|
#include "clamp.cuh" |
|
|
|
static __device__ __forceinline__ float op_clamp(float x, float min, float max) { |
|
return fminf(fmaxf(x, min), max); |
|
} |
|
|
|
template <class T> |
|
static __global__ void op_clamp_kernel(const T * x, T * dst, const T min, const T max, const int k) { |
|
const int i = blockDim.x*blockIdx.x + threadIdx.x; |
|
|
|
if (i >= k) { |
|
return; |
|
} |
|
|
|
dst[i] = (T)op_clamp((float)x[i], (float)min, (float)max); |
|
} |
|
|
|
template <class T> |
|
static void clamp_cuda(const T * x, T * dst, const T min, const T max, const int k, cudaStream_t stream) { |
|
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE; |
|
op_clamp_kernel<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k); |
|
} |
|
|
|
|
|
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
|
const ggml_tensor * src0 = dst->src[0]; |
|
const void * src0_d = src0->data; |
|
void * dst_d = dst->data; |
|
cudaStream_t stream = ctx.stream(); |
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); |
|
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); |
|
GGML_ASSERT(src0->type == dst->type); |
|
|
|
float min; |
|
float max; |
|
memcpy(&min, dst->op_params, sizeof(float)); |
|
memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); |
|
|
|
if (src0->type == GGML_TYPE_F16) { |
|
clamp_cuda((const half *)src0_d, (half *)dst_d, (half)min, (half)max, ggml_nelements(src0), stream); |
|
} else { |
|
clamp_cuda((const float *)src0_d, (float *)dst_d, (float)min, (float)max, ggml_nelements(src0), stream); |
|
} |
|
} |
|
|