tiles, last_time);
    }
    ggml_free(tiles_ctx);
}

__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,
                                                         struct ggml_tensor* a) {
    const float eps = 1e-6f;  // default eps parameter
    return ggml_group_norm(ctx, a, 32, eps);
}

__STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx,
                                                     struct ggml_tensor* x,
                                                     struct ggml_tensor* w,
                                                     struct ggml_tensor* b) {
    x = ggml_mul_mat(ctx, w, x);
    if (b != NULL) {
        x = ggml_add(ctx, x, b);
    }
    return x;
}

// w: [OC,IC, KH, KW]
// x: [N, IC, IH, IW]
// b: [OC,]
// result: [N, OC, OH, OW]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx,
                                                      struct ggml_tensor* x,
                                                      struct ggml_tensor* w,
                                                      struct ggml_tensor* b,
                                                      int s0 = 1,
                                                      int s1 = 1,
                                                      int p0 = 0,
                                                      int p1 = 0,
                                                      int d0 = 1,
                                                      int d1 = 1) {
    x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
    if (b != NULL) {
        b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
        // b = ggml_repeat(ctx, b, x);
        x = ggml_add(ctx, x, b);
    }
    return x;
}

// w: [OC,IC, KD, 1 * 1]
// x: [N, IC, IH, IW]
// b: [OC,]
// result: [N, OC, OH, OW]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1_bak(struct ggml_context* ctx,
                                                                struct ggml_tensor* x,
                                                                struct ggml_tensor* w,
                                                                struct ggml_tensor* b,
                                                                int s2 = 1,
                                                                int p2 = 1,
                                                                int d2 = 1) {
    GGML_ASSERT(w->ne[0] == 1);
    // timesteps = x.shape[0]
    // x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
    // x = conv3d(x)
    // return rearrange(x, "b c t h w -> (b t) c h w")
    int64_t T = x->ne[3];
    int64_t B = x->ne[3] / T;
    int64_t C = x->ne[2];
    int64_t H = x->ne[1];
    int64_t W = x->ne[0];

    x = ggml_reshape_4d(ctx, x, W * H, C, T, B);           // (b t) c h w -> b t c (h w)
    x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3));  // b t c (h w) -> b c t (h w)
    x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2);      // [B, OC, T, OH * OW]
    if (b != NULL) {
        b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
        x = ggml_add(ctx, x, b);
    }
    x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3));  // b c t (h w) -> b t c (h w)
    x = ggml_reshape_4d(ctx, x, W, H, C, T * B);           // b t c (h w) -> (b t) c h w
    return x;                                              // [B*T, OC, OH, OW]
}

// w: [OC,IC, KD, 1 * 1]
// x: [N, IC, ID, IH*IW]
// b: [OC,]
// result: [N, OC, OD, OH*OW]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1(struct ggml_context* ctx,
                                                            struct ggml_tensor* x,
                                                            struct ggml_tensor* w,
                                                            struct ggml_tensor* b,
                                                            int s2 = 1,
                                                            int p2 = 1,
                                                            int d2 = 1) {
    x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2);  // [N, OC, T, OH * OW]
    if (b != NULL) {
        b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
        x = ggml_add(ctx, x, b);
    }
    return x;  // [N, OC, T, OH * OW]
}

// qkv: [N, L, 3*C]
// return: ([N, L, C], [N, L, C], [N, L, C])
__STATIC_INLINE__ std::vector<struct ggml_tensor*> split_qkv(struct ggml_context* ctx,
                                                             struct ggml_tensor* qkv) {
    qkv = ggml_reshape_4d(ctx, qkv, qkv->ne[0] / 3, 3, qkv->ne[1], qkv->ne[2]);  // [N, L, 3, C]
    qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 0, 3, 1, 2));                    // [3, N, L, C]

    int64_t offset = qkv->nb[2] * qkv->ne[2];
    auto q         = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 0);  // [N, L, C]
    auto k         = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 1);  // [N, L, C]
    auto v         = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 2);  // [N, L, C]
    return {q, k, v};
}

// q: [N * n_head, n_token, d_head]
// k: [N * n_head, n_k, d_head]
// v: [N * n_head, d_head, n_k]
// return: [N * n_head, n_token, d_head]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention(struct ggml_context* ctx,
                                                        struct ggml_tensor* q,
                                                        struct ggml_tensor* k,
                                                        struct ggml_tensor* v,
                                                        bool mask = false) {
#if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUBLAS) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL)
    struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false);  // [N * n_head, n_token, d_head]
#else
    float d_head           = (float)q->ne[0];
    struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q);  // [N * n_head, n_token, n_k]
    kq                     = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head));
    if (mask) {
        kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
    }
    kq                      = ggml_soft_max_inplace(ctx, kq);
    struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq);  // [N * n_head, n_token, d_head]
#endif
    return kqv;
}

// q: [N, L_q, C] or [N*n_head, L_q, d_head]
// k: [N, L_k, C] or [N*n_head, L_k, d_head]
// v: [N, L_k, C] or [N, L_k, n_head, d_head]
// return: [N, L_q, C]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context* ctx,
                                                            struct ggml_tensor* q,
                                                            struct ggml_tensor* k,
                                                            struct ggml_tensor* v,
                                                            int64_t n_head,
                                                            struct ggml_tensor* mask = NULL,
                                                            bool diag_mask_inf       = false,
                                                            bool skip_reshape        = false,
                                                            bool flash_attn          = false) {
    int64_t L_q;
    int64_t L_k;
    int64_t C;
    int64_t N;
    int64_t d_head;
    if (!skip_reshape) {
        L_q    = q->ne[1];
        L_k    = k->ne[1];
        C      = q->ne[0];
        N      = q->ne[2];
        d_head = C / n_head;
        q      = ggml_reshape_4d(ctx, q, d_head, n_head, L_q, N);   // [N, L_q, n_head, d_head]
        q      = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3));  // [N, n_head, L_q, d_head]
        q      = ggml_reshape_3d(ctx, q, d_head, L_q, n_head * N);  // [N * n_head, L_q, d_head]

        k = ggml_reshape_4d(ctx, k, d_head, n_head, L_k, N);   // [N, L_k, n_head, d_head]
        k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3));  // [N, n_head, L_k, d_head]
        k = ggml_reshape_3d(ctx, k, d_head, L_k, n_head * N);  // [N * n_head, L_k, d_head]

        v = ggml_reshape_4d(ctx, v, d_head, n_head, L_k, N);  // [N, L_k, n_head, d_head]
    } else {
        L_q    = q->ne[1];
        L_k    = k->ne[1];
        d_head = v->ne[0];
        N      = v->ne[3];
        C      = d_head * n_head;
    }

    float scale = (1.0f / sqrt((float)d_head));

    // if (flash_attn) {
    //     LOG_DEBUG("attention_ext L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N);
    // }
    //  is there anything oddly shaped?? ping Green-Sky if you can trip this assert
    GGML_ASSERT(((L_k % 256 == 0) && L_q == L_k) || !(L_k % 256 == 0));

    bool can_use_flash_attn = true;
    can_use_flash_attn      = can_use_flash_attn && L_k % 256 == 0;
    can_use_flash_attn      = can_use_flash_attn && d_head % 64 == 0;  // double check

    // cuda max d_head seems to be 256, cpu does seem to work with 512
    can_use_flash_attn = can_use_flash_attn && d_head <= 256;  // double check

    if (mask != nullptr) {
        // TODO(Green-Sky): figure out if we can bend t5 to work too
        can_use_flash_attn = can_use_flash_attn && mask->ne[2] == 1;
        can_use_flash_attn = can_use_flash_attn && mask->ne[3] == 1;
    }

    // TODO(Green-Sky): more pad or disable for funny tensor shapes

    ggml_tensor* kqv = nullptr;
    // GGML_ASSERT((flash_attn && can_use_flash_attn) || !flash_attn);
    if (can_use_flash_attn && flash_attn) {
        // LOG_DEBUG("using flash attention");
        k = ggml_cast(ctx, k, GGML_TYPE_F16);

        v = ggml_cont(ctx, ggml_permute(ctx, v, 0, 2, 1, 3));  // [N, n_head, L_k, d_head]
        v = ggml_reshape_3d(ctx, v, d_head, L_k, n_head * N);  // [N * n_head, L_k, d_head]
        v = ggml_cast(ctx, v, GGML_TYPE_F16);

        kqv = ggml_flash_attn_ext(ctx, q, k, v, mask, scale, 0, 0);
        ggml_flash_attn_ext_set_prec(kqv, GGML_PREC_F32);

        // kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_k, kqv->nb[1], kqv->nb[2], 0);
        kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_q, kqv->nb[1], kqv->nb[2], 0);
    } else {
        v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3));  // [N, n_head, d_head, L_k]
        v = ggml_reshape_3d(ctx, v, L_k, d_head, n_head * N);  // [N * n_head, d_head, L_k]

        auto kq = ggml_mul_mat(ctx, k, q);  // [N * n_head, L_q, L_k]
        kq      = ggml_scale_inplace(ctx, kq, scale);
        if (mask) {
            kq = ggml_add(ctx, kq, mask);
        }
        if (diag_mask_inf) {
            kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
        }
        kq = ggml_soft_max_inplace(ctx, kq);

        kqv = ggml_mul_mat(ctx, v, kq);  // [N * n_head, L_q, d_head]

        kqv = ggml_reshape_4d(ctx, kqv, d_head, L_q, n_head, N);  // [N, n_head, L_q, d_head]
        kqv = ggml_permute(ctx, kqv, 0, 2, 1, 3);                 // [N, L_q, n_head, d_head]
    }

    kqv = ggml_cont(ctx, kqv);
    kqv = ggml_reshape_3d(ctx, kqv, d_head * n_head, L_q, N);  // [N, L_q, C]

    return kqv;
}

__STATIC_INLINE__ struct ggml_tensor* ggml_nn_layer_norm(struct ggml_context* ctx,
                                                         struct ggml_tensor* x,
                                                         struct ggml_tensor* w,
                                                         struct ggml_tensor* b,
                                                         float eps = EPS) {
    x = ggml_norm(ctx, x, eps);
    if (w != NULL) {
        x = ggml_mul(ctx, x, w);
        if (b != NULL) {
            x = ggml_add(ctx, x, b);
        }
    }
    return x;
}

__STATIC_INLINE__ struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ctx,
                                                         struct ggml_tensor* x,
                                                         struct ggml_tensor* w,
                                                         struct ggml_tensor* b,
                                                         int num_groups = 32) {
    if (ggml_n_dims(x) >= 3 && w != NULL && b != NULL) {
        w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1);
        b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
    }

    const float eps = 1e-6f;  // default eps parameter
    x               = ggml_group_norm(ctx, x, num_groups, eps);
    if (w != NULL && b != NULL) {
        x = ggml_mul(ctx, x, w);
        // b = ggml_repeat(ctx, b, x);
        x = ggml_add(ctx, x, b);
    }
    return x;
}

__STATIC_INLINE__ void ggml_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor* tensor, void* data, size_t offset, size_t size) {
#if defined(SD_USE_CUBLAS) || defined(SD_USE_SYCL)
    if (!ggml_backend_is_cpu(backend)) {
        ggml_backend_tensor_get_async(backend, tensor, data, offset, size);
        ggml_backend_synchronize(backend);
    } else {
        ggml_backend_tensor_get(tensor, data, offset, size);
    }
#else
    ggml_backend_tensor_get(tensor, data, offset, size);
#endif
}

__STATIC_INLINE__ float ggml_backend_tensor_get_f32(ggml_tensor* tensor) {
    GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16);
    float value;
    if (tensor->type == GGML_TYPE_F32) {
        ggml_backend_tensor_get(tensor, &value, 0, sizeof(value));
    } else {  // GGML_TYPE_F16
        ggml_fp16_t f16_value;
        ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value));
        value = ggml_fp16_to_fp32(f16_value);
    }
    return value;
}

__STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor(struct ggml_context* ctx,
                                                            const std::vector<float>& vec) {
    struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, vec.size());
    memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t));
    return t;
}

__STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor_i32(struct ggml_context* ctx,
                                                                const std::vector<int>& vec) {
    struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vec.size());
    memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t));
    return t;
}

__STATIC_INLINE__ std::vector<float> arange(float start, float end, float step = 1.f) {
    std::vector<float> result;

    for (float value = start; value < end; value += step) {
        result.push_back(value);
    }

    return result;
}

// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
__STATIC_INLINE__ std::vector<float> timestep_embedding(std::vector<float> timesteps,
                                                        int dim,
                                                        int max_period = 10000) {
    // timesteps: [N,]
    // embedding: [N, dim]
    size_t N        = timesteps.size();
    int acutual_dim = dim;
    if (dim % 2 != 0) {
        acutual_dim = dim + 1;
    }
    std::vector<float> embedding(N * acutual_dim, 0.f);
    int half = dim / 2;
    std::vector<float> freqs(half);
    for (int i = 0; i < half; ++i) {
        freqs[i] = (float)std::exp(-std::log(max_period) * i / half);
    }
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < half; ++j) {
            float arg                             = timesteps[i] * freqs[j];
            embedding[i * acutual_dim + j]        = std::cos(arg);
            embedding[i * acutual_dim + j + half] = std::sin(arg);
        }
    }
    return embedding;
}

__STATIC_INLINE__ void set_timestep_embedding(std::vector<float> timesteps,
                                              struct ggml_tensor* embedding,
                                              int dim,
                                              int max_period = 10000) {
    std::vector<float> embedding_vec = timestep_embedding(timesteps, dim, max_period);
    memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding));
}

__STATIC_INLINE__ struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx,
                                                             std::vector<float> timesteps,
                                                             int dim,
                                                             int max_period = 10000) {
    // timesteps: [N,]
    // embedding: [N, dim]
    std::vector<float> embedding_vec = timestep_embedding(timesteps, dim, max_period);
    int acutual_dim                  = dim;
    if (dim % 2 != 0) {
        acutual_dim = dim + 1;
    }
    struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps.size());
    if (embedding->data != NULL) {
        memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding));
    } else {
        ggml_backend_tensor_set(embedding, embedding_vec.data(), 0, ggml_nbytes(embedding));
    }
    return embedding;
}

__STATIC_INLINE__ struct ggml_tensor* ggml_nn_timestep_embedding(
    struct ggml_context* ctx,
    struct ggml_tensor* timesteps,
    int dim,
    int max_period    = 10000,
    float time_factor = 1.0f) {
    timesteps = ggml_scale(ctx, timesteps, time_factor);
    return ggml_timestep_embedding(ctx, timesteps, dim, max_period);
}

__STATIC_INLINE__ size_t ggml_tensor_num(ggml_context* ctx) {
    size_t num = 0;
    for (ggml_tensor* t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
        num++;
    }
    return num;
}

/* SDXL with LoRA requires more space */
#define MAX_PARAMS_TENSOR_NUM 15360
#define MAX_GRAPH_SIZE 15360

struct GGMLRunner {
protected:
    typedef std::function<struct ggml_cgraph*()> get_graph_cb_t;

    struct ggml_context* params_ctx     = NULL;
    ggml_backend_buffer_t params_buffer = NULL;

    struct ggml_context* compute_ctx    = NULL;
    struct ggml_gallocr* compute_allocr = NULL;

    std::map<struct ggml_tensor*, const void*> backend_tensor_data_map;

    ggml_backend_t backend = NULL;

    void alloc_params_ctx() {
        struct ggml_init_params params;
        params.mem_size   = static_cast<size_t>(MAX_PARAMS_TENSOR_NUM * ggml_tensor_overhead());
        params.mem_buffer = NULL;
        params.no_alloc   = true;

        params_ctx = ggml_init(params);
        GGML_ASSERT(params_ctx != NULL);
    }

    void free_params_ctx() {
        if (params_ctx != NULL) {
            ggml_free(params_ctx);
            params_ctx = NULL;
        }
    }

    void alloc_compute_ctx() {
        struct ggml_init_params params;
        params.mem_size   = static_cast<size_t>(ggml_tensor_overhead() * MAX_GRAPH_SIZE + ggml_graph_overhead());
        params.mem_buffer = NULL;
        params.no_alloc   = true;

        compute_ctx = ggml_init(params);
        GGML_ASSERT(compute_ctx != NULL);
    }

    void free_compute_ctx() {
        if (compute_ctx != NULL) {
            ggml_free(compute_ctx);
            compute_ctx = NULL;
        }
    }

    bool alloc_compute_buffer(get_graph_cb_t get_graph) {
        if (compute_allocr != NULL) {
            return true;
        }
        reset_compute_ctx();
        struct ggml_cgraph* gf = get_graph();
        backend_tensor_data_map.clear();
        compute_allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));

        if (!ggml_gallocr_reserve(compute_allocr, gf)) {
            // failed to allocate the compute buffer
            LOG_ERROR("%s: failed to allocate the compute buffer\n", get_desc().c_str());
            free_compute_buffer();
            return false;
        }

        // compute the required memory
        size_t compute_buffer_size = ggml_gallocr_get_buffer_size(compute_allocr, 0);
        LOG_DEBUG("%s compute buffer size: %.2f MB(%s)",
                  get_desc().c_str(),
                  compute_buffer_size / 1024.0 / 1024.0,
                  ggml_backend_is_cpu(backend) ? "RAM" : "VRAM");
        return true;
    }

    void cpy_data_to_backend_tensor() {
        for (auto& kv : backend_tensor_data_map) {
            auto tensor = kv.first;
            auto data   = kv.second;

            ggml_backend_tensor_set(tensor, data, 0, ggml_nbytes(tensor));
        }

        backend_tensor_data_map.clear();
    }

public:
    virtual std::string get_desc() = 0;

    GGMLRunner(ggml_backend_t backend)
        : backend(backend) {
        alloc_params_ctx();
    }

    virtual ~GGMLRunner() {
        free_params_buffer();
        free_compute_buffer();
        free_params_ctx();
        free_compute_ctx();
    }

    void reset_compute_ctx() {
        free_compute_ctx();
        alloc_compute_ctx();
    }

    bool alloc_params_buffer() {
        size_t num_tensors = ggml_tensor_num(params_ctx);
        params_buffer      = ggml_backend_alloc_ctx_tensors(params_ctx, backend);
        if (params_buffer == NULL) {
            LOG_ERROR("%s alloc params backend buffer failed, num_tensors = %i",
                      get_desc().c_str(),
                      num_tensors);
            return false;
        }
        size_t params_buffer_size = ggml_backend_buffer_get_size(params_buffer);
        LOG_DEBUG("%s params backend buffer size = % 6.2f MB(%s) (%i tensors)",
                  get_desc().c_str(),
                  params_buffer_size / (1024.0 * 1024.0),
                  ggml_backend_is_cpu(backend) ? "RAM" : "VRAM",
                  num_tensors);
        // printf("%s params backend buffer size = % 6.2f MB(%s) (%i tensors)\n",
        //           get_desc().c_str(),
        //           params_buffer_size / (1024.0 * 1024.0),
        //           ggml_backend_is_cpu(backend) ? "RAM" : "VRAM",
        //           num_tensors);
        return true;
    }

    void free_params_buffer() {
        if (params_buffer != NULL) {
            ggml_backend_buffer_free(params_buffer);
            params_buffer = NULL;
        }
    }

    size_t get_params_buffer_size() {
        if (params_buffer != NULL) {
            return ggml_backend_buffer_get_size(params_buffer);
        }
        return 0;
    }

    void free_compute_buffer() {
        if (compute_allocr != NULL) {
            ggml_gallocr_free(compute_allocr);
            compute_allocr = NULL;
        }
    }

    // do copy after alloc graph
    void set_backend_tensor_data(struct ggml_tensor* tensor, const void* data) {
        backend_tensor_data_map[tensor] = data;
    }

    struct ggml_tensor* to_backend(struct ggml_tensor* tensor) {
        GGML_ASSERT(compute_ctx != NULL);
        if (tensor == NULL) {
            return NULL;
        }
        // it's performing a compute, check if backend isn't cpu
        if (!ggml_backend_is_cpu(backend) && (tensor->buffer == NULL || ggml_backend_buffer_is_host(tensor->buffer))) {
            // pass input tensors to gpu memory
            auto backend_tensor = ggml_dup_tensor(compute_ctx, tensor);

            set_backend_tensor_data(backend_tensor, tensor->data);
            return backend_tensor;
        } else {
            return tensor;
        }
    }

    void compute(get_graph_cb_t get_graph,
                 int n_threads,
                 bool free_compute_buffer_immediately = true,
                 struct ggml_tensor** output          = NULL,
                 struct ggml_context* output_ctx      = NULL) {
        alloc_compute_buffer(get_graph);
        reset_compute_ctx();
        struct ggml_cgraph* gf = get_graph();
        GGML_ASSERT(ggml_gallocr_alloc_graph(compute_allocr, gf));
        cpy_data_to_backend_tensor();
        if (ggml_backend_is_cpu(backend)) {
            ggml_backend_cpu_set_n_threads(backend, n_threads);
        }

// #ifdef SD_USE_METAL
//         if (ggml_backend_is_metal(backend)) {
//             ggml_backend_metal_set_n_cb(backend, n_threads);
//         }
// #endif
        ggml_backend_graph_compute(backend, gf);

#ifdef GGML_PERF
        ggml_graph_print(gf);
#endif
        if (output != NULL) {
            auto result = ggml_graph_node(gf, -1);
            if (*output == NULL && output_ctx != NULL) {
                *output = ggml_dup_tensor(output_ctx, result);
            }
            if (*output != NULL) {
                ggml_backend_tensor_get_and_sync(backend, result, (*output)->data, 0, ggml_nbytes(*output));
            }
        }

        if (free_compute_buffer_immediately) {
            free_compute_buffer();
        }
    }
};

class GGMLBlock {
protected:
    typedef std::unordered_map<std::string, struct ggml_tensor*> ParameterMap;
    typedef std::unordered_map<std::string, std::shared_ptr<GGMLBlock>> GGMLBlockMap;
    GGMLBlockMap blocks;
    ParameterMap params;

    void init_blocks(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
        for (auto& pair : blocks) {
            auto& block = pair.second;
            block->init(ctx, tensor_types, prefix + pair.first);
        }
    }

    virtual void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {}

public:
    void init(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
        if (prefix.size() > 0) {
            prefix = prefix + ".";
        }
        init_blocks(ctx, tensor_types, prefix);
        init_params(ctx, tensor_types, prefix);
    }

    size_t get_params_num() {
        size_t num_tensors = params.size();
        for (auto& pair : blocks) {
            auto& block = pair.second;

            num_tensors += block->get_params_num();
        }
        return num_tensors;
    };

    size_t get_params_mem_size() {
        size_t mem_size = 0;
        for (auto& pair : blocks) {
            auto& block = pair.second;

            mem_size += block->get_params_mem_size();
        }

        for (auto& pair : params) {
            mem_size += ggml_nbytes(pair.second);
        }

        return mem_size;
    }

    void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, std::string prefix = "") {
        if (prefix.size() > 0) {
            prefix = prefix + ".";
        }
        for (auto& pair : blocks) {
            auto& block = pair.second;
            block->get_param_tensors(tensors, prefix + pair.first);
        }

        for (auto& pair : params) {
            struct ggml_tensor* param    = pair.second;
            tensors[prefix + pair.first] = pair.second;
        }
    }
};

class UnaryBlock : public GGMLBlock {
public:
    virtual struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) = 0;
};

class Linear : public UnaryBlock {
protected:
    int64_t in_features;
    int64_t out_features;
    bool bias;
    bool force_f32;

    void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
        enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
        if (in_features % ggml_blck_size(wtype) != 0 || force_f32) {
            wtype = GGML_TYPE_F32;
        }
        params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features);
        if (bias) {
            enum ggml_type wtype = GGML_TYPE_F32;  //(tensor_types.ypes.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
            params["bias"]       = ggml_new_tensor_1d(ctx, wtype, out_features);
        }
    }

public:
    Linear(int64_t in_features,
           int64_t out_features,
           bool bias      = true,
           bool force_f32 = false)
        : in_features(in_features),
          out_features(out_features),
          bias(bias),
          force_f32(force_f32) {}

    struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
        struct ggml_tensor* w = params["weight"];
        struct ggml_tensor* b = NULL;
        if (bias) {
            b = params["bias"];
        }
        return ggml_nn_linear(ctx, x, w, b);
    }
};

class Embedding : public UnaryBlock {
protected:
    int64_t embedding_dim;
    int64_t num_embeddings;
    void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
        enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
        params["weight"]     = ggml_new_tensor_2d(ctx, wtype, embedding_dim, num_embeddings);
    }

public:
    Embedding(int64_t num_embeddings, int64_t embedding_dim)
        : embedding_dim(embedding_dim),
          num_embeddings(num_embeddings) {
    }

    struct ggml_tensor* forward(struct ggml_context* ctx,
                                struct ggml_tensor* input_ids) {
        // input_ids: [N, n_token]
        auto weight = params["weight"];

        // There are issues with ggml batch inference, so we are expanding it here first.
        // TODO: fix ggml batch inference
        int64_t n = input_ids->ne[1];
        input_ids = ggml_reshape_1d(ctx, input_ids, input_ids->ne[0] * input_ids->ne[1]);

        input_ids      = ggml_reshape_3d(ctx, input_ids, input_ids->ne[0], 1, input_ids->ne[1]);
        auto embedding = ggml_get_rows(ctx, weight, input_ids);
        embedding      = ggml_reshape_3d(ctx, embedding, embedding->ne[0], embedding->ne[1] / n, n);

        // [N, n_token, embedding_dim]
        return embedding;
    }
};

class Conv2d : public UnaryBlock {
protected:
    int64_t in_channels;
    int64_t out_channels;
    std::pair<int, int> kernel_size;
    std::pair<int, int> stride;
    std::pair<int, int> padding;
    std::pair<int, int> dilation;
    bool bias;

    void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
        enum ggml_type wtype = GGML_TYPE_F16;  //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F16;
        params["weight"]     = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels);
        if (bias) {
            enum ggml_type wtype = GGML_TYPE_F32;  // (tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
            params["bias"]       = ggml_new_tensor_1d(ctx, wtype, out_channels);
        }
    }

public:
    Conv2d(int64_t in_channels,
           int64_t out_channels,
           std::pair<int, int> kernel_size,
           std::pair<int, int> stride   = {1, 1},
           std::pair<int, int> padding  = {0, 0},
           std::pair<int, int> dilation = {1, 1},
           bool bias                    = true)
        : in_channels(in_channels),
          out_channels(out_channels),
          kernel_size(kernel_size),
          stride(stride),
          padding(padding),
          dilation(dilation),
          bias(bias) {}

    struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
        struct ggml_tensor* w = params["weight"];
        struct ggml_tensor* b = NULL;
        if (bias) {
            b = params["bias"];
        }
        return ggml_nn_conv_2d(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first);
    }
};

class Conv3dnx1x1 : public UnaryBlock {
protected:
    int64_t in_channels;
    int64_t out_channels;
    int64_t kernel_size;
    int64_t stride;
    int64_t padding;
    int64_t dilation;
    bool bias;

    void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
        enum ggml_type wtype = GGML_TYPE_F16;                                                              //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F16;
        params["weight"]     = ggml_new_tensor_4d(ctx, wtype, 1, kernel_size, in_channels, out_channels);  // 5d => 4d
        if (bias) {
            enum ggml_type wtype = GGML_TYPE_F32;  //(tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
            params["bias"]       = ggml_new_tensor_1d(ctx, wtype, out_channels);
        }
    }

public:
    Conv3dnx1x1(int64_t in_channels,
                int64_t out_channels,
                int64_t kernel_size,
                int64_t stride   = 1,
                int64_t padding  = 0,
                int64_t dilation = 1,
                bool bias        = true)
        : in_channels(in_channels),
          out_channels(out_channels),
          kernel_size(kernel_size),
          stride(stride),
          padding(padding),
          dilation(dilation),
          bias(bias) {}

    // x: [N, IC, ID, IH*IW]
    // result: [N, OC, OD, OH*OW]
    struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
        struct ggml_tensor* w = params["weight"];
        struct ggml_tensor* b = NULL;
        if (bias) {
            b = params["bias"];
        }
        return ggml_nn_conv_3d_nx1x1(ctx, x, w, b, stride, padding, dilation);
    }
};

class LayerNorm : public UnaryBlock {
protected:
    int64_t normalized_shape;
    float eps;
    bool elementwise_affine;
    bool bias;

    void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
        if (elementwise_affine) {
            enum ggml_type wtype = GGML_TYPE_F32;  //(tensor_types.ypes.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
            params["weight"]     = ggml_new_tensor_1d(ctx, wtype, normalized_shape);
            if (bias) {
                enum ggml_type wtype = GGML_TYPE_F32;  //(tensor_types.ypes.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
                params["bias"]       = ggml_new_tensor_1d(ctx, wtype, normalized_shape);
            }
        }
    }

public:
    LayerNorm(int64_t normalized_shape,
              float eps               = 1e-05f,
              bool elementwise_affine = true,
              bool bias               = true)
        : normalized_shape(normalized_shape),
          eps(eps),
          elementwise_affine(elementwise_affine),
          bias(bias) {}

    struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
        struct ggml_tensor* w = NULL;
        struct ggml_tensor* b = NULL;

        if (elementwise_affine) {
            w = params["weight"];
            if (bias) {
                b = params["bias"];
            }
        }
        return ggml_nn_layer_norm(ctx, x, w, b, eps);
    }
};

class GroupNorm : public GGMLBlock {
protected:
    int64_t num_groups;
    int64_t num_channels;
    float eps;
    bool affine;

    void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
        if (affine) {
            enum ggml_type wtype      = GGML_TYPE_F32;  //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
            enum ggml_type bias_wtype = GGML_TYPE_F32;  //(tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
            params["weight"]          = ggml_new_tensor_1d(ctx, wtype, num_channels);
            params["bias"]            = ggml_new_tensor_1d(ctx, bias_wtype, num_channels);
        }
    }

public:
    GroupNorm(int64_t num_groups,
              int64_t num_channels,
              float eps   = 1e-05f,
              bool affine = true)
        : num_groups(num_groups),
          num_channels(num_channels),
          eps(eps),
          affine(affine) {}

    struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
        struct ggml_tensor* w = NULL;
        struct ggml_tensor* b = NULL;
        if (affine) {
            w = params["weight"];
            b = params["bias"];
        }
        return ggml_nn_group_norm(ctx, x, w, b, num_groups);
    }
};

class GroupNorm32 : public GroupNorm {
public:
    GroupNorm32(int64_t num_channels)
        : GroupNorm(32, num_channels, 1e-06f) {}
};

class MultiheadAttention : public GGMLBlock {
protected:
    int64_t embed_dim;
    int64_t n_head;
    std::string q_proj_name;
    std::string k_proj_name;
    std::string v_proj_name;
    std::string out_proj_name;

public:
    MultiheadAttention(int64_t embed_dim,
                       int64_t n_head,
                       bool qkv_proj_bias        = true,
                       bool out_proj_bias        = true,
                       std::string q_proj_name   = "q_proj",
                       std::string k_proj_name   = "k_proj",
                       std::string v_proj_name   = "v_proj",
                       std::string out_proj_name = "out_proj")
        : embed_dim(embed_dim),
          n_head(n_head),
          q_proj_name(q_proj_name),
          k_proj_name(k_proj_name),
          v_proj_name(v_proj_name),
          out_proj_name(out_proj_name) {
        blocks[q_proj_name]   = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias));
        blocks[k_proj_name]   = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias));
        blocks[v_proj_name]   = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias));
        blocks[out_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, out_proj_bias));
    }

    // x: [N, n_token, embed_dim]
    struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, bool mask = false) {
        auto q_proj   = std::dynamic_pointer_cast<Linear>(blocks[q_proj_name]);
        auto k_proj   = std::dynamic_pointer_cast<Linear>(blocks[k_proj_name]);
        auto v_proj   = std::dynamic_pointer_cast<Linear>(blocks[v_proj_name]);
        auto out_proj = std::dynamic_pointer_cast<Linear>(blocks[out_proj_name]);

        struct ggml_tensor* q = q_proj->forward(ctx, x);
        struct ggml_tensor* k = k_proj->forward(ctx, x);
        struct ggml_tensor* v = v_proj->forward(ctx, x);

        x = ggml_nn_attention_ext(ctx, q, k, v, n_head, NULL, mask);  // [N, n_token, embed_dim]

        x = out_proj->forward(ctx, x);  // [N, n_token, embed_dim]
        return x;
    }
};

#endif  // __GGML_EXTEND__HPP__