|
#include <cstddef> |
|
#include <cstdint> |
|
#include <stdint.h> |
|
#include <stdio.h> |
|
#include <atomic> |
|
|
|
#if defined(GGML_USE_HIP) |
|
#include <hip/hip_runtime.h> |
|
#include <hipblas/hipblas.h> |
|
#include <hip/hip_fp16.h> |
|
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F |
|
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F |
|
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT |
|
#define CUBLAS_OP_N HIPBLAS_OP_N |
|
#define CUBLAS_OP_T HIPBLAS_OP_T |
|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS |
|
#define CUBLAS_TF32_TENSOR_OP_MATH 0 |
|
#define CUDA_R_16F HIPBLAS_R_16F |
|
#define CUDA_R_32F HIPBLAS_R_32F |
|
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width) |
|
#define cublasCreate hipblasCreate |
|
#define cublasGemmEx hipblasGemmEx |
|
#define cublasHandle_t hipblasHandle_t |
|
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS |
|
#define cublasSetStream hipblasSetStream |
|
#define cublasSgemm hipblasSgemm |
|
#define cublasStatus_t hipblasStatus_t |
|
#define cudaDeviceProp hipDeviceProp_t |
|
#define cudaDeviceSynchronize hipDeviceSynchronize |
|
#define cudaError_t hipError_t |
|
#define cudaEventCreateWithFlags hipEventCreateWithFlags |
|
#define cudaEventDisableTiming hipEventDisableTiming |
|
#define cudaEventRecord hipEventRecord |
|
#define cudaEvent_t hipEvent_t |
|
#define cudaFree hipFree |
|
#define cudaFreeHost hipHostFree |
|
#define cudaGetDevice hipGetDevice |
|
#define cudaGetDeviceCount hipGetDeviceCount |
|
#define cudaGetDeviceProperties hipGetDeviceProperties |
|
#define cudaGetErrorString hipGetErrorString |
|
#define cudaGetLastError hipGetLastError |
|
#define cudaMalloc hipMalloc |
|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault) |
|
#define cudaMemcpy hipMemcpy |
|
#define cudaMemcpy2DAsync hipMemcpy2DAsync |
|
#define cudaMemcpyAsync hipMemcpyAsync |
|
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice |
|
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost |
|
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice |
|
#define cudaMemcpyKind hipMemcpyKind |
|
#define cudaMemset hipMemset |
|
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize |
|
#define cudaSetDevice hipSetDevice |
|
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags |
|
#define cudaStreamNonBlocking hipStreamNonBlocking |
|
#define cudaStreamSynchronize hipStreamSynchronize |
|
#define cudaStreamWaitEvent hipStreamWaitEvent |
|
#define cudaStream_t hipStream_t |
|
#define cudaSuccess hipSuccess |
|
#else |
|
#include <cuda_runtime.h> |
|
#include <cublas_v2.h> |
|
#include <cuda_fp16.h> |
|
#endif |
|
|
|
#include "ggml_v2-cuda-legacy.h" |
|
#include "ggml_v2-cuda.h" |
|
#include "ggml_v2.h" |
|
|
|
static_assert(sizeof(half) == sizeof(ggml_v2_fp16_t), "wrong fp16 size"); |
|
|
|
#define CUDA_CHECK(err) \ |
|
do { \ |
|
cudaError_t err_ = (err); \ |
|
if (err_ != cudaSuccess) { \ |
|
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ |
|
cudaGetErrorString(err_)); \ |
|
exit(1); \ |
|
} \ |
|
} while (0) |
|
|
|
#define CUBLAS_CHECK(err) \ |
|
do { \ |
|
cublasStatus_t err_ = (err); \ |
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \ |
|
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ |
|
exit(1); \ |
|
} \ |
|
} while (0) |
|
|
|
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); |
|
|
|
#define QK4_0 32 |
|
typedef struct { |
|
float d; |
|
uint8_t qs[QK4_0 / 2]; |
|
} block_q4_0; |
|
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); |
|
|
|
#define QK4_1 32 |
|
typedef struct { |
|
float d; |
|
float m; |
|
uint8_t qs[QK4_1 / 2]; |
|
} block_q4_1; |
|
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); |
|
|
|
#define QK4_2 16 |
|
typedef struct { |
|
half d; |
|
uint8_t qs[QK4_2 / 2]; |
|
} block_q4_2; |
|
static_assert(sizeof(block_q4_2) == sizeof(ggml_v2_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); |
|
|
|
#define QK4_3 16 |
|
typedef struct { |
|
__half d; |
|
__half m; |
|
uint8_t qs[QK4_3 / 2]; |
|
} block_q4_3; |
|
static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_v2_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding"); |
|
|
|
#define QK5_0 32 |
|
typedef struct { |
|
half d; |
|
uint8_t qh[4]; |
|
uint8_t qs[QK5_0 / 2]; |
|
} block_q5_0; |
|
static_assert(sizeof(block_q5_0) == sizeof(ggml_v2_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); |
|
|
|
#define QK5_1 32 |
|
typedef struct { |
|
half d; |
|
half m; |
|
uint8_t qh[4]; |
|
uint8_t qs[QK5_1 / 2]; |
|
} block_q5_1; |
|
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_v2_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); |
|
|
|
#define QK8_0 32 |
|
typedef struct { |
|
float d; |
|
int8_t qs[QK8_0]; |
|
} block_q8_0; |
|
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); |
|
|
|
static __global__ void dequantize_block_q4_0(const void * vx, float * y) { |
|
const block_q4_0 * x = (const block_q4_0 *) vx; |
|
|
|
const int i = blockIdx.x; |
|
|
|
const float d = x[i].d; |
|
|
|
const uint8_t * pp = x[i].qs; |
|
|
|
for (int l = 0; l < QK4_0; l += 2) { |
|
const uint8_t vi = pp[l/2]; |
|
|
|
const int8_t vi0 = vi & 0xf; |
|
const int8_t vi1 = vi >> 4; |
|
|
|
const float v0 = (vi0 - 8)*d; |
|
const float v1 = (vi1 - 8)*d; |
|
|
|
y[i*QK4_0 + l + 0] = v0; |
|
y[i*QK4_0 + l + 1] = v1; |
|
} |
|
} |
|
|
|
static __global__ void dequantize_block_q4_1(const void * vx, float * y) { |
|
const block_q4_1 * x = (const block_q4_1 *) vx; |
|
|
|
const int i = blockIdx.x; |
|
|
|
const float d = x[i].d; |
|
const float m = x[i].m; |
|
|
|
const uint8_t * pp = x[i].qs; |
|
|
|
for (int l = 0; l < QK4_1; l += 2) { |
|
const uint8_t vi = pp[l/2]; |
|
|
|
const int8_t vi0 = vi & 0xf; |
|
const int8_t vi1 = vi >> 4; |
|
|
|
const float v0 = vi0*d + m; |
|
const float v1 = vi1*d + m; |
|
|
|
y[i*QK4_1 + l + 0] = v0; |
|
y[i*QK4_1 + l + 1] = v1; |
|
} |
|
} |
|
|
|
static __global__ void dequantize_block_q4_2(const void * vx, float * y) { |
|
const block_q4_2 * x = (const block_q4_2 *) vx; |
|
|
|
const int i = blockIdx.x; |
|
|
|
const float d = x[i].d; |
|
|
|
const uint8_t * pp = x[i].qs; |
|
|
|
for (int l = 0; l < QK4_2; l += 2) { |
|
const uint8_t vi = pp[l/2]; |
|
|
|
const int8_t vi0 = vi & 0xf; |
|
const int8_t vi1 = vi >> 4; |
|
|
|
const float v0 = (vi0 - 8)*d; |
|
const float v1 = (vi1 - 8)*d; |
|
|
|
y[i*QK4_2 + l + 0] = v0; |
|
y[i*QK4_2 + l + 1] = v1; |
|
} |
|
} |
|
|
|
static __global__ void dequantize_block_q4_3(const void * vx, float * y) { |
|
const block_q4_3 * x = (const block_q4_3 *) vx; |
|
|
|
const int i = blockIdx.x; |
|
|
|
const float d = x[i].d; |
|
const float m = x[i].m; |
|
|
|
const uint8_t * pp = x[i].qs; |
|
|
|
for (int l = 0; l < QK4_3; l += 2) { |
|
const uint8_t vi = pp[l/2]; |
|
|
|
const int8_t vi0 = vi & 0xf; |
|
const int8_t vi1 = vi >> 4; |
|
|
|
const float v0 = vi0*d + m; |
|
const float v1 = vi1*d + m; |
|
|
|
y[i*QK4_3 + l + 0] = v0; |
|
y[i*QK4_3 + l + 1] = v1; |
|
} |
|
} |
|
|
|
static __global__ void dequantize_block_q5_0(const void * vx, float * y) { |
|
const block_q5_0 * x = (const block_q5_0 *) vx; |
|
|
|
const int i = blockIdx.x; |
|
|
|
const float d = x[i].d; |
|
|
|
const uint8_t * pp = x[i].qs; |
|
|
|
uint32_t qh; |
|
memcpy(&qh, x[i].qh, sizeof(qh)); |
|
|
|
for (int l = 0; l < QK5_0; l += 2) { |
|
const uint8_t vi = pp[l/2]; |
|
|
|
const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4; |
|
const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4; |
|
|
|
const int8_t vi0 = ((vi & 0xf) | vh0); |
|
const int8_t vi1 = ((vi >> 4) | vh1); |
|
|
|
const float v0 = (vi0 - 16)*d; |
|
const float v1 = (vi1 - 16)*d; |
|
|
|
y[i*QK5_0 + l + 0] = v0; |
|
y[i*QK5_0 + l + 1] = v1; |
|
} |
|
} |
|
|
|
static __global__ void dequantize_block_q5_1(const void * vx, float * y) { |
|
const block_q5_1 * x = (const block_q5_1 *) vx; |
|
|
|
const int i = blockIdx.x; |
|
|
|
const float d = x[i].d; |
|
const float m = x[i].m; |
|
|
|
const uint8_t * pp = x[i].qs; |
|
|
|
uint32_t qh; |
|
memcpy(&qh, x[i].qh, sizeof(qh)); |
|
|
|
for (int l = 0; l < QK5_1; l += 2) { |
|
const uint8_t vi = pp[l/2]; |
|
|
|
const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4; |
|
const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4; |
|
|
|
const int8_t vi0 = (vi & 0xf) | vh0; |
|
const int8_t vi1 = (vi >> 4) | vh1; |
|
|
|
const float v0 = vi0*d + m; |
|
const float v1 = vi1*d + m; |
|
|
|
y[i*QK5_1 + l + 0] = v0; |
|
y[i*QK5_1 + l + 1] = v1; |
|
} |
|
} |
|
|
|
static __global__ void dequantize_block_q8_0(const void * vx, float * y) { |
|
const block_q8_0 * x = (const block_q8_0 *) vx; |
|
|
|
const int i = blockIdx.x; |
|
|
|
const float d = x[i].d; |
|
|
|
const int8_t * pp = x[i].qs; |
|
|
|
for (int l = 0; l < QK8_0; l++) { |
|
const int8_t vi = pp[l]; |
|
|
|
y[i*QK8_0 + l] = vi*d; |
|
} |
|
} |
|
|
|
static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { |
|
const int nb = k / QK4_0; |
|
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y); |
|
} |
|
|
|
static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { |
|
const int nb = k / QK4_1; |
|
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y); |
|
} |
|
|
|
static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) { |
|
const int nb = k / QK4_2; |
|
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y); |
|
} |
|
|
|
void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream) { |
|
const int nb = k / QK4_3; |
|
dequantize_block_q4_3<<<nb, 1, 0, stream>>>(vx, y); |
|
} |
|
|
|
static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { |
|
const int nb = k / QK5_0; |
|
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y); |
|
} |
|
|
|
static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { |
|
const int nb = k / QK5_1; |
|
dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y); |
|
} |
|
|
|
static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { |
|
const int nb = k / QK8_0; |
|
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y); |
|
} |
|
|
|
|
|
static __global__ void convert_fp16_to_fp32(const void * vx, float * y) { |
|
const half * x = (const half *) vx; |
|
|
|
const int i = blockIdx.x; |
|
|
|
y[i] = __half2float(x[i]); |
|
} |
|
|
|
static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) { |
|
convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y); |
|
} |
|
|
|
static to_fp32_cuda_t ggml_v2_get_to_fp32_cuda(ggml_v2_type type) { |
|
switch (type) { |
|
case GGML_V2_TYPE_Q4_0: |
|
return dequantize_row_q4_0_cuda; |
|
case GGML_V2_TYPE_Q4_1: |
|
return dequantize_row_q4_1_cuda; |
|
case GGML_V2_TYPE_Q4_2: |
|
return dequantize_row_q4_2_cuda; |
|
case GGML_V2_TYPE_Q4_3: |
|
return dequantize_row_q4_3_cuda; |
|
case GGML_V2_TYPE_Q5_0: |
|
return dequantize_row_q5_0_cuda; |
|
case GGML_V2_TYPE_Q5_1: |
|
return dequantize_row_q5_1_cuda; |
|
case GGML_V2_TYPE_Q8_0: |
|
return dequantize_row_q8_0_cuda; |
|
case GGML_V2_TYPE_F16: |
|
return convert_fp16_to_fp32_cuda; |
|
default: |
|
return nullptr; |
|
} |
|
} |
|
|
|
|
|
#define MAX_CUDA_BUFFERS_V2 16 |
|
|
|
struct scoped_spin_lock { |
|
std::atomic_flag& lock; |
|
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { |
|
while (lock.test_and_set(std::memory_order_acquire)) { |
|
; |
|
} |
|
} |
|
~scoped_spin_lock() { |
|
lock.clear(std::memory_order_release); |
|
} |
|
scoped_spin_lock(const scoped_spin_lock&) = delete; |
|
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; |
|
}; |
|
|
|
struct cuda_buffer { |
|
void * ptr = nullptr; |
|
size_t size = 0; |
|
}; |
|
|
|
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS_V2]; |
|
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; |
|
|
|
static void * ggml_v2_cuda_pool_malloc(size_t size, size_t * actual_size) { |
|
scoped_spin_lock lock(g_cuda_pool_lock); |
|
|
|
for (int i = 0; i < MAX_CUDA_BUFFERS_V2; ++i) { |
|
cuda_buffer& b = g_cuda_buffer_pool[i]; |
|
if (b.size >= size && b.ptr != nullptr) { |
|
void * ptr = b.ptr; |
|
*actual_size = b.size; |
|
b.ptr = nullptr; |
|
b.size = 0; |
|
return ptr; |
|
} |
|
} |
|
void * ptr; |
|
CUDA_CHECK(cudaMalloc((void **) &ptr, size)); |
|
*actual_size = size; |
|
return ptr; |
|
} |
|
|
|
static void ggml_v2_cuda_pool_free(void * ptr, size_t size) { |
|
scoped_spin_lock lock(g_cuda_pool_lock); |
|
|
|
for (int i = 0; i < MAX_CUDA_BUFFERS_V2; ++i) { |
|
cuda_buffer& b = g_cuda_buffer_pool[i]; |
|
if (b.ptr == nullptr) { |
|
b.ptr = ptr; |
|
b.size = size; |
|
return; |
|
} |
|
} |
|
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS_V2\n"); |
|
CUDA_CHECK(cudaFree(ptr)); |
|
} |
|
|
|
#define GGML_V2_CUDA_MAX_STREAMS 8 |
|
#define GGML_V2_CUDA_MAX_EVENTS 64 |
|
static cublasHandle_t g_cublasH = nullptr; |
|
static cudaStream_t g_cudaStreams[GGML_V2_CUDA_MAX_STREAMS] = { nullptr }; |
|
static cudaStream_t g_cudaStreams2[GGML_V2_CUDA_MAX_STREAMS] = { nullptr }; |
|
static cudaEvent_t g_cudaEvents[GGML_V2_CUDA_MAX_EVENTS] = { nullptr }; |
|
|
|
void ggml_v2_init_cublas_legacy() { |
|
if (g_cublasH == nullptr) { |
|
|
|
for (int i = 0; i < GGML_V2_CUDA_MAX_STREAMS; ++i) { |
|
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking)); |
|
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking)); |
|
} |
|
|
|
for (int i = 0; i < GGML_V2_CUDA_MAX_EVENTS; ++i) { |
|
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming)); |
|
} |
|
|
|
|
|
CUBLAS_CHECK(cublasCreate(&g_cublasH)); |
|
CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH)); |
|
|
|
|
|
|
|
} |
|
} |
|
|
|
|
|
|
|
static cudaError_t ggml_v2_cuda_h2d_tensor_2d(void * dst, const struct ggml_v2_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { |
|
const uint64_t ne0 = src->ne[0]; |
|
const uint64_t ne1 = src->ne[1]; |
|
const uint64_t nb0 = src->nb[0]; |
|
const uint64_t nb1 = src->nb[1]; |
|
const uint64_t nb2 = src->nb[2]; |
|
const uint64_t nb3 = src->nb[3]; |
|
const enum ggml_v2_type type = src->type; |
|
const size_t ts = ggml_v2_type_size(type); |
|
const size_t bs = ggml_v2_blck_size(type); |
|
|
|
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); |
|
if (nb0 == ts && nb1 == ts*ne0/bs) { |
|
return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream); |
|
} else if (nb0 == ts) { |
|
return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream); |
|
} else { |
|
for (uint64_t i1 = 0; i1 < ne1; i1++) { |
|
const void * rx = (const void *) ((const char *) x + i1*nb1); |
|
void * rd = (void *) ((char *) dst + i1*ts*ne0/bs); |
|
|
|
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); |
|
if (r != cudaSuccess) return r; |
|
} |
|
return cudaSuccess; |
|
} |
|
} |
|
|
|
static void ggml_v2_cuda_mul_mat_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) { |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
|
|
const float alpha = 1.0f; |
|
const float beta = 0.0f; |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
const int n_mm = ne03 * ne02; |
|
|
|
size_t x_size, y_size, d_size; |
|
float * d_X = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); |
|
float * d_Y = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); |
|
float * d_D = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
int i = i03*ne02 + i02; |
|
cudaStream_t cudaStream = g_cudaStreams[i % GGML_V2_CUDA_MAX_STREAMS]; |
|
|
|
float * c_X = d_X + i * x_ne; |
|
float * c_Y = d_Y + i * y_ne; |
|
float * c_D = d_D + i * d_ne; |
|
|
|
|
|
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); |
|
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); |
|
|
|
|
|
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); |
|
CUBLAS_CHECK( |
|
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, |
|
ne01, ne11, ne10, |
|
&alpha, c_X, ne00, |
|
c_Y, ne10, |
|
&beta, c_D, ne01)); |
|
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |
|
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); |
|
} |
|
} |
|
|
|
CUDA_CHECK(cudaDeviceSynchronize()); |
|
ggml_v2_cuda_pool_free(d_X, x_size); |
|
ggml_v2_cuda_pool_free(d_Y, y_size); |
|
ggml_v2_cuda_pool_free(d_D, d_size); |
|
} |
|
|
|
static void ggml_v2_cuda_mul_mat_f16(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst, void * wdata, size_t ) { |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
|
|
const int nb10 = src1->nb[0]; |
|
const int nb11 = src1->nb[1]; |
|
const int nb12 = src1->nb[2]; |
|
const int nb13 = src1->nb[3]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
|
|
const float alpha = 1.0f; |
|
const float beta = 0.0f; |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
const int n_mm = ne03 * ne02; |
|
|
|
size_t x_size, y_size, d_size; |
|
half * d_X = (half *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size); |
|
half * d_Y = (half *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size); |
|
float * d_D = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); |
|
|
|
bool src1_cont_rows = nb10 == sizeof(float); |
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
int i = i03*ne02 + i02; |
|
cudaStream_t cudaStream = g_cudaStreams[i % GGML_V2_CUDA_MAX_STREAMS]; |
|
|
|
half * c_X = d_X + i * x_ne; |
|
half * c_Y = d_Y + i * y_ne; |
|
float * c_D = d_D + i * d_ne; |
|
|
|
|
|
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); |
|
|
|
|
|
|
|
ggml_v2_fp16_t * const tmp = (ggml_v2_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); |
|
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; |
|
if (src1_cont_rows) { |
|
if (src1_cont_cols) { |
|
ggml_v2_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); |
|
} |
|
else { |
|
for (int64_t i01 = 0; i01 < ne11; i01++) { |
|
ggml_v2_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); |
|
} |
|
} |
|
} |
|
else { |
|
for (int64_t i01 = 0; i01 < ne11; i01++) { |
|
for (int64_t i00 = 0; i00 < ne10; i00++) { |
|
|
|
tmp[i01*ne10 + i00] = ggml_v2_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); |
|
} |
|
} |
|
} |
|
|
|
|
|
CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream)); |
|
|
|
|
|
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); |
|
CUBLAS_CHECK( |
|
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, |
|
ne01, ne11, ne10, |
|
&alpha, c_X, CUDA_R_16F, ne00, |
|
c_Y, CUDA_R_16F, ne10, |
|
&beta, c_D, CUDA_R_32F, ne01, |
|
CUBLAS_COMPUTE_32F_FAST_16F, |
|
CUBLAS_GEMM_DEFAULT)); |
|
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |
|
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); |
|
} |
|
} |
|
|
|
CUDA_CHECK(cudaDeviceSynchronize()); |
|
ggml_v2_cuda_pool_free(d_X, x_size); |
|
ggml_v2_cuda_pool_free(d_Y, y_size); |
|
ggml_v2_cuda_pool_free(d_D, d_size); |
|
} |
|
|
|
static void ggml_v2_cuda_mul_mat_q_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) { |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
const ggml_v2_type type = src0->type; |
|
|
|
const float alpha = 1.0f; |
|
const float beta = 0.0f; |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
const int n_mm = ne03 * ne02; |
|
const size_t q_sz = ggml_v2_type_size(type) * x_ne / ggml_v2_blck_size(type); |
|
|
|
size_t x_size, y_size, d_size, q_size; |
|
float * d_X = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); |
|
float * d_Y = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); |
|
float * d_D = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); |
|
char * d_Q = (char *) ggml_v2_cuda_pool_malloc(n_mm * q_sz, &q_size); |
|
|
|
const to_fp32_cuda_t to_fp32_cuda = ggml_v2_get_to_fp32_cuda(type); |
|
GGML_V2_ASSERT(to_fp32_cuda != nullptr); |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
int i = i03*ne02 + i02; |
|
cudaStream_t cudaStream = g_cudaStreams[i % GGML_V2_CUDA_MAX_STREAMS]; |
|
cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_V2_CUDA_MAX_STREAMS]; |
|
cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_V2_CUDA_MAX_EVENTS]; |
|
|
|
float * c_X = d_X + i * x_ne; |
|
float * c_Y = d_Y + i * y_ne; |
|
float * c_D = d_D + i * d_ne; |
|
char * c_Q = d_Q + i * q_sz; |
|
|
|
|
|
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2)); |
|
to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2); |
|
CUDA_CHECK(cudaGetLastError()); |
|
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); |
|
|
|
|
|
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); |
|
|
|
|
|
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); |
|
|
|
|
|
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); |
|
CUBLAS_CHECK( |
|
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, |
|
ne01, ne11, ne10, |
|
&alpha, c_X, ne00, |
|
c_Y, ne10, |
|
&beta, c_D, ne01)); |
|
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |
|
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); |
|
} |
|
} |
|
|
|
CUDA_CHECK(cudaDeviceSynchronize()); |
|
ggml_v2_cuda_pool_free(d_X, x_size); |
|
ggml_v2_cuda_pool_free(d_Y, y_size); |
|
ggml_v2_cuda_pool_free(d_D, d_size); |
|
ggml_v2_cuda_pool_free(d_Q, q_size); |
|
} |
|
|
|
static bool ggml_v2_cuda_mul_mat_use_f16(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * ) { |
|
size_t src0_sz = ggml_v2_nbytes(src0); |
|
size_t src1_sz = ggml_v2_nbytes(src1); |
|
|
|
|
|
size_t mul_mat_q_transfer = src0_sz + src1_sz; |
|
|
|
|
|
size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_v2_nelements(src1); |
|
|
|
|
|
|
|
return mul_mat_f16_transfer < mul_mat_q_transfer; |
|
} |
|
|
|
void ggml_v2_cuda_mul_mat_legacy(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst, void * wdata, size_t wsize) { |
|
GGML_V2_ASSERT(ggml_v2_cuda_can_mul_mat(src0, src1, dst)); |
|
|
|
if (src0->type == GGML_V2_TYPE_F32) { |
|
ggml_v2_cuda_mul_mat_f32(src0, src1, dst); |
|
} |
|
else if (src0->type == GGML_V2_TYPE_F16) { |
|
if (ggml_v2_cuda_mul_mat_use_f16(src0, src1, dst)) { |
|
ggml_v2_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize); |
|
} |
|
else { |
|
ggml_v2_cuda_mul_mat_q_f32(src0, src1, dst); |
|
} |
|
} |
|
else if (ggml_v2_is_quantized(src0->type)) { |
|
ggml_v2_cuda_mul_mat_q_f32(src0, src1, dst); |
|
} |
|
else { |
|
GGML_V2_ASSERT(false); |
|
} |
|
} |
|
|
|
|