File size: 51,750 Bytes
1d30d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
#ifndef DARTS_H_
#define DARTS_H_

#include <cstdio>
#include <exception>
#include <new>

#define DARTS_VERSION "0.32"

// DARTS_THROW() throws a <Darts::Exception> whose message starts with the
// file name and the line number. For example, DARTS_THROW("error message") at
// line 123 of "darts.h" throws a <Darts::Exception> which has a pointer to
// "darts.h:123: exception: error message". The message is available by using
// what() as well as that of <std::exception>.
#define DARTS_INT_TO_STR(value) #value
#define DARTS_LINE_TO_STR(line) DARTS_INT_TO_STR(line)
#define DARTS_LINE_STR DARTS_LINE_TO_STR(__LINE__)
#define DARTS_THROW(msg) throw Darts::Details::Exception( \
  __FILE__ ":" DARTS_LINE_STR ": exception: " msg)

namespace Darts {

// The following namespace hides the internal types and classes.
namespace Details {

// This header assumes that <int> and <unsigned int> are 32-bit integer types.
//
// Darts-clone keeps values associated with keys. The type of the values is
// <value_type>. Note that the values must be positive integers because the
// most significant bit (MSB) of each value is used to represent whether the
// corresponding unit is a leaf or not. Also, the keys are represented by
// sequences of <char_type>s. <uchar_type> is the unsigned type of <char_type>.
typedef char char_type;
typedef unsigned char uchar_type;
typedef int value_type;

// The main structure of Darts-clone is an array of <DoubleArrayUnit>s, and the
// unit type is actually a wrapper of <id_type>.
typedef unsigned int id_type;

// <progress_func_type> is the type of callback functions for reporting the
// progress of building a dictionary. See also build() of <DoubleArray>.
// The 1st argument receives the progress value and the 2nd argument receives
// the maximum progress value. A usage example is to show the progress
// percentage, 100.0 * (the 1st argument) / (the 2nd argument).
typedef int (*progress_func_type)(std::size_t, std::size_t);

// <DoubleArrayUnit> is the type of double-array units and it is a wrapper of
// <id_type> in practice.
class DoubleArrayUnit {
 public:
  DoubleArrayUnit() : unit_() {}

  // has_leaf() returns whether a leaf unit is immediately derived from the
  // unit (true) or not (false).
  bool has_leaf() const {
    return ((unit_ >> 8) & 1) == 1;
  }
  // value() returns the value stored in the unit, and thus value() is
  // available when and only when the unit is a leaf unit.
  value_type value() const {
    return static_cast<value_type>(unit_ & ((1U << 31) - 1));
  }

  // label() returns the label associted with the unit. Note that a leaf unit
  // always returns an invalid label. For this feature, leaf unit's label()
  // returns an <id_type> that has the MSB of 1.
  id_type label() const {
    return unit_ & ((1U << 31) | 0xFF);
  }
  // offset() returns the offset from the unit to its derived units.
  id_type offset() const {
    return (unit_ >> 10) << ((unit_ & (1U << 9)) >> 6);
  }

 private:
  id_type unit_;

  // Copyable.
};

// Darts-clone throws an <Exception> for memory allocation failure, invalid
// arguments or a too large offset. The last case means that there are too many
// keys in the given set of keys. Note that the `msg' of <Exception> must be a
// constant or static string because an <Exception> keeps only a pointer to
// that string.
class Exception : public std::exception {
 public:
  explicit Exception(const char *msg = NULL) throw() : msg_(msg) {}
  Exception(const Exception &rhs) throw() : msg_(rhs.msg_) {}
  virtual ~Exception() throw() {}

  // <Exception> overrides what() of <std::exception>.
  virtual const char *what() const throw() {
    return (msg_ != NULL) ? msg_ : "";
  }

 private:
  const char *msg_;

  // Disallows operator=.
  Exception &operator=(const Exception &);
};

}  // namespace Details

// <DoubleArrayImpl> is the interface of Darts-clone. Note that other
// classes should not be accessed from outside.
//
// <DoubleArrayImpl> has 4 template arguments but only the 3rd one is used as
// the type of values. Note that the given <T> is used only from outside, and
// the internal value type is not changed from <Darts::Details::value_type>.
// In build(), given values are casted from <T> to <Darts::Details::value_type>
// by using static_cast. On the other hand, values are casted from
// <Darts::Details::value_type> to <T> in searching dictionaries.
template <typename, typename, typename T, typename>
class DoubleArrayImpl {
 public:
  // Even if this <value_type> is changed, the internal value type is still
  // <Darts::Details::value_type>. Other types, such as 64-bit integer types
  // and floating-point number types, should not be used.
  typedef T value_type;
  // A key is reprenseted by a sequence of <key_type>s. For example,
  // exactMatchSearch() takes a <const key_type *>.
  typedef Details::char_type key_type;
  // In searching dictionaries, the values associated with the matched keys are
  // stored into or returned as <result_type>s.
  typedef value_type result_type;

  // <result_pair_type> enables applications to get the lengths of the matched
  // keys in addition to the values.
  struct result_pair_type {
    value_type value;
    std::size_t length;
  };

  // The constructor initializes member variables with 0 and NULLs.
  DoubleArrayImpl() : size_(0), array_(NULL), buf_(NULL) {}
  // The destructor frees memory allocated for units and then initializes
  // member variables with 0 and NULLs.
  virtual ~DoubleArrayImpl() {
    clear();
  }

  // <DoubleArrayImpl> has 2 kinds of set_result()s. The 1st set_result() is to
  // set a value to a <value_type>. The 2nd set_result() is to set a value and
  // a length to a <result_pair_type>. By using set_result()s, search methods
  // can return the 2 kinds of results in the same way.
  // Why the set_result()s are non-static? It is for compatibility.
  //
  // The 1st set_result() takes a length as the 3rd argument but it is not
  // used. If a compiler does a good job, codes for getting the length may be
  // removed.
  void set_result(value_type *result, value_type value, std::size_t) const {
    *result = value;
  }
  // The 2nd set_result() uses both `value' and `length'.
  void set_result(result_pair_type *result,
      value_type value, std::size_t length) const {
    result->value = value;
    result->length = length;
  }

  // set_array() calls clear() in order to free memory allocated to the old
  // array and then sets a new array. This function is useful to set a memory-
  // mapped array. Note that the array set by set_array() is not freed in
  // clear() and the destructor of <DoubleArrayImpl>.
  // set_array() can also set the size of the new array but the size is not
  // used in search methods. So it works well even if the 2nd argument is 0 or
  // omitted. Remember that size() and total_size() returns 0 in such a case.
  void set_array(const void *ptr, std::size_t size = 0) {
    clear();
    array_ = static_cast<const unit_type *>(ptr);
    size_ = size;
  }
  // array() returns a pointer to the array of units.
  const void *array() const {
    return array_;
  }

  // clear() frees memory allocated to units and then initializes member
  // variables with 0 and NULLs. Note that clear() does not free memory if the
  // array of units was set by set_array(). In such a case, `array_' is not
  // NULL and `buf_' is NULL.
  void clear() {
    size_ = 0;
    array_ = NULL;
    if (buf_ != NULL) {
      delete[] buf_;
      buf_ = NULL;
    }
  }

  // unit_size() returns the size of each unit. The size must be 4 bytes.
  std::size_t unit_size() const {
    return sizeof(unit_type);
  }
  // size() returns the number of units. It can be 0 if set_array() is used.
  std::size_t size() const {
    return size_;
  }
  // total_size() returns the number of bytes allocated to the array of units.
  // It can be 0 if set_array() is used.
  std::size_t total_size() const {
    return unit_size() * size();
  }
  // nonzero_size() exists for compatibility. It always returns the number of
  // units because it takes long time to count the number of non-zero units.
  std::size_t nonzero_size() const {
    return size();
  }

  // build() constructs a dictionary from given key-value pairs. If `lengths'
  // is NULL, `keys' is handled as an array of zero-terminated strings. If
  // `values' is NULL, the index in `keys' is associated with each key, i.e.
  // the ith key has (i - 1) as its value.
  // Note that the key-value pairs must be arranged in key order and the values
  // must not be negative. Also, if there are duplicate keys, only the first
  // pair will be stored in the resultant dictionary.
  // `progress_func' is a pointer to a callback function. If it is not NULL,
  // it will be called in build() so that the caller can check the progress of
  // dictionary construction. For details, please see the definition of
  // <Darts::Details::progress_func_type>.
  // The return value of build() is 0, and it indicates the success of the
  // operation. Otherwise, build() throws a <Darts::Exception>, which is a
  // derived class of <std::exception>.
  // build() uses another construction algorithm if `values' is not NULL. In
  // this case, Darts-clone uses a Directed Acyclic Word Graph (DAWG) instead
  // of a trie because a DAWG is likely to be more compact than a trie.
  int build(std::size_t num_keys, const key_type * const *keys,
      const std::size_t *lengths = NULL, const value_type *values = NULL,
      Details::progress_func_type progress_func = NULL);

  // open() reads an array of units from the specified file. And if it goes
  // well, the old array will be freed and replaced with the new array read
  // from the file. `offset' specifies the number of bytes to be skipped before
  // reading an array. `size' specifies the number of bytes to be read from the
  // file. If the `size' is 0, the whole file will be read.
  // open() returns 0 iff the operation succeeds. Otherwise, it returns a
  // non-zero value or throws a <Darts::Exception>. The exception is thrown
  // when and only when a memory allocation fails.
  int open(const char *file_name, const char *mode = "rb",
      std::size_t offset = 0, std::size_t size = 0);
  // save() writes the array of units into the specified file. `offset'
  // specifies the number of bytes to be skipped before writing the array.
  // open() returns 0 iff the operation succeeds. Otherwise, it returns a
  // non-zero value.
  int save(const char *file_name, const char *mode = "wb",
      std::size_t offset = 0) const;

  // The 1st exactMatchSearch() tests whether the given key exists or not, and
  // if it exists, its value and length are set to `result'. Otherwise, the
  // value and the length of `result' are set to -1 and 0 respectively.
  // Note that if `length' is 0, `key' is handled as a zero-terminated string.
  // `node_pos' specifies the start position of matching. This argument enables
  // the combination of exactMatchSearch() and traverse(). For example, if you
  // want to test "xyzA", "xyzBC", and "xyzDE", you can use traverse() to get
  // the node position corresponding to "xyz" and then you can use
  // exactMatchSearch() to test "A", "BC", and "DE" from that position.
  // Note that the length of `result' indicates the length from the `node_pos'.
  // In the above example, the lengths are { 1, 2, 2 }, not { 4, 5, 5 }.
  template <class U>
  void exactMatchSearch(const key_type *key, U &result,
      std::size_t length = 0, std::size_t node_pos = 0) const {
    result = exactMatchSearch<U>(key, length, node_pos);
  }
  // The 2nd exactMatchSearch() returns a result instead of updating the 2nd
  // argument. So, the following exactMatchSearch() has only 3 arguments.
  template <class U>
  inline U exactMatchSearch(const key_type *key, std::size_t length = 0,
      std::size_t node_pos = 0) const;

  // commonPrefixSearch() searches for keys which match a prefix of the given
  // string. If `length' is 0, `key' is handled as a zero-terminated string.
  // The values and the lengths of at most `max_num_results' matched keys are
  // stored in `results'. commonPrefixSearch() returns the number of matched
  // keys. Note that the return value can be larger than `max_num_results' if
  // there are more than `max_num_results' matches. If you want to get all the
  // results, allocate more spaces and call commonPrefixSearch() again.
  // `node_pos' works as well as in exactMatchSearch().
  template <class U>
  inline std::size_t commonPrefixSearch(const key_type *key, U *results,
      std::size_t max_num_results, std::size_t length = 0,
      std::size_t node_pos = 0) const;

  // In Darts-clone, a dictionary is a deterministic finite-state automaton
  // (DFA) and traverse() tests transitions on the DFA. The initial state is
  // `node_pos' and traverse() chooses transitions labeled key[key_pos],
  // key[key_pos + 1], ... in order. If there is not a transition labeled
  // key[key_pos + i], traverse() terminates the transitions at that state and
  // returns -2. Otherwise, traverse() ends without a termination and returns
  // -1 or a nonnegative value, -1 indicates that the final state was not an
  // accept state. When a nonnegative value is returned, it is the value
  // associated with the final accept state. That is, traverse() returns the
  // value associated with the given key if it exists. Note that traverse()
  // updates `node_pos' and `key_pos' after each transition.
  inline value_type traverse(const key_type *key, std::size_t &node_pos,
      std::size_t &key_pos, std::size_t length = 0) const;

 private:
  typedef Details::uchar_type uchar_type;
  typedef Details::id_type id_type;
  typedef Details::DoubleArrayUnit unit_type;

  std::size_t size_;
  const unit_type *array_;
  unit_type *buf_;

  // Disallows copy and assignment.
  DoubleArrayImpl(const DoubleArrayImpl &);
  DoubleArrayImpl &operator=(const DoubleArrayImpl &);
};

// <DoubleArray> is the typical instance of <DoubleArrayImpl>. It uses <int>
// as the type of values and it is suitable for most cases.
typedef DoubleArrayImpl<void, void, int, void> DoubleArray;

// The interface section ends here. For using Darts-clone, there is no need
// to read the remaining section, which gives the implementation of
// Darts-clone.

//
// Member functions of DoubleArrayImpl (except build()).
//

template <typename A, typename B, typename T, typename C>
int DoubleArrayImpl<A, B, T, C>::open(const char *file_name,
    const char *mode, std::size_t offset, std::size_t size) {
#ifdef _MSC_VER
  std::FILE *file;
  if (::fopen_s(&file, file_name, mode) != 0) {
    return -1;
  }
#else
  std::FILE *file = std::fopen(file_name, mode);
  if (file == NULL) {
    return -1;
  }
#endif

  if (size == 0) {
    if (std::fseek(file, 0, SEEK_END) != 0) {
      std::fclose(file);
      return -1;
    }
    size = std::ftell(file) - offset;
  }

  size /= unit_size();
  if (size < 256 || (size & 0xFF) != 0) {
    std::fclose(file);
    return -1;
  }

  if (std::fseek(file, offset, SEEK_SET) != 0) {
    std::fclose(file);
    return -1;
  }

  unit_type units[256];
  if (std::fread(units, unit_size(), 256, file) != 256) {
    std::fclose(file);
    return -1;
  }

  if (units[0].label() != '\0' || units[0].has_leaf() ||
      units[0].offset() == 0 || units[0].offset() >= 512) {
    std::fclose(file);
    return -1;
  }
  for (id_type i = 1; i < 256; ++i) {
    if (units[i].label() <= 0xFF && units[i].offset() >= size) {
      std::fclose(file);
      return -1;
    }
  }

  unit_type *buf;
  try {
    buf = new unit_type[size];
    for (id_type i = 0; i < 256; ++i) {
      buf[i] = units[i];
    }
  } catch (const std::bad_alloc &) {
    std::fclose(file);
    DARTS_THROW("failed to open double-array: std::bad_alloc");
  }

  if (size > 256) {
    if (std::fread(buf + 256, unit_size(), size - 256, file) != size - 256) {
      std::fclose(file);
      delete[] buf;
      return -1;
    }
  }
  std::fclose(file);

  clear();

  size_ = size;
  array_ = buf;
  buf_ = buf;
  return 0;
}

template <typename A, typename B, typename T, typename C>
int DoubleArrayImpl<A, B, T, C>::save(const char *file_name,
    const char *mode, std::size_t) const {
  if (size() == 0) {
    return -1;
  }

#ifdef _MSC_VER
  std::FILE *file;
  if (::fopen_s(&file, file_name, mode) != 0) {
    return -1;
  }
#else
  std::FILE *file = std::fopen(file_name, mode);
  if (file == NULL) {
    return -1;
  }
#endif

  if (std::fwrite(array_, unit_size(), size(), file) != size()) {
    std::fclose(file);
    return -1;
  }
  std::fclose(file);
  return 0;
}

template <typename A, typename B, typename T, typename C>
template <typename U>
inline U DoubleArrayImpl<A, B, T, C>::exactMatchSearch(const key_type *key,
    std::size_t length, std::size_t node_pos) const {
  U result;
  set_result(&result, static_cast<value_type>(-1), 0);

  unit_type unit = array_[node_pos];
  if (length != 0) {
    for (std::size_t i = 0; i < length; ++i) {
      node_pos ^= unit.offset() ^ static_cast<uchar_type>(key[i]);
      unit = array_[node_pos];
      if (unit.label() != static_cast<uchar_type>(key[i])) {
        return result;
      }
    }
  } else {
    for ( ; key[length] != '\0'; ++length) {
      node_pos ^= unit.offset() ^ static_cast<uchar_type>(key[length]);
      unit = array_[node_pos];
      if (unit.label() != static_cast<uchar_type>(key[length])) {
        return result;
      }
    }
  }

  if (!unit.has_leaf()) {
    return result;
  }
  unit = array_[node_pos ^ unit.offset()];
  set_result(&result, static_cast<value_type>(unit.value()), length);
  return result;
}

template <typename A, typename B, typename T, typename C>
template <typename U>
inline std::size_t DoubleArrayImpl<A, B, T, C>::commonPrefixSearch(
    const key_type *key, U *results, std::size_t max_num_results,
    std::size_t length, std::size_t node_pos) const {
  std::size_t num_results = 0;

  unit_type unit = array_[node_pos];
  node_pos ^= unit.offset();
  if (length != 0) {
    for (std::size_t i = 0; i < length; ++i) {
      node_pos ^= static_cast<uchar_type>(key[i]);
      unit = array_[node_pos];
      if (unit.label() != static_cast<uchar_type>(key[i])) {
        return num_results;
      }

      node_pos ^= unit.offset();
      if (unit.has_leaf()) {
        if (num_results < max_num_results) {
          set_result(&results[num_results], static_cast<value_type>(
              array_[node_pos].value()), i + 1);
        }
        ++num_results;
      }
    }
  } else {
    for ( ; key[length] != '\0'; ++length) {
      node_pos ^= static_cast<uchar_type>(key[length]);
      unit = array_[node_pos];
      if (unit.label() != static_cast<uchar_type>(key[length])) {
        return num_results;
      }

      node_pos ^= unit.offset();
      if (unit.has_leaf()) {
        if (num_results < max_num_results) {
          set_result(&results[num_results], static_cast<value_type>(
              array_[node_pos].value()), length + 1);
        }
        ++num_results;
      }
    }
  }

  return num_results;
}

template <typename A, typename B, typename T, typename C>
inline typename DoubleArrayImpl<A, B, T, C>::value_type
DoubleArrayImpl<A, B, T, C>::traverse(const key_type *key,
    std::size_t &node_pos, std::size_t &key_pos, std::size_t length) const {
  id_type id = static_cast<id_type>(node_pos);
  unit_type unit = array_[id];

  if (length != 0) {
    for ( ; key_pos < length; ++key_pos) {
      id ^= unit.offset() ^ static_cast<uchar_type>(key[key_pos]);
      unit = array_[id];
      if (unit.label() != static_cast<uchar_type>(key[key_pos])) {
        return static_cast<value_type>(-2);
      }
      node_pos = id;
    }
  } else {
    for ( ; key[key_pos] != '\0'; ++key_pos) {
      id ^= unit.offset() ^ static_cast<uchar_type>(key[key_pos]);
      unit = array_[id];
      if (unit.label() != static_cast<uchar_type>(key[key_pos])) {
        return static_cast<value_type>(-2);
      }
      node_pos = id;
    }
  }

  if (!unit.has_leaf()) {
    return static_cast<value_type>(-1);
  }
  unit = array_[id ^ unit.offset()];
  return static_cast<value_type>(unit.value());
}

namespace Details {

//
// Memory management of array.
//

template <typename T>
class AutoArray {
 public:
  explicit AutoArray(T *array = NULL) : array_(array) {}
  ~AutoArray() {
    clear();
  }

  const T &operator[](std::size_t id) const {
    return array_[id];
  }
  T &operator[](std::size_t id) {
    return array_[id];
  }

  bool empty() const {
    return array_ == NULL;
  }

  void clear() {
    if (array_ != NULL) {
      delete[] array_;
      array_ = NULL;
    }
  }
  void swap(AutoArray *array) {
    T *temp = array_;
    array_ = array->array_;
    array->array_ = temp;
  }
  void reset(T *array = NULL) {
    AutoArray(array).swap(this);
  }

 private:
  T *array_;

  // Disallows copy and assignment.
  AutoArray(const AutoArray &);
  AutoArray &operator=(const AutoArray &);
};

//
// Memory management of resizable array.
//

template <typename T>
class AutoPool {
 public:
  AutoPool() : buf_(), size_(0), capacity_(0) {}
  ~AutoPool() { clear(); }

  const T &operator[](std::size_t id) const {
    return *(reinterpret_cast<const T *>(&buf_[0]) + id);
  }
  T &operator[](std::size_t id) {
    return *(reinterpret_cast<T *>(&buf_[0]) + id);
  }

  bool empty() const {
    return size_ == 0;
  }
  std::size_t size() const {
    return size_;
  }

  void clear() {
    resize(0);
    buf_.clear();
    size_ = 0;
    capacity_ = 0;
  }

  void push_back(const T &value) {
    append(value);
  }
  void pop_back() {
    (*this)[--size_].~T();
  }

  void append() {
    if (size_ == capacity_)
      resize_buf(size_ + 1);
    new(&(*this)[size_++]) T;
  }
  void append(const T &value) {
    if (size_ == capacity_)
      resize_buf(size_ + 1);
    new(&(*this)[size_++]) T(value);
  }

  void resize(std::size_t size) {
    while (size_ > size) {
      (*this)[--size_].~T();
    }
    if (size > capacity_) {
      resize_buf(size);
    }
    while (size_ < size) {
      new(&(*this)[size_++]) T;
    }
  }
  void resize(std::size_t size, const T &value) {
    while (size_ > size) {
      (*this)[--size_].~T();
    }
    if (size > capacity_) {
      resize_buf(size);
    }
    while (size_ < size) {
      new(&(*this)[size_++]) T(value);
    }
  }

  void reserve(std::size_t size) {
    if (size > capacity_) {
      resize_buf(size);
    }
  }

 private:
  AutoArray<char> buf_;
  std::size_t size_;
  std::size_t capacity_;

  // Disallows copy and assignment.
  AutoPool(const AutoPool &);
  AutoPool &operator=(const AutoPool &);

  void resize_buf(std::size_t size);
};

template <typename T>
void AutoPool<T>::resize_buf(std::size_t size) {
  std::size_t capacity;
  if (size >= capacity_ * 2) {
    capacity = size;
  } else {
    capacity = 1;
    while (capacity < size) {
      capacity <<= 1;
    }
  }

  AutoArray<char> buf;
  try {
    buf.reset(new char[sizeof(T) * capacity]);
  } catch (const std::bad_alloc &) {
    DARTS_THROW("failed to resize pool: std::bad_alloc");
  }

  if (size_ > 0) {
    T *src = reinterpret_cast<T *>(&buf_[0]);
    T *dest = reinterpret_cast<T *>(&buf[0]);
    for (std::size_t i = 0; i < size_; ++i) {
      new(&dest[i]) T(src[i]);
      src[i].~T();
    }
  }

  buf_.swap(&buf);
  capacity_ = capacity;
}

//
// Memory management of stack.
//

template <typename T>
class AutoStack {
 public:
  AutoStack() : pool_() {}
  ~AutoStack() {
    clear();
  }

  const T &top() const {
    return pool_[size() - 1];
  }
  T &top() {
    return pool_[size() - 1];
  }

  bool empty() const {
    return pool_.empty();
  }
  std::size_t size() const {
    return pool_.size();
  }

  void push(const T &value) {
    pool_.push_back(value);
  }
  void pop() {
    pool_.pop_back();
  }

  void clear() {
    pool_.clear();
  }

 private:
  AutoPool<T> pool_;

  // Disallows copy and assignment.
  AutoStack(const AutoStack &);
  AutoStack &operator=(const AutoStack &);
};

//
// Succinct bit vector.
//

class BitVector {
 public:
  BitVector() : units_(), ranks_(), num_ones_(0), size_(0) {}
  ~BitVector() {
    clear();
  }

  bool operator[](std::size_t id) const {
    return (units_[id / UNIT_SIZE] >> (id % UNIT_SIZE) & 1) == 1;
  }

  id_type rank(std::size_t id) const {
    std::size_t unit_id = id / UNIT_SIZE;
    return ranks_[unit_id] + pop_count(units_[unit_id]
        & (~0U >> (UNIT_SIZE - (id % UNIT_SIZE) - 1)));
  }

  void set(std::size_t id, bool bit) {
    if (bit) {
      units_[id / UNIT_SIZE] |= 1U << (id % UNIT_SIZE);
    } else {
      units_[id / UNIT_SIZE] &= ~(1U << (id % UNIT_SIZE));
    }
  }

  bool empty() const {
    return units_.empty();
  }
  std::size_t num_ones() const {
    return num_ones_;
  }
  std::size_t size() const {
    return size_;
  }

  void append() {
    if ((size_ % UNIT_SIZE) == 0) {
      units_.append(0);
    }
    ++size_;
  }
  void build();

  void clear() {
    units_.clear();
    ranks_.clear();
  }

 private:
  enum { UNIT_SIZE = sizeof(id_type) * 8 };

  AutoPool<id_type> units_;
  AutoArray<id_type> ranks_;
  std::size_t num_ones_;
  std::size_t size_;

  // Disallows copy and assignment.
  BitVector(const BitVector &);
  BitVector &operator=(const BitVector &);

  static id_type pop_count(id_type unit) {
    unit = ((unit & 0xAAAAAAAA) >> 1) + (unit & 0x55555555);
    unit = ((unit & 0xCCCCCCCC) >> 2) + (unit & 0x33333333);
    unit = ((unit >> 4) + unit) & 0x0F0F0F0F;
    unit += unit >> 8;
    unit += unit >> 16;
    return unit & 0xFF;
  }
};

inline void BitVector::build() {
  try {
    ranks_.reset(new id_type[units_.size()]);
  } catch (const std::bad_alloc &) {
    DARTS_THROW("failed to build rank index: std::bad_alloc");
  }

  num_ones_ = 0;
  for (std::size_t i = 0; i < units_.size(); ++i) {
    ranks_[i] = num_ones_;
    num_ones_ += pop_count(units_[i]);
  }
}

//
// Keyset.
//

template <typename T>
class Keyset {
 public:
  Keyset(std::size_t num_keys, const char_type * const *keys,
      const std::size_t *lengths, const T *values) :
      num_keys_(num_keys), keys_(keys), lengths_(lengths), values_(values) {}

  std::size_t num_keys() const {
    return num_keys_;
  }
  const char_type *keys(std::size_t id) const {
    return keys_[id];
  }
  uchar_type keys(std::size_t key_id, std::size_t char_id) const {
    if (has_lengths() && char_id >= lengths_[key_id])
      return '\0';
    return keys_[key_id][char_id];
  }

  bool has_lengths() const {
    return lengths_ != NULL;
  }
  std::size_t lengths(std::size_t id) const {
    if (has_lengths()) {
      return lengths_[id];
    }
    std::size_t length = 0;
    while (keys_[id][length] != '\0') {
      ++length;
    }
    return length;
  }

  bool has_values() const {
    return values_ != NULL;
  }
  const value_type values(std::size_t id) const {
    if (has_values()) {
      return static_cast<value_type>(values_[id]);
    }
    return static_cast<value_type>(id);
  }

 private:
  std::size_t num_keys_;
  const char_type * const * keys_;
  const std::size_t *lengths_;
  const T *values_;

  // Disallows copy and assignment.
  Keyset(const Keyset &);
  Keyset &operator=(const Keyset &);
};

//
// Node of Directed Acyclic Word Graph (DAWG).
//

class DawgNode {
 public:
  DawgNode() : child_(0), sibling_(0), label_('\0'),
    is_state_(false), has_sibling_(false) {}

  void set_child(id_type child) {
    child_ = child;
  }
  void set_sibling(id_type sibling) {
    sibling_ = sibling;
  }
  void set_value(value_type value) {
    child_ = value;
  }
  void set_label(uchar_type label) {
    label_ = label;
  }
  void set_is_state(bool is_state) {
    is_state_ = is_state;
  }
  void set_has_sibling(bool has_sibling) {
    has_sibling_ = has_sibling;
  }

  id_type child() const {
    return child_;
  }
  id_type sibling() const {
    return sibling_;
  }
  value_type value() const {
    return static_cast<value_type>(child_);
  }
  uchar_type label() const {
    return label_;
  }
  bool is_state() const {
    return is_state_;
  }
  bool has_sibling() const {
    return has_sibling_;
  }

  id_type unit() const {
    if (label_ == '\0') {
      return (child_ << 1) | (has_sibling_ ? 1 : 0);
    }
    return (child_ << 2) | (is_state_ ? 2 : 0) | (has_sibling_ ? 1 : 0);
  }

 private:
  id_type child_;
  id_type sibling_;
  uchar_type label_;
  bool is_state_;
  bool has_sibling_;

  // Copyable.
};

//
// Fixed unit of Directed Acyclic Word Graph (DAWG).
//

class DawgUnit {
 public:
  explicit DawgUnit(id_type unit = 0) : unit_(unit) {}
  DawgUnit(const DawgUnit &unit) : unit_(unit.unit_) {}

  DawgUnit &operator=(id_type unit) {
    unit_ = unit;
    return *this;
  }

  id_type unit() const {
    return unit_;
  }

  id_type child() const {
    return unit_ >> 2;
  }
  bool has_sibling() const {
    return (unit_ & 1) == 1;
  }
  value_type value() const {
    return static_cast<value_type>(unit_ >> 1);
  }
  bool is_state() const {
    return (unit_ & 2) == 2;
  }

 private:
  id_type unit_;

  // Copyable.
};

//
// Directed Acyclic Word Graph (DAWG) builder.
//

class DawgBuilder {
 public:
  DawgBuilder() : nodes_(), units_(), labels_(), is_intersections_(),
    table_(), node_stack_(), recycle_bin_(), num_states_(0) {}
  ~DawgBuilder() {
    clear();
  }

  id_type root() const {
    return 0;
  }

  id_type child(id_type id) const {
    return units_[id].child();
  }
  id_type sibling(id_type id) const {
    return units_[id].has_sibling() ? (id + 1) : 0;
  }
  int value(id_type id) const {
    return units_[id].value();
  }

  bool is_leaf(id_type id) const {
    return label(id) == '\0';
  }
  uchar_type label(id_type id) const {
    return labels_[id];
  }

  bool is_intersection(id_type id) const {
    return is_intersections_[id];
  }
  id_type intersection_id(id_type id) const {
    return is_intersections_.rank(id) - 1;
  }

  std::size_t num_intersections() const {
    return is_intersections_.num_ones();
  }

  std::size_t size() const {
    return units_.size();
  }

  void init();
  void finish();

  void insert(const char *key, std::size_t length, value_type value);

  void clear();

 private:
  enum { INITIAL_TABLE_SIZE = 1 << 10 };

  AutoPool<DawgNode> nodes_;
  AutoPool<DawgUnit> units_;
  AutoPool<uchar_type> labels_;
  BitVector is_intersections_;
  AutoPool<id_type> table_;
  AutoStack<id_type> node_stack_;
  AutoStack<id_type> recycle_bin_;
  std::size_t num_states_;

  // Disallows copy and assignment.
  DawgBuilder(const DawgBuilder &);
  DawgBuilder &operator=(const DawgBuilder &);

  void flush(id_type id);

  void expand_table();

  id_type find_unit(id_type id, id_type *hash_id) const;
  id_type find_node(id_type node_id, id_type *hash_id) const;

  bool are_equal(id_type node_id, id_type unit_id) const;

  id_type hash_unit(id_type id) const;
  id_type hash_node(id_type id) const;

  id_type append_node();
  id_type append_unit();

  void free_node(id_type id) {
    recycle_bin_.push(id);
  }

  static id_type hash(id_type key) {
    key = ~key + (key << 15);  // key = (key << 15) - key - 1;
    key = key ^ (key >> 12);
    key = key + (key << 2);
    key = key ^ (key >> 4);
    key = key * 2057;  // key = (key + (key << 3)) + (key << 11);
    key = key ^ (key >> 16);
    return key;
  }
};

inline void DawgBuilder::init() {
  table_.resize(INITIAL_TABLE_SIZE, 0);

  append_node();
  append_unit();

  num_states_ = 1;

  nodes_[0].set_label(0xFF);
  node_stack_.push(0);
}

inline void DawgBuilder::finish() {
  flush(0);

  units_[0] = nodes_[0].unit();
  labels_[0] = nodes_[0].label();

  nodes_.clear();
  table_.clear();
  node_stack_.clear();
  recycle_bin_.clear();

  is_intersections_.build();
}

inline void DawgBuilder::insert(const char *key, std::size_t length,
    value_type value) {
  if (value < 0) {
    DARTS_THROW("failed to insert key: negative value");
  } else if (length == 0) {
    DARTS_THROW("failed to insert key: zero-length key");
  }

  id_type id = 0;
  std::size_t key_pos = 0;

  for ( ; key_pos <= length; ++key_pos) {
    id_type child_id = nodes_[id].child();
    if (child_id == 0) {
      break;
    }

    uchar_type key_label = static_cast<uchar_type>(key[key_pos]);
    if (key_pos < length && key_label == '\0') {
      DARTS_THROW("failed to insert key: invalid null character");
    }

    uchar_type unit_label = nodes_[child_id].label();
    if (key_label < unit_label) {
      DARTS_THROW("failed to insert key: wrong key order");
    } else if (key_label > unit_label) {
      nodes_[child_id].set_has_sibling(true);
      flush(child_id);
      break;
    }
    id = child_id;
  }

  if (key_pos > length) {
    return;
  }

  for ( ; key_pos <= length; ++key_pos) {
    uchar_type key_label = static_cast<uchar_type>(
        (key_pos < length) ? key[key_pos] : '\0');
    id_type child_id = append_node();

    if (nodes_[id].child() == 0) {
      nodes_[child_id].set_is_state(true);
    }
    nodes_[child_id].set_sibling(nodes_[id].child());
    nodes_[child_id].set_label(key_label);
    nodes_[id].set_child(child_id);
    node_stack_.push(child_id);

    id = child_id;
  }
  nodes_[id].set_value(value);
}

inline void DawgBuilder::clear() {
  nodes_.clear();
  units_.clear();
  labels_.clear();
  is_intersections_.clear();
  table_.clear();
  node_stack_.clear();
  recycle_bin_.clear();
  num_states_ = 0;
}

inline void DawgBuilder::flush(id_type id) {
  while (node_stack_.top() != id) {
    id_type node_id = node_stack_.top();
    node_stack_.pop();

    if (num_states_ >= table_.size() - (table_.size() >> 2)) {
      expand_table();
    }

    id_type num_siblings = 0;
    for (id_type i = node_id; i != 0; i = nodes_[i].sibling()) {
      ++num_siblings;
    }

    id_type hash_id;
    id_type match_id = find_node(node_id, &hash_id);
    if (match_id != 0) {
      is_intersections_.set(match_id, true);
    } else {
      id_type unit_id = 0;
      for (id_type i = 0; i < num_siblings; ++i) {
        unit_id = append_unit();
      }
      for (id_type i = node_id; i != 0; i = nodes_[i].sibling()) {
        units_[unit_id] = nodes_[i].unit();
        labels_[unit_id] = nodes_[i].label();
        --unit_id;
      }
      match_id = unit_id + 1;
      table_[hash_id] = match_id;
      ++num_states_;
    }

    for (id_type i = node_id, next; i != 0; i = next) {
      next = nodes_[i].sibling();
      free_node(i);
    }

    nodes_[node_stack_.top()].set_child(match_id);
  }
  node_stack_.pop();
}

inline void DawgBuilder::expand_table() {
  std::size_t table_size = table_.size() << 1;
  table_.clear();
  table_.resize(table_size, 0);

  for (std::size_t i = 1; i < units_.size(); ++i) {
    id_type id = static_cast<id_type>(i);
    if (labels_[id] == '\0' || units_[id].is_state()) {
      id_type hash_id;
      find_unit(id, &hash_id);
      table_[hash_id] = id;
    }
  }
}

inline id_type DawgBuilder::find_unit(id_type id, id_type *hash_id) const {
  *hash_id = hash_unit(id) % table_.size();
  for ( ; ; *hash_id = (*hash_id + 1) % table_.size()) {
    id_type unit_id = table_[*hash_id];
    if (unit_id == 0) {
      break;
    }

    // There must not be the same unit.
  }
  return 0;
}

inline id_type DawgBuilder::find_node(id_type node_id,
    id_type *hash_id) const {
  *hash_id = hash_node(node_id) % table_.size();
  for ( ; ; *hash_id = (*hash_id + 1) % table_.size()) {
    id_type unit_id = table_[*hash_id];
    if (unit_id == 0) {
      break;
    }

    if (are_equal(node_id, unit_id)) {
      return unit_id;
    }
  }
  return 0;
}

inline bool DawgBuilder::are_equal(id_type node_id, id_type unit_id) const {
  for (id_type i = nodes_[node_id].sibling(); i != 0;
      i = nodes_[i].sibling()) {
    if (units_[unit_id].has_sibling() == false) {
      return false;
    }
    ++unit_id;
  }
  if (units_[unit_id].has_sibling() == true) {
    return false;
  }

  for (id_type i = node_id; i != 0; i = nodes_[i].sibling(), --unit_id) {
    if (nodes_[i].unit() != units_[unit_id].unit() ||
        nodes_[i].label() != labels_[unit_id]) {
      return false;
    }
  }
  return true;
}

inline id_type DawgBuilder::hash_unit(id_type id) const {
  id_type hash_value = 0;
  for ( ; id != 0; ++id) {
    id_type unit = units_[id].unit();
    uchar_type label = labels_[id];
    hash_value ^= hash((label << 24) ^ unit);

    if (units_[id].has_sibling() == false) {
      break;
    }
  }
  return hash_value;
}

inline id_type DawgBuilder::hash_node(id_type id) const {
  id_type hash_value = 0;
  for ( ; id != 0; id = nodes_[id].sibling()) {
    id_type unit = nodes_[id].unit();
    uchar_type label = nodes_[id].label();
    hash_value ^= hash((label << 24) ^ unit);
  }
  return hash_value;
}

inline id_type DawgBuilder::append_unit() {
  is_intersections_.append();
  units_.append();
  labels_.append();

  return static_cast<id_type>(is_intersections_.size() - 1);
}

inline id_type DawgBuilder::append_node() {
  id_type id;
  if (recycle_bin_.empty()) {
    id = static_cast<id_type>(nodes_.size());
    nodes_.append();
  } else {
    id = recycle_bin_.top();
    nodes_[id] = DawgNode();
    recycle_bin_.pop();
  }
  return id;
}

//
// Unit of double-array builder.
//

class DoubleArrayBuilderUnit {
 public:
  DoubleArrayBuilderUnit() : unit_(0) {}

  void set_has_leaf(bool has_leaf) {
    if (has_leaf) {
      unit_ |= 1U << 8;
    } else {
      unit_ &= ~(1U << 8);
    }
  }
  void set_value(value_type value) {
    unit_ = value | (1U << 31);
  }
  void set_label(uchar_type label) {
    unit_ = (unit_ & ~0xFFU) | label;
  }
  void set_offset(id_type offset) {
    if (offset >= 1U << 29) {
      DARTS_THROW("failed to modify unit: too large offset");
    }
    unit_ &= (1U << 31) | (1U << 8) | 0xFF;
    if (offset < 1U << 21) {
      unit_ |= (offset << 10);
    } else {
      unit_ |= (offset << 2) | (1U << 9);
    }
  }

 private:
  id_type unit_;

  // Copyable.
};

//
// Extra unit of double-array builder.
//

class DoubleArrayBuilderExtraUnit {
 public:
  DoubleArrayBuilderExtraUnit() : prev_(0), next_(0),
      is_fixed_(false), is_used_(false) {}

  void set_prev(id_type prev) {
    prev_ = prev;
  }
  void set_next(id_type next) {
    next_ = next;
  }
  void set_is_fixed(bool is_fixed) {
    is_fixed_ = is_fixed;
  }
  void set_is_used(bool is_used) {
    is_used_ = is_used;
  }

  id_type prev() const {
    return prev_;
  }
  id_type next() const {
    return next_;
  }
  bool is_fixed() const {
    return is_fixed_;
  }
  bool is_used() const {
    return is_used_;
  }

 private:
  id_type prev_;
  id_type next_;
  bool is_fixed_;
  bool is_used_;

  // Copyable.
};

//
// DAWG -> double-array converter.
//

class DoubleArrayBuilder {
 public:
  explicit DoubleArrayBuilder(progress_func_type progress_func)
      : progress_func_(progress_func), units_(), extras_(), labels_(),
        table_(), extras_head_(0) {}
  ~DoubleArrayBuilder() {
    clear();
  }

  template <typename T>
  void build(const Keyset<T> &keyset);
  void copy(std::size_t *size_ptr, DoubleArrayUnit **buf_ptr) const;

  void clear();

 private:
  enum { BLOCK_SIZE = 256 };
  enum { NUM_EXTRA_BLOCKS = 16 };
  enum { NUM_EXTRAS = BLOCK_SIZE * NUM_EXTRA_BLOCKS };

  enum { UPPER_MASK = 0xFF << 21 };
  enum { LOWER_MASK = 0xFF };

  typedef DoubleArrayBuilderUnit unit_type;
  typedef DoubleArrayBuilderExtraUnit extra_type;

  progress_func_type progress_func_;
  AutoPool<unit_type> units_;
  AutoArray<extra_type> extras_;
  AutoPool<uchar_type> labels_;
  AutoArray<id_type> table_;
  id_type extras_head_;

  // Disallows copy and assignment.
  DoubleArrayBuilder(const DoubleArrayBuilder &);
  DoubleArrayBuilder &operator=(const DoubleArrayBuilder &);

  std::size_t num_blocks() const {
    return units_.size() / BLOCK_SIZE;
  }

  const extra_type &extras(id_type id) const {
    return extras_[id % NUM_EXTRAS];
  }
  extra_type &extras(id_type id) {
    return extras_[id % NUM_EXTRAS];
  }

  template <typename T>
  void build_dawg(const Keyset<T> &keyset, DawgBuilder *dawg_builder);
  void build_from_dawg(const DawgBuilder &dawg);
  void build_from_dawg(const DawgBuilder &dawg,
      id_type dawg_id, id_type dic_id);
  id_type arrange_from_dawg(const DawgBuilder &dawg,
      id_type dawg_id, id_type dic_id);

  template <typename T>
  void build_from_keyset(const Keyset<T> &keyset);
  template <typename T>
  void build_from_keyset(const Keyset<T> &keyset, std::size_t begin,
      std::size_t end, std::size_t depth, id_type dic_id);
  template <typename T>
  id_type arrange_from_keyset(const Keyset<T> &keyset, std::size_t begin,
      std::size_t end, std::size_t depth, id_type dic_id);

  id_type find_valid_offset(id_type id) const;
  bool is_valid_offset(id_type id, id_type offset) const;

  void reserve_id(id_type id);
  void expand_units();

  void fix_all_blocks();
  void fix_block(id_type block_id);
};

template <typename T>
void DoubleArrayBuilder::build(const Keyset<T> &keyset) {
  if (keyset.has_values()) {
    Details::DawgBuilder dawg_builder;
    build_dawg(keyset, &dawg_builder);
    build_from_dawg(dawg_builder);
    dawg_builder.clear();
  } else {
    build_from_keyset(keyset);
  }
}

inline void DoubleArrayBuilder::copy(std::size_t *size_ptr,
    DoubleArrayUnit **buf_ptr) const {
  if (size_ptr != NULL) {
    *size_ptr = units_.size();
  }
  if (buf_ptr != NULL) {
    *buf_ptr = new DoubleArrayUnit[units_.size()];
    unit_type *units = reinterpret_cast<unit_type *>(*buf_ptr);
    for (std::size_t i = 0; i < units_.size(); ++i) {
      units[i] = units_[i];
    }
  }
}

inline void DoubleArrayBuilder::clear() {
  units_.clear();
  extras_.clear();
  labels_.clear();
  table_.clear();
  extras_head_ = 0;
}

template <typename T>
void DoubleArrayBuilder::build_dawg(const Keyset<T> &keyset,
    DawgBuilder *dawg_builder) {
  dawg_builder->init();
  for (std::size_t i = 0; i < keyset.num_keys(); ++i) {
    dawg_builder->insert(keyset.keys(i), keyset.lengths(i), keyset.values(i));
    if (progress_func_ != NULL) {
      progress_func_(i + 1, keyset.num_keys() + 1);
    }
  }
  dawg_builder->finish();
}

inline void DoubleArrayBuilder::build_from_dawg(const DawgBuilder &dawg) {
  std::size_t num_units = 1;
  while (num_units < dawg.size()) {
    num_units <<= 1;
  }
  units_.reserve(num_units);

  table_.reset(new id_type[dawg.num_intersections()]);
  for (std::size_t i = 0; i < dawg.num_intersections(); ++i) {
    table_[i] = 0;
  }

  extras_.reset(new extra_type[NUM_EXTRAS]);

  reserve_id(0);
  extras(0).set_is_used(true);
  units_[0].set_offset(1);
  units_[0].set_label('\0');

  if (dawg.child(dawg.root()) != 0) {
    build_from_dawg(dawg, dawg.root(), 0);
  }

  fix_all_blocks();

  extras_.clear();
  labels_.clear();
  table_.clear();
}

inline void DoubleArrayBuilder::build_from_dawg(const DawgBuilder &dawg,
    id_type dawg_id, id_type dic_id) {
  id_type dawg_child_id = dawg.child(dawg_id);
  if (dawg.is_intersection(dawg_child_id)) {
    id_type intersection_id = dawg.intersection_id(dawg_child_id);
    id_type offset = table_[intersection_id];
    if (offset != 0) {
      offset ^= dic_id;
      if (!(offset & UPPER_MASK) || !(offset & LOWER_MASK)) {
        if (dawg.is_leaf(dawg_child_id)) {
          units_[dic_id].set_has_leaf(true);
        }
        units_[dic_id].set_offset(offset);
        return;
      }
    }
  }

  id_type offset = arrange_from_dawg(dawg, dawg_id, dic_id);
  if (dawg.is_intersection(dawg_child_id)) {
    table_[dawg.intersection_id(dawg_child_id)] = offset;
  }

  do {
    uchar_type child_label = dawg.label(dawg_child_id);
    id_type dic_child_id = offset ^ child_label;
    if (child_label != '\0') {
      build_from_dawg(dawg, dawg_child_id, dic_child_id);
    }
    dawg_child_id = dawg.sibling(dawg_child_id);
  } while (dawg_child_id != 0);
}

inline id_type DoubleArrayBuilder::arrange_from_dawg(const DawgBuilder &dawg,
    id_type dawg_id, id_type dic_id) {
  labels_.resize(0);

  id_type dawg_child_id = dawg.child(dawg_id);
  while (dawg_child_id != 0) {
    labels_.append(dawg.label(dawg_child_id));
    dawg_child_id = dawg.sibling(dawg_child_id);
  }

  id_type offset = find_valid_offset(dic_id);
  units_[dic_id].set_offset(dic_id ^ offset);

  dawg_child_id = dawg.child(dawg_id);
  for (std::size_t i = 0; i < labels_.size(); ++i) {
    id_type dic_child_id = offset ^ labels_[i];
    reserve_id(dic_child_id);

    if (dawg.is_leaf(dawg_child_id)) {
      units_[dic_id].set_has_leaf(true);
      units_[dic_child_id].set_value(dawg.value(dawg_child_id));
    } else {
      units_[dic_child_id].set_label(labels_[i]);
    }

    dawg_child_id = dawg.sibling(dawg_child_id);
  }
  extras(offset).set_is_used(true);

  return offset;
}

template <typename T>
void DoubleArrayBuilder::build_from_keyset(const Keyset<T> &keyset) {
  std::size_t num_units = 1;
  while (num_units < keyset.num_keys()) {
    num_units <<= 1;
  }
  units_.reserve(num_units);

  extras_.reset(new extra_type[NUM_EXTRAS]);

  reserve_id(0);
  extras(0).set_is_used(true);
  units_[0].set_offset(1);
  units_[0].set_label('\0');

  if (keyset.num_keys() > 0) {
    build_from_keyset(keyset, 0, keyset.num_keys(), 0, 0);
  }

  fix_all_blocks();

  extras_.clear();
  labels_.clear();
}

template <typename T>
void DoubleArrayBuilder::build_from_keyset(const Keyset<T> &keyset,
    std::size_t begin, std::size_t end, std::size_t depth, id_type dic_id) {
  id_type offset = arrange_from_keyset(keyset, begin, end, depth, dic_id);

  while (begin < end) {
    if (keyset.keys(begin, depth) != '\0') {
      break;
    }
    ++begin;
  }
  if (begin == end) {
    return;
  }

  std::size_t last_begin = begin;
  uchar_type last_label = keyset.keys(begin, depth);
  while (++begin < end) {
    uchar_type label = keyset.keys(begin, depth);
    if (label != last_label) {
      build_from_keyset(keyset, last_begin, begin,
          depth + 1, offset ^ last_label);
      last_begin = begin;
      last_label = keyset.keys(begin, depth);
    }
  }
  build_from_keyset(keyset, last_begin, end, depth + 1, offset ^ last_label);
}

template <typename T>
id_type DoubleArrayBuilder::arrange_from_keyset(const Keyset<T> &keyset,
    std::size_t begin, std::size_t end, std::size_t depth, id_type dic_id) {
  labels_.resize(0);

  value_type value = -1;
  for (std::size_t i = begin; i < end; ++i) {
    uchar_type label = keyset.keys(i, depth);
    if (label == '\0') {
      if (keyset.has_lengths() && depth < keyset.lengths(i)) {
        DARTS_THROW("failed to build double-array: "
            "invalid null character");
      } else if (keyset.values(i) < 0) {
        DARTS_THROW("failed to build double-array: negative value");
      }

      if (value == -1) {
        value = keyset.values(i);
      }
      if (progress_func_ != NULL) {
        progress_func_(i + 1, keyset.num_keys() + 1);
      }
    }

    if (labels_.empty()) {
      labels_.append(label);
    } else if (label != labels_[labels_.size() - 1]) {
      if (label < labels_[labels_.size() - 1]) {
        DARTS_THROW("failed to build double-array: wrong key order");
      }
      labels_.append(label);
    }
  }

  id_type offset = find_valid_offset(dic_id);
  units_[dic_id].set_offset(dic_id ^ offset);

  for (std::size_t i = 0; i < labels_.size(); ++i) {
    id_type dic_child_id = offset ^ labels_[i];
    reserve_id(dic_child_id);
    if (labels_[i] == '\0') {
      units_[dic_id].set_has_leaf(true);
      units_[dic_child_id].set_value(value);
    } else {
      units_[dic_child_id].set_label(labels_[i]);
    }
  }
  extras(offset).set_is_used(true);

  return offset;
}

inline id_type DoubleArrayBuilder::find_valid_offset(id_type id) const {
  if (extras_head_ >= units_.size()) {
    return units_.size() | (id & LOWER_MASK);
  }

  id_type unfixed_id = extras_head_;
  do {
    id_type offset = unfixed_id ^ labels_[0];
    if (is_valid_offset(id, offset)) {
      return offset;
    }
    unfixed_id = extras(unfixed_id).next();
  } while (unfixed_id != extras_head_);

  return units_.size() | (id & LOWER_MASK);
}

inline bool DoubleArrayBuilder::is_valid_offset(id_type id,
    id_type offset) const {
  if (extras(offset).is_used()) {
    return false;
  }

  id_type rel_offset = id ^ offset;
  if ((rel_offset & LOWER_MASK) && (rel_offset & UPPER_MASK)) {
    return false;
  }

  for (std::size_t i = 1; i < labels_.size(); ++i) {
    if (extras(offset ^ labels_[i]).is_fixed()) {
      return false;
    }
  }

  return true;
}

inline void DoubleArrayBuilder::reserve_id(id_type id) {
  if (id >= units_.size()) {
    expand_units();
  }

  if (id == extras_head_) {
    extras_head_ = extras(id).next();
    if (extras_head_ == id) {
      extras_head_ = units_.size();
    }
  }
  extras(extras(id).prev()).set_next(extras(id).next());
  extras(extras(id).next()).set_prev(extras(id).prev());
  extras(id).set_is_fixed(true);
}

inline void DoubleArrayBuilder::expand_units() {
  id_type src_num_units = units_.size();
  id_type src_num_blocks = num_blocks();

  id_type dest_num_units = src_num_units + BLOCK_SIZE;
  id_type dest_num_blocks = src_num_blocks + 1;

  if (dest_num_blocks > NUM_EXTRA_BLOCKS) {
    fix_block(src_num_blocks - NUM_EXTRA_BLOCKS);
  }

  units_.resize(dest_num_units);

  if (dest_num_blocks > NUM_EXTRA_BLOCKS) {
    for (std::size_t id = src_num_units; id < dest_num_units; ++id) {
      extras(id).set_is_used(false);
      extras(id).set_is_fixed(false);
    }
  }

  for (id_type i = src_num_units + 1; i < dest_num_units; ++i) {
    extras(i - 1).set_next(i);
    extras(i).set_prev(i - 1);
  }

  extras(src_num_units).set_prev(dest_num_units - 1);
  extras(dest_num_units - 1).set_next(src_num_units);

  extras(src_num_units).set_prev(extras(extras_head_).prev());
  extras(dest_num_units - 1).set_next(extras_head_);

  extras(extras(extras_head_).prev()).set_next(src_num_units);
  extras(extras_head_).set_prev(dest_num_units - 1);
}

inline void DoubleArrayBuilder::fix_all_blocks() {
  id_type begin = 0;
  if (num_blocks() > NUM_EXTRA_BLOCKS) {
    begin = num_blocks() - NUM_EXTRA_BLOCKS;
  }
  id_type end = num_blocks();

  for (id_type block_id = begin; block_id != end; ++block_id) {
    fix_block(block_id);
  }
}

inline void DoubleArrayBuilder::fix_block(id_type block_id) {
  id_type begin = block_id * BLOCK_SIZE;
  id_type end = begin + BLOCK_SIZE;

  id_type unused_offset = 0;
  for (id_type offset = begin; offset != end; ++offset) {
    if (!extras(offset).is_used()) {
      unused_offset = offset;
      break;
    }
  }

  for (id_type id = begin; id != end; ++id) {
    if (!extras(id).is_fixed()) {
      reserve_id(id);
      units_[id].set_label(static_cast<uchar_type>(id ^ unused_offset));
    }
  }
}

}  // namespace Details

//
// Member function build() of DoubleArrayImpl.
//

template <typename A, typename B, typename T, typename C>
int DoubleArrayImpl<A, B, T, C>::build(std::size_t num_keys,
    const key_type * const *keys, const std::size_t *lengths,
    const value_type *values, Details::progress_func_type progress_func) {
  Details::Keyset<value_type> keyset(num_keys, keys, lengths, values);

  Details::DoubleArrayBuilder builder(progress_func);
  builder.build(keyset);

  std::size_t size = 0;
  unit_type *buf = NULL;
  builder.copy(&size, &buf);

  clear();

  size_ = size;
  array_ = buf;
  buf_ = buf;

  if (progress_func != NULL) {
    progress_func(num_keys + 1, num_keys + 1);
  }

  return 0;
}

}  // namespace Darts

#undef DARTS_INT_TO_STR
#undef DARTS_LINE_TO_STR
#undef DARTS_LINE_STR
#undef DARTS_THROW

#endif  // DARTS_H_