File size: 51,750 Bytes
1d30d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 |
#ifndef DARTS_H_
#define DARTS_H_
#include <cstdio>
#include <exception>
#include <new>
#define DARTS_VERSION "0.32"
// DARTS_THROW() throws a <Darts::Exception> whose message starts with the
// file name and the line number. For example, DARTS_THROW("error message") at
// line 123 of "darts.h" throws a <Darts::Exception> which has a pointer to
// "darts.h:123: exception: error message". The message is available by using
// what() as well as that of <std::exception>.
#define DARTS_INT_TO_STR(value) #value
#define DARTS_LINE_TO_STR(line) DARTS_INT_TO_STR(line)
#define DARTS_LINE_STR DARTS_LINE_TO_STR(__LINE__)
#define DARTS_THROW(msg) throw Darts::Details::Exception( \
__FILE__ ":" DARTS_LINE_STR ": exception: " msg)
namespace Darts {
// The following namespace hides the internal types and classes.
namespace Details {
// This header assumes that <int> and <unsigned int> are 32-bit integer types.
//
// Darts-clone keeps values associated with keys. The type of the values is
// <value_type>. Note that the values must be positive integers because the
// most significant bit (MSB) of each value is used to represent whether the
// corresponding unit is a leaf or not. Also, the keys are represented by
// sequences of <char_type>s. <uchar_type> is the unsigned type of <char_type>.
typedef char char_type;
typedef unsigned char uchar_type;
typedef int value_type;
// The main structure of Darts-clone is an array of <DoubleArrayUnit>s, and the
// unit type is actually a wrapper of <id_type>.
typedef unsigned int id_type;
// <progress_func_type> is the type of callback functions for reporting the
// progress of building a dictionary. See also build() of <DoubleArray>.
// The 1st argument receives the progress value and the 2nd argument receives
// the maximum progress value. A usage example is to show the progress
// percentage, 100.0 * (the 1st argument) / (the 2nd argument).
typedef int (*progress_func_type)(std::size_t, std::size_t);
// <DoubleArrayUnit> is the type of double-array units and it is a wrapper of
// <id_type> in practice.
class DoubleArrayUnit {
public:
DoubleArrayUnit() : unit_() {}
// has_leaf() returns whether a leaf unit is immediately derived from the
// unit (true) or not (false).
bool has_leaf() const {
return ((unit_ >> 8) & 1) == 1;
}
// value() returns the value stored in the unit, and thus value() is
// available when and only when the unit is a leaf unit.
value_type value() const {
return static_cast<value_type>(unit_ & ((1U << 31) - 1));
}
// label() returns the label associted with the unit. Note that a leaf unit
// always returns an invalid label. For this feature, leaf unit's label()
// returns an <id_type> that has the MSB of 1.
id_type label() const {
return unit_ & ((1U << 31) | 0xFF);
}
// offset() returns the offset from the unit to its derived units.
id_type offset() const {
return (unit_ >> 10) << ((unit_ & (1U << 9)) >> 6);
}
private:
id_type unit_;
// Copyable.
};
// Darts-clone throws an <Exception> for memory allocation failure, invalid
// arguments or a too large offset. The last case means that there are too many
// keys in the given set of keys. Note that the `msg' of <Exception> must be a
// constant or static string because an <Exception> keeps only a pointer to
// that string.
class Exception : public std::exception {
public:
explicit Exception(const char *msg = NULL) throw() : msg_(msg) {}
Exception(const Exception &rhs) throw() : msg_(rhs.msg_) {}
virtual ~Exception() throw() {}
// <Exception> overrides what() of <std::exception>.
virtual const char *what() const throw() {
return (msg_ != NULL) ? msg_ : "";
}
private:
const char *msg_;
// Disallows operator=.
Exception &operator=(const Exception &);
};
} // namespace Details
// <DoubleArrayImpl> is the interface of Darts-clone. Note that other
// classes should not be accessed from outside.
//
// <DoubleArrayImpl> has 4 template arguments but only the 3rd one is used as
// the type of values. Note that the given <T> is used only from outside, and
// the internal value type is not changed from <Darts::Details::value_type>.
// In build(), given values are casted from <T> to <Darts::Details::value_type>
// by using static_cast. On the other hand, values are casted from
// <Darts::Details::value_type> to <T> in searching dictionaries.
template <typename, typename, typename T, typename>
class DoubleArrayImpl {
public:
// Even if this <value_type> is changed, the internal value type is still
// <Darts::Details::value_type>. Other types, such as 64-bit integer types
// and floating-point number types, should not be used.
typedef T value_type;
// A key is reprenseted by a sequence of <key_type>s. For example,
// exactMatchSearch() takes a <const key_type *>.
typedef Details::char_type key_type;
// In searching dictionaries, the values associated with the matched keys are
// stored into or returned as <result_type>s.
typedef value_type result_type;
// <result_pair_type> enables applications to get the lengths of the matched
// keys in addition to the values.
struct result_pair_type {
value_type value;
std::size_t length;
};
// The constructor initializes member variables with 0 and NULLs.
DoubleArrayImpl() : size_(0), array_(NULL), buf_(NULL) {}
// The destructor frees memory allocated for units and then initializes
// member variables with 0 and NULLs.
virtual ~DoubleArrayImpl() {
clear();
}
// <DoubleArrayImpl> has 2 kinds of set_result()s. The 1st set_result() is to
// set a value to a <value_type>. The 2nd set_result() is to set a value and
// a length to a <result_pair_type>. By using set_result()s, search methods
// can return the 2 kinds of results in the same way.
// Why the set_result()s are non-static? It is for compatibility.
//
// The 1st set_result() takes a length as the 3rd argument but it is not
// used. If a compiler does a good job, codes for getting the length may be
// removed.
void set_result(value_type *result, value_type value, std::size_t) const {
*result = value;
}
// The 2nd set_result() uses both `value' and `length'.
void set_result(result_pair_type *result,
value_type value, std::size_t length) const {
result->value = value;
result->length = length;
}
// set_array() calls clear() in order to free memory allocated to the old
// array and then sets a new array. This function is useful to set a memory-
// mapped array. Note that the array set by set_array() is not freed in
// clear() and the destructor of <DoubleArrayImpl>.
// set_array() can also set the size of the new array but the size is not
// used in search methods. So it works well even if the 2nd argument is 0 or
// omitted. Remember that size() and total_size() returns 0 in such a case.
void set_array(const void *ptr, std::size_t size = 0) {
clear();
array_ = static_cast<const unit_type *>(ptr);
size_ = size;
}
// array() returns a pointer to the array of units.
const void *array() const {
return array_;
}
// clear() frees memory allocated to units and then initializes member
// variables with 0 and NULLs. Note that clear() does not free memory if the
// array of units was set by set_array(). In such a case, `array_' is not
// NULL and `buf_' is NULL.
void clear() {
size_ = 0;
array_ = NULL;
if (buf_ != NULL) {
delete[] buf_;
buf_ = NULL;
}
}
// unit_size() returns the size of each unit. The size must be 4 bytes.
std::size_t unit_size() const {
return sizeof(unit_type);
}
// size() returns the number of units. It can be 0 if set_array() is used.
std::size_t size() const {
return size_;
}
// total_size() returns the number of bytes allocated to the array of units.
// It can be 0 if set_array() is used.
std::size_t total_size() const {
return unit_size() * size();
}
// nonzero_size() exists for compatibility. It always returns the number of
// units because it takes long time to count the number of non-zero units.
std::size_t nonzero_size() const {
return size();
}
// build() constructs a dictionary from given key-value pairs. If `lengths'
// is NULL, `keys' is handled as an array of zero-terminated strings. If
// `values' is NULL, the index in `keys' is associated with each key, i.e.
// the ith key has (i - 1) as its value.
// Note that the key-value pairs must be arranged in key order and the values
// must not be negative. Also, if there are duplicate keys, only the first
// pair will be stored in the resultant dictionary.
// `progress_func' is a pointer to a callback function. If it is not NULL,
// it will be called in build() so that the caller can check the progress of
// dictionary construction. For details, please see the definition of
// <Darts::Details::progress_func_type>.
// The return value of build() is 0, and it indicates the success of the
// operation. Otherwise, build() throws a <Darts::Exception>, which is a
// derived class of <std::exception>.
// build() uses another construction algorithm if `values' is not NULL. In
// this case, Darts-clone uses a Directed Acyclic Word Graph (DAWG) instead
// of a trie because a DAWG is likely to be more compact than a trie.
int build(std::size_t num_keys, const key_type * const *keys,
const std::size_t *lengths = NULL, const value_type *values = NULL,
Details::progress_func_type progress_func = NULL);
// open() reads an array of units from the specified file. And if it goes
// well, the old array will be freed and replaced with the new array read
// from the file. `offset' specifies the number of bytes to be skipped before
// reading an array. `size' specifies the number of bytes to be read from the
// file. If the `size' is 0, the whole file will be read.
// open() returns 0 iff the operation succeeds. Otherwise, it returns a
// non-zero value or throws a <Darts::Exception>. The exception is thrown
// when and only when a memory allocation fails.
int open(const char *file_name, const char *mode = "rb",
std::size_t offset = 0, std::size_t size = 0);
// save() writes the array of units into the specified file. `offset'
// specifies the number of bytes to be skipped before writing the array.
// open() returns 0 iff the operation succeeds. Otherwise, it returns a
// non-zero value.
int save(const char *file_name, const char *mode = "wb",
std::size_t offset = 0) const;
// The 1st exactMatchSearch() tests whether the given key exists or not, and
// if it exists, its value and length are set to `result'. Otherwise, the
// value and the length of `result' are set to -1 and 0 respectively.
// Note that if `length' is 0, `key' is handled as a zero-terminated string.
// `node_pos' specifies the start position of matching. This argument enables
// the combination of exactMatchSearch() and traverse(). For example, if you
// want to test "xyzA", "xyzBC", and "xyzDE", you can use traverse() to get
// the node position corresponding to "xyz" and then you can use
// exactMatchSearch() to test "A", "BC", and "DE" from that position.
// Note that the length of `result' indicates the length from the `node_pos'.
// In the above example, the lengths are { 1, 2, 2 }, not { 4, 5, 5 }.
template <class U>
void exactMatchSearch(const key_type *key, U &result,
std::size_t length = 0, std::size_t node_pos = 0) const {
result = exactMatchSearch<U>(key, length, node_pos);
}
// The 2nd exactMatchSearch() returns a result instead of updating the 2nd
// argument. So, the following exactMatchSearch() has only 3 arguments.
template <class U>
inline U exactMatchSearch(const key_type *key, std::size_t length = 0,
std::size_t node_pos = 0) const;
// commonPrefixSearch() searches for keys which match a prefix of the given
// string. If `length' is 0, `key' is handled as a zero-terminated string.
// The values and the lengths of at most `max_num_results' matched keys are
// stored in `results'. commonPrefixSearch() returns the number of matched
// keys. Note that the return value can be larger than `max_num_results' if
// there are more than `max_num_results' matches. If you want to get all the
// results, allocate more spaces and call commonPrefixSearch() again.
// `node_pos' works as well as in exactMatchSearch().
template <class U>
inline std::size_t commonPrefixSearch(const key_type *key, U *results,
std::size_t max_num_results, std::size_t length = 0,
std::size_t node_pos = 0) const;
// In Darts-clone, a dictionary is a deterministic finite-state automaton
// (DFA) and traverse() tests transitions on the DFA. The initial state is
// `node_pos' and traverse() chooses transitions labeled key[key_pos],
// key[key_pos + 1], ... in order. If there is not a transition labeled
// key[key_pos + i], traverse() terminates the transitions at that state and
// returns -2. Otherwise, traverse() ends without a termination and returns
// -1 or a nonnegative value, -1 indicates that the final state was not an
// accept state. When a nonnegative value is returned, it is the value
// associated with the final accept state. That is, traverse() returns the
// value associated with the given key if it exists. Note that traverse()
// updates `node_pos' and `key_pos' after each transition.
inline value_type traverse(const key_type *key, std::size_t &node_pos,
std::size_t &key_pos, std::size_t length = 0) const;
private:
typedef Details::uchar_type uchar_type;
typedef Details::id_type id_type;
typedef Details::DoubleArrayUnit unit_type;
std::size_t size_;
const unit_type *array_;
unit_type *buf_;
// Disallows copy and assignment.
DoubleArrayImpl(const DoubleArrayImpl &);
DoubleArrayImpl &operator=(const DoubleArrayImpl &);
};
// <DoubleArray> is the typical instance of <DoubleArrayImpl>. It uses <int>
// as the type of values and it is suitable for most cases.
typedef DoubleArrayImpl<void, void, int, void> DoubleArray;
// The interface section ends here. For using Darts-clone, there is no need
// to read the remaining section, which gives the implementation of
// Darts-clone.
//
// Member functions of DoubleArrayImpl (except build()).
//
template <typename A, typename B, typename T, typename C>
int DoubleArrayImpl<A, B, T, C>::open(const char *file_name,
const char *mode, std::size_t offset, std::size_t size) {
#ifdef _MSC_VER
std::FILE *file;
if (::fopen_s(&file, file_name, mode) != 0) {
return -1;
}
#else
std::FILE *file = std::fopen(file_name, mode);
if (file == NULL) {
return -1;
}
#endif
if (size == 0) {
if (std::fseek(file, 0, SEEK_END) != 0) {
std::fclose(file);
return -1;
}
size = std::ftell(file) - offset;
}
size /= unit_size();
if (size < 256 || (size & 0xFF) != 0) {
std::fclose(file);
return -1;
}
if (std::fseek(file, offset, SEEK_SET) != 0) {
std::fclose(file);
return -1;
}
unit_type units[256];
if (std::fread(units, unit_size(), 256, file) != 256) {
std::fclose(file);
return -1;
}
if (units[0].label() != '\0' || units[0].has_leaf() ||
units[0].offset() == 0 || units[0].offset() >= 512) {
std::fclose(file);
return -1;
}
for (id_type i = 1; i < 256; ++i) {
if (units[i].label() <= 0xFF && units[i].offset() >= size) {
std::fclose(file);
return -1;
}
}
unit_type *buf;
try {
buf = new unit_type[size];
for (id_type i = 0; i < 256; ++i) {
buf[i] = units[i];
}
} catch (const std::bad_alloc &) {
std::fclose(file);
DARTS_THROW("failed to open double-array: std::bad_alloc");
}
if (size > 256) {
if (std::fread(buf + 256, unit_size(), size - 256, file) != size - 256) {
std::fclose(file);
delete[] buf;
return -1;
}
}
std::fclose(file);
clear();
size_ = size;
array_ = buf;
buf_ = buf;
return 0;
}
template <typename A, typename B, typename T, typename C>
int DoubleArrayImpl<A, B, T, C>::save(const char *file_name,
const char *mode, std::size_t) const {
if (size() == 0) {
return -1;
}
#ifdef _MSC_VER
std::FILE *file;
if (::fopen_s(&file, file_name, mode) != 0) {
return -1;
}
#else
std::FILE *file = std::fopen(file_name, mode);
if (file == NULL) {
return -1;
}
#endif
if (std::fwrite(array_, unit_size(), size(), file) != size()) {
std::fclose(file);
return -1;
}
std::fclose(file);
return 0;
}
template <typename A, typename B, typename T, typename C>
template <typename U>
inline U DoubleArrayImpl<A, B, T, C>::exactMatchSearch(const key_type *key,
std::size_t length, std::size_t node_pos) const {
U result;
set_result(&result, static_cast<value_type>(-1), 0);
unit_type unit = array_[node_pos];
if (length != 0) {
for (std::size_t i = 0; i < length; ++i) {
node_pos ^= unit.offset() ^ static_cast<uchar_type>(key[i]);
unit = array_[node_pos];
if (unit.label() != static_cast<uchar_type>(key[i])) {
return result;
}
}
} else {
for ( ; key[length] != '\0'; ++length) {
node_pos ^= unit.offset() ^ static_cast<uchar_type>(key[length]);
unit = array_[node_pos];
if (unit.label() != static_cast<uchar_type>(key[length])) {
return result;
}
}
}
if (!unit.has_leaf()) {
return result;
}
unit = array_[node_pos ^ unit.offset()];
set_result(&result, static_cast<value_type>(unit.value()), length);
return result;
}
template <typename A, typename B, typename T, typename C>
template <typename U>
inline std::size_t DoubleArrayImpl<A, B, T, C>::commonPrefixSearch(
const key_type *key, U *results, std::size_t max_num_results,
std::size_t length, std::size_t node_pos) const {
std::size_t num_results = 0;
unit_type unit = array_[node_pos];
node_pos ^= unit.offset();
if (length != 0) {
for (std::size_t i = 0; i < length; ++i) {
node_pos ^= static_cast<uchar_type>(key[i]);
unit = array_[node_pos];
if (unit.label() != static_cast<uchar_type>(key[i])) {
return num_results;
}
node_pos ^= unit.offset();
if (unit.has_leaf()) {
if (num_results < max_num_results) {
set_result(&results[num_results], static_cast<value_type>(
array_[node_pos].value()), i + 1);
}
++num_results;
}
}
} else {
for ( ; key[length] != '\0'; ++length) {
node_pos ^= static_cast<uchar_type>(key[length]);
unit = array_[node_pos];
if (unit.label() != static_cast<uchar_type>(key[length])) {
return num_results;
}
node_pos ^= unit.offset();
if (unit.has_leaf()) {
if (num_results < max_num_results) {
set_result(&results[num_results], static_cast<value_type>(
array_[node_pos].value()), length + 1);
}
++num_results;
}
}
}
return num_results;
}
template <typename A, typename B, typename T, typename C>
inline typename DoubleArrayImpl<A, B, T, C>::value_type
DoubleArrayImpl<A, B, T, C>::traverse(const key_type *key,
std::size_t &node_pos, std::size_t &key_pos, std::size_t length) const {
id_type id = static_cast<id_type>(node_pos);
unit_type unit = array_[id];
if (length != 0) {
for ( ; key_pos < length; ++key_pos) {
id ^= unit.offset() ^ static_cast<uchar_type>(key[key_pos]);
unit = array_[id];
if (unit.label() != static_cast<uchar_type>(key[key_pos])) {
return static_cast<value_type>(-2);
}
node_pos = id;
}
} else {
for ( ; key[key_pos] != '\0'; ++key_pos) {
id ^= unit.offset() ^ static_cast<uchar_type>(key[key_pos]);
unit = array_[id];
if (unit.label() != static_cast<uchar_type>(key[key_pos])) {
return static_cast<value_type>(-2);
}
node_pos = id;
}
}
if (!unit.has_leaf()) {
return static_cast<value_type>(-1);
}
unit = array_[id ^ unit.offset()];
return static_cast<value_type>(unit.value());
}
namespace Details {
//
// Memory management of array.
//
template <typename T>
class AutoArray {
public:
explicit AutoArray(T *array = NULL) : array_(array) {}
~AutoArray() {
clear();
}
const T &operator[](std::size_t id) const {
return array_[id];
}
T &operator[](std::size_t id) {
return array_[id];
}
bool empty() const {
return array_ == NULL;
}
void clear() {
if (array_ != NULL) {
delete[] array_;
array_ = NULL;
}
}
void swap(AutoArray *array) {
T *temp = array_;
array_ = array->array_;
array->array_ = temp;
}
void reset(T *array = NULL) {
AutoArray(array).swap(this);
}
private:
T *array_;
// Disallows copy and assignment.
AutoArray(const AutoArray &);
AutoArray &operator=(const AutoArray &);
};
//
// Memory management of resizable array.
//
template <typename T>
class AutoPool {
public:
AutoPool() : buf_(), size_(0), capacity_(0) {}
~AutoPool() { clear(); }
const T &operator[](std::size_t id) const {
return *(reinterpret_cast<const T *>(&buf_[0]) + id);
}
T &operator[](std::size_t id) {
return *(reinterpret_cast<T *>(&buf_[0]) + id);
}
bool empty() const {
return size_ == 0;
}
std::size_t size() const {
return size_;
}
void clear() {
resize(0);
buf_.clear();
size_ = 0;
capacity_ = 0;
}
void push_back(const T &value) {
append(value);
}
void pop_back() {
(*this)[--size_].~T();
}
void append() {
if (size_ == capacity_)
resize_buf(size_ + 1);
new(&(*this)[size_++]) T;
}
void append(const T &value) {
if (size_ == capacity_)
resize_buf(size_ + 1);
new(&(*this)[size_++]) T(value);
}
void resize(std::size_t size) {
while (size_ > size) {
(*this)[--size_].~T();
}
if (size > capacity_) {
resize_buf(size);
}
while (size_ < size) {
new(&(*this)[size_++]) T;
}
}
void resize(std::size_t size, const T &value) {
while (size_ > size) {
(*this)[--size_].~T();
}
if (size > capacity_) {
resize_buf(size);
}
while (size_ < size) {
new(&(*this)[size_++]) T(value);
}
}
void reserve(std::size_t size) {
if (size > capacity_) {
resize_buf(size);
}
}
private:
AutoArray<char> buf_;
std::size_t size_;
std::size_t capacity_;
// Disallows copy and assignment.
AutoPool(const AutoPool &);
AutoPool &operator=(const AutoPool &);
void resize_buf(std::size_t size);
};
template <typename T>
void AutoPool<T>::resize_buf(std::size_t size) {
std::size_t capacity;
if (size >= capacity_ * 2) {
capacity = size;
} else {
capacity = 1;
while (capacity < size) {
capacity <<= 1;
}
}
AutoArray<char> buf;
try {
buf.reset(new char[sizeof(T) * capacity]);
} catch (const std::bad_alloc &) {
DARTS_THROW("failed to resize pool: std::bad_alloc");
}
if (size_ > 0) {
T *src = reinterpret_cast<T *>(&buf_[0]);
T *dest = reinterpret_cast<T *>(&buf[0]);
for (std::size_t i = 0; i < size_; ++i) {
new(&dest[i]) T(src[i]);
src[i].~T();
}
}
buf_.swap(&buf);
capacity_ = capacity;
}
//
// Memory management of stack.
//
template <typename T>
class AutoStack {
public:
AutoStack() : pool_() {}
~AutoStack() {
clear();
}
const T &top() const {
return pool_[size() - 1];
}
T &top() {
return pool_[size() - 1];
}
bool empty() const {
return pool_.empty();
}
std::size_t size() const {
return pool_.size();
}
void push(const T &value) {
pool_.push_back(value);
}
void pop() {
pool_.pop_back();
}
void clear() {
pool_.clear();
}
private:
AutoPool<T> pool_;
// Disallows copy and assignment.
AutoStack(const AutoStack &);
AutoStack &operator=(const AutoStack &);
};
//
// Succinct bit vector.
//
class BitVector {
public:
BitVector() : units_(), ranks_(), num_ones_(0), size_(0) {}
~BitVector() {
clear();
}
bool operator[](std::size_t id) const {
return (units_[id / UNIT_SIZE] >> (id % UNIT_SIZE) & 1) == 1;
}
id_type rank(std::size_t id) const {
std::size_t unit_id = id / UNIT_SIZE;
return ranks_[unit_id] + pop_count(units_[unit_id]
& (~0U >> (UNIT_SIZE - (id % UNIT_SIZE) - 1)));
}
void set(std::size_t id, bool bit) {
if (bit) {
units_[id / UNIT_SIZE] |= 1U << (id % UNIT_SIZE);
} else {
units_[id / UNIT_SIZE] &= ~(1U << (id % UNIT_SIZE));
}
}
bool empty() const {
return units_.empty();
}
std::size_t num_ones() const {
return num_ones_;
}
std::size_t size() const {
return size_;
}
void append() {
if ((size_ % UNIT_SIZE) == 0) {
units_.append(0);
}
++size_;
}
void build();
void clear() {
units_.clear();
ranks_.clear();
}
private:
enum { UNIT_SIZE = sizeof(id_type) * 8 };
AutoPool<id_type> units_;
AutoArray<id_type> ranks_;
std::size_t num_ones_;
std::size_t size_;
// Disallows copy and assignment.
BitVector(const BitVector &);
BitVector &operator=(const BitVector &);
static id_type pop_count(id_type unit) {
unit = ((unit & 0xAAAAAAAA) >> 1) + (unit & 0x55555555);
unit = ((unit & 0xCCCCCCCC) >> 2) + (unit & 0x33333333);
unit = ((unit >> 4) + unit) & 0x0F0F0F0F;
unit += unit >> 8;
unit += unit >> 16;
return unit & 0xFF;
}
};
inline void BitVector::build() {
try {
ranks_.reset(new id_type[units_.size()]);
} catch (const std::bad_alloc &) {
DARTS_THROW("failed to build rank index: std::bad_alloc");
}
num_ones_ = 0;
for (std::size_t i = 0; i < units_.size(); ++i) {
ranks_[i] = num_ones_;
num_ones_ += pop_count(units_[i]);
}
}
//
// Keyset.
//
template <typename T>
class Keyset {
public:
Keyset(std::size_t num_keys, const char_type * const *keys,
const std::size_t *lengths, const T *values) :
num_keys_(num_keys), keys_(keys), lengths_(lengths), values_(values) {}
std::size_t num_keys() const {
return num_keys_;
}
const char_type *keys(std::size_t id) const {
return keys_[id];
}
uchar_type keys(std::size_t key_id, std::size_t char_id) const {
if (has_lengths() && char_id >= lengths_[key_id])
return '\0';
return keys_[key_id][char_id];
}
bool has_lengths() const {
return lengths_ != NULL;
}
std::size_t lengths(std::size_t id) const {
if (has_lengths()) {
return lengths_[id];
}
std::size_t length = 0;
while (keys_[id][length] != '\0') {
++length;
}
return length;
}
bool has_values() const {
return values_ != NULL;
}
const value_type values(std::size_t id) const {
if (has_values()) {
return static_cast<value_type>(values_[id]);
}
return static_cast<value_type>(id);
}
private:
std::size_t num_keys_;
const char_type * const * keys_;
const std::size_t *lengths_;
const T *values_;
// Disallows copy and assignment.
Keyset(const Keyset &);
Keyset &operator=(const Keyset &);
};
//
// Node of Directed Acyclic Word Graph (DAWG).
//
class DawgNode {
public:
DawgNode() : child_(0), sibling_(0), label_('\0'),
is_state_(false), has_sibling_(false) {}
void set_child(id_type child) {
child_ = child;
}
void set_sibling(id_type sibling) {
sibling_ = sibling;
}
void set_value(value_type value) {
child_ = value;
}
void set_label(uchar_type label) {
label_ = label;
}
void set_is_state(bool is_state) {
is_state_ = is_state;
}
void set_has_sibling(bool has_sibling) {
has_sibling_ = has_sibling;
}
id_type child() const {
return child_;
}
id_type sibling() const {
return sibling_;
}
value_type value() const {
return static_cast<value_type>(child_);
}
uchar_type label() const {
return label_;
}
bool is_state() const {
return is_state_;
}
bool has_sibling() const {
return has_sibling_;
}
id_type unit() const {
if (label_ == '\0') {
return (child_ << 1) | (has_sibling_ ? 1 : 0);
}
return (child_ << 2) | (is_state_ ? 2 : 0) | (has_sibling_ ? 1 : 0);
}
private:
id_type child_;
id_type sibling_;
uchar_type label_;
bool is_state_;
bool has_sibling_;
// Copyable.
};
//
// Fixed unit of Directed Acyclic Word Graph (DAWG).
//
class DawgUnit {
public:
explicit DawgUnit(id_type unit = 0) : unit_(unit) {}
DawgUnit(const DawgUnit &unit) : unit_(unit.unit_) {}
DawgUnit &operator=(id_type unit) {
unit_ = unit;
return *this;
}
id_type unit() const {
return unit_;
}
id_type child() const {
return unit_ >> 2;
}
bool has_sibling() const {
return (unit_ & 1) == 1;
}
value_type value() const {
return static_cast<value_type>(unit_ >> 1);
}
bool is_state() const {
return (unit_ & 2) == 2;
}
private:
id_type unit_;
// Copyable.
};
//
// Directed Acyclic Word Graph (DAWG) builder.
//
class DawgBuilder {
public:
DawgBuilder() : nodes_(), units_(), labels_(), is_intersections_(),
table_(), node_stack_(), recycle_bin_(), num_states_(0) {}
~DawgBuilder() {
clear();
}
id_type root() const {
return 0;
}
id_type child(id_type id) const {
return units_[id].child();
}
id_type sibling(id_type id) const {
return units_[id].has_sibling() ? (id + 1) : 0;
}
int value(id_type id) const {
return units_[id].value();
}
bool is_leaf(id_type id) const {
return label(id) == '\0';
}
uchar_type label(id_type id) const {
return labels_[id];
}
bool is_intersection(id_type id) const {
return is_intersections_[id];
}
id_type intersection_id(id_type id) const {
return is_intersections_.rank(id) - 1;
}
std::size_t num_intersections() const {
return is_intersections_.num_ones();
}
std::size_t size() const {
return units_.size();
}
void init();
void finish();
void insert(const char *key, std::size_t length, value_type value);
void clear();
private:
enum { INITIAL_TABLE_SIZE = 1 << 10 };
AutoPool<DawgNode> nodes_;
AutoPool<DawgUnit> units_;
AutoPool<uchar_type> labels_;
BitVector is_intersections_;
AutoPool<id_type> table_;
AutoStack<id_type> node_stack_;
AutoStack<id_type> recycle_bin_;
std::size_t num_states_;
// Disallows copy and assignment.
DawgBuilder(const DawgBuilder &);
DawgBuilder &operator=(const DawgBuilder &);
void flush(id_type id);
void expand_table();
id_type find_unit(id_type id, id_type *hash_id) const;
id_type find_node(id_type node_id, id_type *hash_id) const;
bool are_equal(id_type node_id, id_type unit_id) const;
id_type hash_unit(id_type id) const;
id_type hash_node(id_type id) const;
id_type append_node();
id_type append_unit();
void free_node(id_type id) {
recycle_bin_.push(id);
}
static id_type hash(id_type key) {
key = ~key + (key << 15); // key = (key << 15) - key - 1;
key = key ^ (key >> 12);
key = key + (key << 2);
key = key ^ (key >> 4);
key = key * 2057; // key = (key + (key << 3)) + (key << 11);
key = key ^ (key >> 16);
return key;
}
};
inline void DawgBuilder::init() {
table_.resize(INITIAL_TABLE_SIZE, 0);
append_node();
append_unit();
num_states_ = 1;
nodes_[0].set_label(0xFF);
node_stack_.push(0);
}
inline void DawgBuilder::finish() {
flush(0);
units_[0] = nodes_[0].unit();
labels_[0] = nodes_[0].label();
nodes_.clear();
table_.clear();
node_stack_.clear();
recycle_bin_.clear();
is_intersections_.build();
}
inline void DawgBuilder::insert(const char *key, std::size_t length,
value_type value) {
if (value < 0) {
DARTS_THROW("failed to insert key: negative value");
} else if (length == 0) {
DARTS_THROW("failed to insert key: zero-length key");
}
id_type id = 0;
std::size_t key_pos = 0;
for ( ; key_pos <= length; ++key_pos) {
id_type child_id = nodes_[id].child();
if (child_id == 0) {
break;
}
uchar_type key_label = static_cast<uchar_type>(key[key_pos]);
if (key_pos < length && key_label == '\0') {
DARTS_THROW("failed to insert key: invalid null character");
}
uchar_type unit_label = nodes_[child_id].label();
if (key_label < unit_label) {
DARTS_THROW("failed to insert key: wrong key order");
} else if (key_label > unit_label) {
nodes_[child_id].set_has_sibling(true);
flush(child_id);
break;
}
id = child_id;
}
if (key_pos > length) {
return;
}
for ( ; key_pos <= length; ++key_pos) {
uchar_type key_label = static_cast<uchar_type>(
(key_pos < length) ? key[key_pos] : '\0');
id_type child_id = append_node();
if (nodes_[id].child() == 0) {
nodes_[child_id].set_is_state(true);
}
nodes_[child_id].set_sibling(nodes_[id].child());
nodes_[child_id].set_label(key_label);
nodes_[id].set_child(child_id);
node_stack_.push(child_id);
id = child_id;
}
nodes_[id].set_value(value);
}
inline void DawgBuilder::clear() {
nodes_.clear();
units_.clear();
labels_.clear();
is_intersections_.clear();
table_.clear();
node_stack_.clear();
recycle_bin_.clear();
num_states_ = 0;
}
inline void DawgBuilder::flush(id_type id) {
while (node_stack_.top() != id) {
id_type node_id = node_stack_.top();
node_stack_.pop();
if (num_states_ >= table_.size() - (table_.size() >> 2)) {
expand_table();
}
id_type num_siblings = 0;
for (id_type i = node_id; i != 0; i = nodes_[i].sibling()) {
++num_siblings;
}
id_type hash_id;
id_type match_id = find_node(node_id, &hash_id);
if (match_id != 0) {
is_intersections_.set(match_id, true);
} else {
id_type unit_id = 0;
for (id_type i = 0; i < num_siblings; ++i) {
unit_id = append_unit();
}
for (id_type i = node_id; i != 0; i = nodes_[i].sibling()) {
units_[unit_id] = nodes_[i].unit();
labels_[unit_id] = nodes_[i].label();
--unit_id;
}
match_id = unit_id + 1;
table_[hash_id] = match_id;
++num_states_;
}
for (id_type i = node_id, next; i != 0; i = next) {
next = nodes_[i].sibling();
free_node(i);
}
nodes_[node_stack_.top()].set_child(match_id);
}
node_stack_.pop();
}
inline void DawgBuilder::expand_table() {
std::size_t table_size = table_.size() << 1;
table_.clear();
table_.resize(table_size, 0);
for (std::size_t i = 1; i < units_.size(); ++i) {
id_type id = static_cast<id_type>(i);
if (labels_[id] == '\0' || units_[id].is_state()) {
id_type hash_id;
find_unit(id, &hash_id);
table_[hash_id] = id;
}
}
}
inline id_type DawgBuilder::find_unit(id_type id, id_type *hash_id) const {
*hash_id = hash_unit(id) % table_.size();
for ( ; ; *hash_id = (*hash_id + 1) % table_.size()) {
id_type unit_id = table_[*hash_id];
if (unit_id == 0) {
break;
}
// There must not be the same unit.
}
return 0;
}
inline id_type DawgBuilder::find_node(id_type node_id,
id_type *hash_id) const {
*hash_id = hash_node(node_id) % table_.size();
for ( ; ; *hash_id = (*hash_id + 1) % table_.size()) {
id_type unit_id = table_[*hash_id];
if (unit_id == 0) {
break;
}
if (are_equal(node_id, unit_id)) {
return unit_id;
}
}
return 0;
}
inline bool DawgBuilder::are_equal(id_type node_id, id_type unit_id) const {
for (id_type i = nodes_[node_id].sibling(); i != 0;
i = nodes_[i].sibling()) {
if (units_[unit_id].has_sibling() == false) {
return false;
}
++unit_id;
}
if (units_[unit_id].has_sibling() == true) {
return false;
}
for (id_type i = node_id; i != 0; i = nodes_[i].sibling(), --unit_id) {
if (nodes_[i].unit() != units_[unit_id].unit() ||
nodes_[i].label() != labels_[unit_id]) {
return false;
}
}
return true;
}
inline id_type DawgBuilder::hash_unit(id_type id) const {
id_type hash_value = 0;
for ( ; id != 0; ++id) {
id_type unit = units_[id].unit();
uchar_type label = labels_[id];
hash_value ^= hash((label << 24) ^ unit);
if (units_[id].has_sibling() == false) {
break;
}
}
return hash_value;
}
inline id_type DawgBuilder::hash_node(id_type id) const {
id_type hash_value = 0;
for ( ; id != 0; id = nodes_[id].sibling()) {
id_type unit = nodes_[id].unit();
uchar_type label = nodes_[id].label();
hash_value ^= hash((label << 24) ^ unit);
}
return hash_value;
}
inline id_type DawgBuilder::append_unit() {
is_intersections_.append();
units_.append();
labels_.append();
return static_cast<id_type>(is_intersections_.size() - 1);
}
inline id_type DawgBuilder::append_node() {
id_type id;
if (recycle_bin_.empty()) {
id = static_cast<id_type>(nodes_.size());
nodes_.append();
} else {
id = recycle_bin_.top();
nodes_[id] = DawgNode();
recycle_bin_.pop();
}
return id;
}
//
// Unit of double-array builder.
//
class DoubleArrayBuilderUnit {
public:
DoubleArrayBuilderUnit() : unit_(0) {}
void set_has_leaf(bool has_leaf) {
if (has_leaf) {
unit_ |= 1U << 8;
} else {
unit_ &= ~(1U << 8);
}
}
void set_value(value_type value) {
unit_ = value | (1U << 31);
}
void set_label(uchar_type label) {
unit_ = (unit_ & ~0xFFU) | label;
}
void set_offset(id_type offset) {
if (offset >= 1U << 29) {
DARTS_THROW("failed to modify unit: too large offset");
}
unit_ &= (1U << 31) | (1U << 8) | 0xFF;
if (offset < 1U << 21) {
unit_ |= (offset << 10);
} else {
unit_ |= (offset << 2) | (1U << 9);
}
}
private:
id_type unit_;
// Copyable.
};
//
// Extra unit of double-array builder.
//
class DoubleArrayBuilderExtraUnit {
public:
DoubleArrayBuilderExtraUnit() : prev_(0), next_(0),
is_fixed_(false), is_used_(false) {}
void set_prev(id_type prev) {
prev_ = prev;
}
void set_next(id_type next) {
next_ = next;
}
void set_is_fixed(bool is_fixed) {
is_fixed_ = is_fixed;
}
void set_is_used(bool is_used) {
is_used_ = is_used;
}
id_type prev() const {
return prev_;
}
id_type next() const {
return next_;
}
bool is_fixed() const {
return is_fixed_;
}
bool is_used() const {
return is_used_;
}
private:
id_type prev_;
id_type next_;
bool is_fixed_;
bool is_used_;
// Copyable.
};
//
// DAWG -> double-array converter.
//
class DoubleArrayBuilder {
public:
explicit DoubleArrayBuilder(progress_func_type progress_func)
: progress_func_(progress_func), units_(), extras_(), labels_(),
table_(), extras_head_(0) {}
~DoubleArrayBuilder() {
clear();
}
template <typename T>
void build(const Keyset<T> &keyset);
void copy(std::size_t *size_ptr, DoubleArrayUnit **buf_ptr) const;
void clear();
private:
enum { BLOCK_SIZE = 256 };
enum { NUM_EXTRA_BLOCKS = 16 };
enum { NUM_EXTRAS = BLOCK_SIZE * NUM_EXTRA_BLOCKS };
enum { UPPER_MASK = 0xFF << 21 };
enum { LOWER_MASK = 0xFF };
typedef DoubleArrayBuilderUnit unit_type;
typedef DoubleArrayBuilderExtraUnit extra_type;
progress_func_type progress_func_;
AutoPool<unit_type> units_;
AutoArray<extra_type> extras_;
AutoPool<uchar_type> labels_;
AutoArray<id_type> table_;
id_type extras_head_;
// Disallows copy and assignment.
DoubleArrayBuilder(const DoubleArrayBuilder &);
DoubleArrayBuilder &operator=(const DoubleArrayBuilder &);
std::size_t num_blocks() const {
return units_.size() / BLOCK_SIZE;
}
const extra_type &extras(id_type id) const {
return extras_[id % NUM_EXTRAS];
}
extra_type &extras(id_type id) {
return extras_[id % NUM_EXTRAS];
}
template <typename T>
void build_dawg(const Keyset<T> &keyset, DawgBuilder *dawg_builder);
void build_from_dawg(const DawgBuilder &dawg);
void build_from_dawg(const DawgBuilder &dawg,
id_type dawg_id, id_type dic_id);
id_type arrange_from_dawg(const DawgBuilder &dawg,
id_type dawg_id, id_type dic_id);
template <typename T>
void build_from_keyset(const Keyset<T> &keyset);
template <typename T>
void build_from_keyset(const Keyset<T> &keyset, std::size_t begin,
std::size_t end, std::size_t depth, id_type dic_id);
template <typename T>
id_type arrange_from_keyset(const Keyset<T> &keyset, std::size_t begin,
std::size_t end, std::size_t depth, id_type dic_id);
id_type find_valid_offset(id_type id) const;
bool is_valid_offset(id_type id, id_type offset) const;
void reserve_id(id_type id);
void expand_units();
void fix_all_blocks();
void fix_block(id_type block_id);
};
template <typename T>
void DoubleArrayBuilder::build(const Keyset<T> &keyset) {
if (keyset.has_values()) {
Details::DawgBuilder dawg_builder;
build_dawg(keyset, &dawg_builder);
build_from_dawg(dawg_builder);
dawg_builder.clear();
} else {
build_from_keyset(keyset);
}
}
inline void DoubleArrayBuilder::copy(std::size_t *size_ptr,
DoubleArrayUnit **buf_ptr) const {
if (size_ptr != NULL) {
*size_ptr = units_.size();
}
if (buf_ptr != NULL) {
*buf_ptr = new DoubleArrayUnit[units_.size()];
unit_type *units = reinterpret_cast<unit_type *>(*buf_ptr);
for (std::size_t i = 0; i < units_.size(); ++i) {
units[i] = units_[i];
}
}
}
inline void DoubleArrayBuilder::clear() {
units_.clear();
extras_.clear();
labels_.clear();
table_.clear();
extras_head_ = 0;
}
template <typename T>
void DoubleArrayBuilder::build_dawg(const Keyset<T> &keyset,
DawgBuilder *dawg_builder) {
dawg_builder->init();
for (std::size_t i = 0; i < keyset.num_keys(); ++i) {
dawg_builder->insert(keyset.keys(i), keyset.lengths(i), keyset.values(i));
if (progress_func_ != NULL) {
progress_func_(i + 1, keyset.num_keys() + 1);
}
}
dawg_builder->finish();
}
inline void DoubleArrayBuilder::build_from_dawg(const DawgBuilder &dawg) {
std::size_t num_units = 1;
while (num_units < dawg.size()) {
num_units <<= 1;
}
units_.reserve(num_units);
table_.reset(new id_type[dawg.num_intersections()]);
for (std::size_t i = 0; i < dawg.num_intersections(); ++i) {
table_[i] = 0;
}
extras_.reset(new extra_type[NUM_EXTRAS]);
reserve_id(0);
extras(0).set_is_used(true);
units_[0].set_offset(1);
units_[0].set_label('\0');
if (dawg.child(dawg.root()) != 0) {
build_from_dawg(dawg, dawg.root(), 0);
}
fix_all_blocks();
extras_.clear();
labels_.clear();
table_.clear();
}
inline void DoubleArrayBuilder::build_from_dawg(const DawgBuilder &dawg,
id_type dawg_id, id_type dic_id) {
id_type dawg_child_id = dawg.child(dawg_id);
if (dawg.is_intersection(dawg_child_id)) {
id_type intersection_id = dawg.intersection_id(dawg_child_id);
id_type offset = table_[intersection_id];
if (offset != 0) {
offset ^= dic_id;
if (!(offset & UPPER_MASK) || !(offset & LOWER_MASK)) {
if (dawg.is_leaf(dawg_child_id)) {
units_[dic_id].set_has_leaf(true);
}
units_[dic_id].set_offset(offset);
return;
}
}
}
id_type offset = arrange_from_dawg(dawg, dawg_id, dic_id);
if (dawg.is_intersection(dawg_child_id)) {
table_[dawg.intersection_id(dawg_child_id)] = offset;
}
do {
uchar_type child_label = dawg.label(dawg_child_id);
id_type dic_child_id = offset ^ child_label;
if (child_label != '\0') {
build_from_dawg(dawg, dawg_child_id, dic_child_id);
}
dawg_child_id = dawg.sibling(dawg_child_id);
} while (dawg_child_id != 0);
}
inline id_type DoubleArrayBuilder::arrange_from_dawg(const DawgBuilder &dawg,
id_type dawg_id, id_type dic_id) {
labels_.resize(0);
id_type dawg_child_id = dawg.child(dawg_id);
while (dawg_child_id != 0) {
labels_.append(dawg.label(dawg_child_id));
dawg_child_id = dawg.sibling(dawg_child_id);
}
id_type offset = find_valid_offset(dic_id);
units_[dic_id].set_offset(dic_id ^ offset);
dawg_child_id = dawg.child(dawg_id);
for (std::size_t i = 0; i < labels_.size(); ++i) {
id_type dic_child_id = offset ^ labels_[i];
reserve_id(dic_child_id);
if (dawg.is_leaf(dawg_child_id)) {
units_[dic_id].set_has_leaf(true);
units_[dic_child_id].set_value(dawg.value(dawg_child_id));
} else {
units_[dic_child_id].set_label(labels_[i]);
}
dawg_child_id = dawg.sibling(dawg_child_id);
}
extras(offset).set_is_used(true);
return offset;
}
template <typename T>
void DoubleArrayBuilder::build_from_keyset(const Keyset<T> &keyset) {
std::size_t num_units = 1;
while (num_units < keyset.num_keys()) {
num_units <<= 1;
}
units_.reserve(num_units);
extras_.reset(new extra_type[NUM_EXTRAS]);
reserve_id(0);
extras(0).set_is_used(true);
units_[0].set_offset(1);
units_[0].set_label('\0');
if (keyset.num_keys() > 0) {
build_from_keyset(keyset, 0, keyset.num_keys(), 0, 0);
}
fix_all_blocks();
extras_.clear();
labels_.clear();
}
template <typename T>
void DoubleArrayBuilder::build_from_keyset(const Keyset<T> &keyset,
std::size_t begin, std::size_t end, std::size_t depth, id_type dic_id) {
id_type offset = arrange_from_keyset(keyset, begin, end, depth, dic_id);
while (begin < end) {
if (keyset.keys(begin, depth) != '\0') {
break;
}
++begin;
}
if (begin == end) {
return;
}
std::size_t last_begin = begin;
uchar_type last_label = keyset.keys(begin, depth);
while (++begin < end) {
uchar_type label = keyset.keys(begin, depth);
if (label != last_label) {
build_from_keyset(keyset, last_begin, begin,
depth + 1, offset ^ last_label);
last_begin = begin;
last_label = keyset.keys(begin, depth);
}
}
build_from_keyset(keyset, last_begin, end, depth + 1, offset ^ last_label);
}
template <typename T>
id_type DoubleArrayBuilder::arrange_from_keyset(const Keyset<T> &keyset,
std::size_t begin, std::size_t end, std::size_t depth, id_type dic_id) {
labels_.resize(0);
value_type value = -1;
for (std::size_t i = begin; i < end; ++i) {
uchar_type label = keyset.keys(i, depth);
if (label == '\0') {
if (keyset.has_lengths() && depth < keyset.lengths(i)) {
DARTS_THROW("failed to build double-array: "
"invalid null character");
} else if (keyset.values(i) < 0) {
DARTS_THROW("failed to build double-array: negative value");
}
if (value == -1) {
value = keyset.values(i);
}
if (progress_func_ != NULL) {
progress_func_(i + 1, keyset.num_keys() + 1);
}
}
if (labels_.empty()) {
labels_.append(label);
} else if (label != labels_[labels_.size() - 1]) {
if (label < labels_[labels_.size() - 1]) {
DARTS_THROW("failed to build double-array: wrong key order");
}
labels_.append(label);
}
}
id_type offset = find_valid_offset(dic_id);
units_[dic_id].set_offset(dic_id ^ offset);
for (std::size_t i = 0; i < labels_.size(); ++i) {
id_type dic_child_id = offset ^ labels_[i];
reserve_id(dic_child_id);
if (labels_[i] == '\0') {
units_[dic_id].set_has_leaf(true);
units_[dic_child_id].set_value(value);
} else {
units_[dic_child_id].set_label(labels_[i]);
}
}
extras(offset).set_is_used(true);
return offset;
}
inline id_type DoubleArrayBuilder::find_valid_offset(id_type id) const {
if (extras_head_ >= units_.size()) {
return units_.size() | (id & LOWER_MASK);
}
id_type unfixed_id = extras_head_;
do {
id_type offset = unfixed_id ^ labels_[0];
if (is_valid_offset(id, offset)) {
return offset;
}
unfixed_id = extras(unfixed_id).next();
} while (unfixed_id != extras_head_);
return units_.size() | (id & LOWER_MASK);
}
inline bool DoubleArrayBuilder::is_valid_offset(id_type id,
id_type offset) const {
if (extras(offset).is_used()) {
return false;
}
id_type rel_offset = id ^ offset;
if ((rel_offset & LOWER_MASK) && (rel_offset & UPPER_MASK)) {
return false;
}
for (std::size_t i = 1; i < labels_.size(); ++i) {
if (extras(offset ^ labels_[i]).is_fixed()) {
return false;
}
}
return true;
}
inline void DoubleArrayBuilder::reserve_id(id_type id) {
if (id >= units_.size()) {
expand_units();
}
if (id == extras_head_) {
extras_head_ = extras(id).next();
if (extras_head_ == id) {
extras_head_ = units_.size();
}
}
extras(extras(id).prev()).set_next(extras(id).next());
extras(extras(id).next()).set_prev(extras(id).prev());
extras(id).set_is_fixed(true);
}
inline void DoubleArrayBuilder::expand_units() {
id_type src_num_units = units_.size();
id_type src_num_blocks = num_blocks();
id_type dest_num_units = src_num_units + BLOCK_SIZE;
id_type dest_num_blocks = src_num_blocks + 1;
if (dest_num_blocks > NUM_EXTRA_BLOCKS) {
fix_block(src_num_blocks - NUM_EXTRA_BLOCKS);
}
units_.resize(dest_num_units);
if (dest_num_blocks > NUM_EXTRA_BLOCKS) {
for (std::size_t id = src_num_units; id < dest_num_units; ++id) {
extras(id).set_is_used(false);
extras(id).set_is_fixed(false);
}
}
for (id_type i = src_num_units + 1; i < dest_num_units; ++i) {
extras(i - 1).set_next(i);
extras(i).set_prev(i - 1);
}
extras(src_num_units).set_prev(dest_num_units - 1);
extras(dest_num_units - 1).set_next(src_num_units);
extras(src_num_units).set_prev(extras(extras_head_).prev());
extras(dest_num_units - 1).set_next(extras_head_);
extras(extras(extras_head_).prev()).set_next(src_num_units);
extras(extras_head_).set_prev(dest_num_units - 1);
}
inline void DoubleArrayBuilder::fix_all_blocks() {
id_type begin = 0;
if (num_blocks() > NUM_EXTRA_BLOCKS) {
begin = num_blocks() - NUM_EXTRA_BLOCKS;
}
id_type end = num_blocks();
for (id_type block_id = begin; block_id != end; ++block_id) {
fix_block(block_id);
}
}
inline void DoubleArrayBuilder::fix_block(id_type block_id) {
id_type begin = block_id * BLOCK_SIZE;
id_type end = begin + BLOCK_SIZE;
id_type unused_offset = 0;
for (id_type offset = begin; offset != end; ++offset) {
if (!extras(offset).is_used()) {
unused_offset = offset;
break;
}
}
for (id_type id = begin; id != end; ++id) {
if (!extras(id).is_fixed()) {
reserve_id(id);
units_[id].set_label(static_cast<uchar_type>(id ^ unused_offset));
}
}
}
} // namespace Details
//
// Member function build() of DoubleArrayImpl.
//
template <typename A, typename B, typename T, typename C>
int DoubleArrayImpl<A, B, T, C>::build(std::size_t num_keys,
const key_type * const *keys, const std::size_t *lengths,
const value_type *values, Details::progress_func_type progress_func) {
Details::Keyset<value_type> keyset(num_keys, keys, lengths, values);
Details::DoubleArrayBuilder builder(progress_func);
builder.build(keyset);
std::size_t size = 0;
unit_type *buf = NULL;
builder.copy(&size, &buf);
clear();
size_ = size;
array_ = buf;
buf_ = buf;
if (progress_func != NULL) {
progress_func(num_keys + 1, num_keys + 1);
}
return 0;
}
} // namespace Darts
#undef DARTS_INT_TO_STR
#undef DARTS_LINE_TO_STR
#undef DARTS_LINE_STR
#undef DARTS_THROW
#endif // DARTS_H_
|