|
#include "ggml_v2-opencl.h" |
|
|
|
#include <array> |
|
#include <atomic> |
|
#include <sstream> |
|
|
|
#define CL_TARGET_OPENCL_VERSION 110 |
|
#include <clblast.h> |
|
#include <clblast_c.h> |
|
|
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <string.h> |
|
|
|
#include "ggml_v2.h" |
|
|
|
#define CL_DMMV_BLOCK_SIZE 32; |
|
|
|
#define MULTILINE_QUOTE(...) #__VA_ARGS__ |
|
static std::string program_source = MULTILINE_QUOTE( |
|
|
|
typedef char int8_t; |
|
typedef uchar uint8_t; |
|
typedef int int32_t; |
|
typedef uint uint32_t; |
|
|
|
struct block_q4_0 |
|
{ |
|
float d; |
|
uint8_t qs[16]; |
|
}; |
|
|
|
struct block_q4_1 |
|
{ |
|
float d; |
|
float m; |
|
uint8_t qs[16]; |
|
}; |
|
|
|
struct __attribute__ ((packed)) block_q5_0 |
|
{ |
|
half d; |
|
uint32_t qh; |
|
uint8_t qs[16]; |
|
}; |
|
|
|
struct block_q5_1 |
|
{ |
|
half d; |
|
half m; |
|
uint32_t qh; |
|
uint8_t qs[16]; |
|
}; |
|
|
|
struct block_q8_0 |
|
{ |
|
float d; |
|
uint8_t qs[32]; |
|
}; |
|
|
|
|
|
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) { |
|
const uint i = get_global_id(0); |
|
|
|
y[i] = vload_half(0, &x[i]); |
|
} |
|
|
|
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = x[ib].d; |
|
|
|
const uint8_t vui = x[ib].qs[iqs]; |
|
|
|
const int8_t vi0 = vui & 0xF; |
|
const int8_t vi1 = vui >> 4; |
|
|
|
*v0 = (vi0 - 8)*d; |
|
*v1 = (vi1 - 8)*d; |
|
} |
|
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = x[ib].d; |
|
const float m = x[ib].m; |
|
|
|
const uint8_t vui = x[ib].qs[iqs]; |
|
|
|
const int8_t vi0 = vui & 0xF; |
|
const int8_t vi1 = vui >> 4; |
|
|
|
*v0 = vi0*d + m; |
|
*v1 = vi1*d + m; |
|
} |
|
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = vload_half(0, (__global half*) &x[ib].d); |
|
|
|
uint32_t qh = x[ib].qh; |
|
|
|
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; |
|
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; |
|
|
|
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; |
|
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; |
|
|
|
*v0 = x0*d; |
|
*v1 = x1*d; |
|
} |
|
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = vload_half(0, (__global half*) &x[ib].d); |
|
const float m = vload_half(0, (__global half*) &x[ib].m); |
|
|
|
uint32_t qh = x[ib].qh; |
|
|
|
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; |
|
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; |
|
|
|
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); |
|
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); |
|
|
|
*v0 = x0*d + m; |
|
*v1 = x1*d + m; |
|
} |
|
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = x[ib].d; |
|
|
|
const int8_t vi0 = x[ib].qs[iqs + 0]; |
|
const int8_t vi1 = x[ib].qs[iqs + 1]; |
|
|
|
*v0 = vi0*d; |
|
*v1 = vi1*d; |
|
} |
|
static void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){ |
|
*v0 = vload_half(0, &x[ib + 0]); |
|
*v1 = vload_half(0, &x[ib + 1]); |
|
} |
|
); |
|
|
|
static std::string dequant_template = MULTILINE_QUOTE( |
|
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { |
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2; |
|
|
|
if (i >= get_global_size(0)) { |
|
return; |
|
} |
|
|
|
const uint qk = QUANT_K; |
|
const uint qr = QUANT_R; |
|
|
|
const int ib = i/qk; |
|
const int iqs = (i%qk)/qr; |
|
const int iybs = i - i%qk; |
|
const int y_offset = qr == 1 ? 1 : qk/2; |
|
|
|
|
|
float v0, v1; |
|
DEQUANT_FUNC(x, ib, iqs, &v0, &v1); |
|
y[iybs + iqs + 0] = v0; |
|
y[iybs + iqs + y_offset] = v1; |
|
} |
|
); |
|
|
|
static std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( |
|
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { |
|
const int block_size = get_local_size(0); |
|
const int row = get_global_id(0) / block_size; |
|
const int tid = get_local_id(0); |
|
|
|
const uint qk = QUANT_K; |
|
const uint qr = QUANT_R; |
|
|
|
const int y_offset = qr == 1 ? 1 : qk/2; |
|
|
|
tmp[tid] = 0; |
|
|
|
for (int i = 0; i < ncols/block_size; i += 2) { |
|
const int col = i*block_size + 2*tid; |
|
const int ib = (row*ncols + col)/qk; |
|
const int iqs = (col%qk)/qr; |
|
const int iybs = col - col%qk; |
|
|
|
|
|
float v0, v1; |
|
DEQUANT_FUNC(x, ib, iqs, &v0, &v1); |
|
|
|
|
|
tmp[tid] += v0 * y[iybs + iqs + 0]; |
|
tmp[tid] += v1 * y[iybs + iqs + y_offset]; |
|
} |
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
for (int s=block_size/2; s>0; s>>=1) { |
|
if (tid < s) { |
|
tmp[tid] += tmp[tid + s]; |
|
} |
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
} |
|
if (tid == 0) { |
|
dst[row] = tmp[0]; |
|
} |
|
} |
|
); |
|
|
|
static std::array<std::string, 5> dequant_str_keys = { |
|
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC" |
|
}; |
|
|
|
static std::array<std::string, 30> dequant_str_values = { |
|
"dequantize_row_q4_0", "struct block_q4_0", "32", "2", "dequantize_q4_0", |
|
"dequantize_row_q4_1", "struct block_q4_1", "32", "2", "dequantize_q4_1", |
|
"dequantize_row_q5_0", "struct block_q5_0", "32", "2", "dequantize_q5_0", |
|
"dequantize_row_q5_1", "struct block_q5_1", "32", "2", "dequantize_q5_1", |
|
"dequantize_row_q8_0", "struct block_q8_0", "32", "1", "dequantize_q8_0", |
|
"convert_row_f16", "half", "1", "1", "convert_f16" |
|
}; |
|
|
|
static std::array<std::string, 30> dequant_mul_mat_vec_str_values = { |
|
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "32", "2", "dequantize_q4_0", |
|
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "32", "2", "dequantize_q4_1", |
|
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "32", "2", "dequantize_q5_0", |
|
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "32", "2", "dequantize_q5_1", |
|
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "32", "1", "dequantize_q8_0", |
|
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" |
|
}; |
|
|
|
static std::string& sreplace2(std::string& s, const std::string& from, const std::string& to) { |
|
size_t pos = 0; |
|
while ((pos = s.find(from, pos)) != std::string::npos) { |
|
s.replace(pos, from.length(), to); |
|
pos += to.length(); |
|
} |
|
return s; |
|
} |
|
|
|
static std::string generate_kernels() { |
|
std::stringstream src; |
|
src << program_source << '\n'; |
|
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) { |
|
std::string dequant_kernel = dequant_template; |
|
std::string dmmv_kernel = dequant_mul_mat_vec_template; |
|
for (size_t j = 0; j < dequant_str_keys.size(); j++) { |
|
sreplace2(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]); |
|
sreplace2(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]); |
|
} |
|
src << dequant_kernel << '\n'; |
|
src << dmmv_kernel << '\n'; |
|
} |
|
return src.str(); |
|
} |
|
|
|
#define CL_CHECK(err, name) \ |
|
do { \ |
|
cl_int err_ = (err); \ |
|
if (err_ != CL_SUCCESS) { \ |
|
fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \ |
|
fprintf(stderr, "You may be out of VRAM. Please check if you have enough.\n"); \ |
|
exit(1); \ |
|
} \ |
|
} while (0) |
|
|
|
static cl_platform_id platform; |
|
static cl_device_id device; |
|
static cl_context context; |
|
static cl_command_queue queue; |
|
static cl_program program; |
|
static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c; |
|
static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0; |
|
static cl_kernel convert_row_f16_cl; |
|
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; |
|
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; |
|
static bool fp16_support = false; |
|
|
|
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { |
|
cl_program p; |
|
char *program_log; |
|
size_t program_size, log_size; |
|
int err; |
|
|
|
program_size = strlen(program_buffer); |
|
|
|
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); |
|
if(err < 0) { |
|
fprintf(stderr, "OpenCL error creating program"); |
|
exit(1); |
|
} |
|
|
|
err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL); |
|
if(err < 0) { |
|
|
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); |
|
program_log = (char*) malloc(log_size + 1); |
|
program_log[log_size] = '\0'; |
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); |
|
printf("%s\n", program_log); |
|
free(program_log); |
|
exit(1); |
|
} |
|
|
|
return p; |
|
} |
|
|
|
void ggml_v2_cl_init(void) { |
|
cl_int err = 0; |
|
char * GGML_V2_CLBLAST_PLATFORM = getenv("GGML_OPENCL_PLATFORM"); |
|
char * GGML_V2_CLBLAST_DEVICE = getenv("GGML_OPENCL_DEVICE"); |
|
int plat_num = (GGML_V2_CLBLAST_PLATFORM == NULL ? 0 : atoi(GGML_V2_CLBLAST_PLATFORM)); |
|
int dev_num = (GGML_V2_CLBLAST_DEVICE == NULL ? 0 : atoi(GGML_V2_CLBLAST_DEVICE)); |
|
printf("\nInitializing LEGACY v2 CLBlast (First Run)..."); |
|
printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num); |
|
cl_uint num_platforms; |
|
clGetPlatformIDs(0, NULL, &num_platforms); |
|
cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id)); |
|
clGetPlatformIDs(num_platforms, platforms, NULL); |
|
platform = platforms[plat_num]; |
|
char platform_buffer[1024]; |
|
clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL); |
|
cl_uint num_devices; |
|
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices); |
|
cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id)); |
|
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL); |
|
device = devices[dev_num]; |
|
char device_buffer[1024]; |
|
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL); |
|
size_t ext_str_size; |
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size); |
|
char* ext_buffer = (char*) malloc(sizeof(char) * ext_str_size); |
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL); |
|
|
|
for (size_t i = 0; i < ext_str_size - 12; i++) { |
|
if (memcmp(ext_buffer + i, "cl_khr_fp16", 11) == 0) { |
|
fp16_support = true; |
|
break; |
|
} |
|
} |
|
free(ext_buffer); |
|
printf("Using Platform: %s Device: %s FP16: %d\n", platform_buffer, device_buffer, fp16_support); |
|
fp16_support = false; |
|
printf("CL FP16 temporarily disabled pending further optimization.\n"); |
|
context = clCreateContext(NULL, 1, &device, NULL, NULL, &err); |
|
CL_CHECK(err, "clCreateContext"); |
|
queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err); |
|
CL_CHECK(err, "clCreateCommandQueue"); |
|
|
|
free(platforms); |
|
free(devices); |
|
|
|
std::string kernel_src = generate_kernels(); |
|
|
|
program = build_program_from_source(context, device, kernel_src.c_str()); |
|
|
|
|
|
convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
|
|
|
|
dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
|
|
|
|
dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err); |
|
CL_CHECK(err, "clCreateKernel"); |
|
} |
|
|
|
static void ggml_v2_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) { |
|
if (req_size <= *cur_size) { |
|
return; |
|
} |
|
|
|
|
|
if (*cur_size > 0) { |
|
clReleaseMemObject(*buf); |
|
} |
|
cl_int err; |
|
*buf = clCreateBuffer(context, flags, req_size, NULL, &err); |
|
*cur_size = req_size; |
|
CL_CHECK(err, "clCreateBuffer"); |
|
} |
|
|
|
static cl_kernel* ggml_v2_get_to_fp32_cl(ggml_v2_type type) { |
|
switch (type) { |
|
case GGML_V2_TYPE_Q4_0: |
|
return &dequantize_row_q4_0_cl; |
|
case GGML_V2_TYPE_Q4_1: |
|
return &dequantize_row_q4_1_cl; |
|
case GGML_V2_TYPE_Q5_0: |
|
return &dequantize_row_q5_0_cl; |
|
case GGML_V2_TYPE_Q5_1: |
|
return &dequantize_row_q5_1_cl; |
|
case GGML_V2_TYPE_Q8_0: |
|
return &dequantize_row_q8_0_cl; |
|
case GGML_V2_TYPE_F16: |
|
return &convert_row_f16_cl; |
|
default: |
|
return nullptr; |
|
} |
|
} |
|
|
|
static cl_kernel* ggml_v2_get_dequantize_mul_mat_vec_cl(ggml_v2_type type) { |
|
switch (type) { |
|
case GGML_V2_TYPE_Q4_0: |
|
return &dequantize_mul_mat_vec_q4_0_cl; |
|
case GGML_V2_TYPE_Q4_1: |
|
return &dequantize_mul_mat_vec_q4_1_cl; |
|
case GGML_V2_TYPE_Q5_0: |
|
return &dequantize_mul_mat_vec_q5_0_cl; |
|
case GGML_V2_TYPE_Q5_1: |
|
return &dequantize_mul_mat_vec_q5_1_cl; |
|
case GGML_V2_TYPE_Q8_0: |
|
return &dequantize_mul_mat_vec_q8_0_cl; |
|
case GGML_V2_TYPE_F16: |
|
return &convert_mul_mat_vec_f16_cl; |
|
default: |
|
return nullptr; |
|
} |
|
} |
|
|
|
|
|
#define MAX_CL_BUFFERS 256 |
|
|
|
struct scoped_spin_lock { |
|
std::atomic_flag& lock; |
|
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { |
|
while (lock.test_and_set(std::memory_order_acquire)) { |
|
; |
|
} |
|
} |
|
~scoped_spin_lock() { |
|
lock.clear(std::memory_order_release); |
|
} |
|
scoped_spin_lock(const scoped_spin_lock&) = delete; |
|
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; |
|
}; |
|
|
|
struct cl_buffer { |
|
cl_mem mem; |
|
size_t size = 0; |
|
}; |
|
|
|
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS]; |
|
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT; |
|
|
|
static cl_mem ggml_v2_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) { |
|
scoped_spin_lock lock(g_cl_pool_lock); |
|
cl_int err; |
|
|
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) { |
|
cl_buffer& b = g_cl_buffer_pool[i]; |
|
if (b.size > 0 && b.size >= size) { |
|
cl_mem mem = b.mem; |
|
*actual_size = b.size; |
|
b.size = 0; |
|
return mem; |
|
} |
|
} |
|
cl_mem mem = clCreateBuffer(context, flags, size, NULL, &err); |
|
CL_CHECK(err, "clCreateBuffer"); |
|
*actual_size = size; |
|
return mem; |
|
} |
|
|
|
static void ggml_v2_cl_pool_free(cl_mem mem, size_t size) { |
|
scoped_spin_lock lock(g_cl_pool_lock); |
|
|
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) { |
|
cl_buffer& b = g_cl_buffer_pool[i]; |
|
if (b.size == 0) { |
|
b.mem = mem; |
|
b.size = size; |
|
return; |
|
} |
|
} |
|
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n"); |
|
clReleaseMemObject(mem); |
|
} |
|
|
|
static cl_int ggml_v2_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_v2_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) { |
|
cl_int err; |
|
const uint64_t ne0 = src->ne[0]; |
|
const uint64_t ne1 = src->ne[1]; |
|
const uint64_t nb0 = src->nb[0]; |
|
const uint64_t nb1 = src->nb[1]; |
|
const uint64_t nb2 = src->nb[2]; |
|
const uint64_t nb3 = src->nb[3]; |
|
const enum ggml_v2_type type = src->type; |
|
const size_t ts = ggml_v2_type_size(type); |
|
const size_t bs = ggml_v2_blck_size(type); |
|
|
|
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); |
|
if (nb0 == ts && nb1 == ts*ne0/bs) { |
|
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev); |
|
return err; |
|
} |
|
if (nb0 == ts) { |
|
const size_t buffer_origin[3] = { offset, 0, 0 }; |
|
const size_t host_origin[3] = { 0, 0, 0 }; |
|
const size_t region[3] = { ts*ne0/bs, ne1, 1 }; |
|
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev); |
|
return err; |
|
} |
|
for (uint64_t i1 = 0; i1 < ne1; i1++) { |
|
|
|
const size_t buffer_origin[3] = { offset, i1, 0 }; |
|
const size_t host_origin[3] = { 0, 0, 0 }; |
|
const size_t region[3] = { ts/bs, ne0, 1 }; |
|
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev); |
|
if (err != CL_SUCCESS) { |
|
break; |
|
} |
|
} |
|
return err; |
|
} |
|
|
|
static void ggml_v2_cl_mul_mat_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) { |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
|
|
const float alpha = 1.0f; |
|
const float beta = 0.0f; |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
|
|
size_t x_size, y_size, d_size; |
|
cl_mem d_X = ggml_v2_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_ONLY); |
|
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY); |
|
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY); |
|
|
|
cl_int err; |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
|
|
err = ggml_v2_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL); |
|
err |= ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL); |
|
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d"); |
|
|
|
CL_CHECK(clFinish(queue), "clFinish"); |
|
|
|
|
|
cl_event ev_sgemm; |
|
|
|
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor, |
|
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, |
|
ne01, ne11, ne10, |
|
alpha, |
|
d_X, 0, ne00, |
|
d_Y, 0, ne10, |
|
beta, |
|
d_D, 0, ne01, |
|
&queue, &ev_sgemm); |
|
|
|
if (status != clblast::StatusCode::kSuccess) { |
|
printf("\nF32 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); |
|
GGML_V2_ASSERT(false); |
|
} |
|
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |
|
err = clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL); |
|
CL_CHECK(err, "clEnqueueReadBuffer"); |
|
} |
|
} |
|
|
|
ggml_v2_cl_pool_free(d_X, x_size); |
|
ggml_v2_cl_pool_free(d_Y, y_size); |
|
ggml_v2_cl_pool_free(d_D, d_size); |
|
} |
|
|
|
static void ggml_v2_cl_mul_mat_f16(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst, void * wdata, size_t ) { |
|
GGML_V2_ASSERT(fp16_support); |
|
|
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
|
|
const int nb10 = src1->nb[0]; |
|
const int nb11 = src1->nb[1]; |
|
const int nb12 = src1->nb[2]; |
|
const int nb13 = src1->nb[3]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
|
|
const ggml_v2_fp16_t alpha = ggml_v2_fp32_to_fp16(1.0f); |
|
const ggml_v2_fp16_t beta = ggml_v2_fp32_to_fp16(0.0f); |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
|
|
size_t x_size, y_size, d_size; |
|
cl_mem d_X = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY); |
|
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY); |
|
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY); |
|
|
|
cl_int err; |
|
|
|
bool src1_cont_rows = nb10 == sizeof(float); |
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
|
|
err = ggml_v2_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL); |
|
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d"); |
|
|
|
|
|
|
|
ggml_v2_fp16_t * const tmp = (ggml_v2_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); |
|
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; |
|
if (src1_cont_rows) { |
|
if (src1_cont_cols) { |
|
ggml_v2_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); |
|
} |
|
else { |
|
for (int64_t i01 = 0; i01 < ne11; i01++) { |
|
ggml_v2_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); |
|
} |
|
} |
|
} |
|
else { |
|
for (int64_t i01 = 0; i01 < ne11; i01++) { |
|
for (int64_t i00 = 0; i00 < ne10; i00++) { |
|
|
|
tmp[i01*ne10 + i00] = ggml_v2_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); |
|
} |
|
} |
|
} |
|
|
|
|
|
err |= clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_v2_fp16_t) * y_ne, tmp, 0, NULL, NULL); |
|
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d"); |
|
|
|
CL_CHECK(clFinish(queue), "clFinish"); |
|
|
|
|
|
cl_event ev_sgemm; |
|
clblast::StatusCode status = (clblast::StatusCode)CLBlastHgemm((CLBlastLayout)clblast::Layout::kColMajor, |
|
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, |
|
ne01, ne11, ne10, |
|
alpha, |
|
d_X, 0, ne00, |
|
d_Y, 0, ne10, |
|
beta, |
|
d_D, 0, ne01, |
|
&queue, &ev_sgemm); |
|
|
|
if (status != clblast::StatusCode::kSuccess) { |
|
printf("\nF16 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); |
|
GGML_V2_ASSERT(false); |
|
} |
|
|
|
|
|
err = clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_v2_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL); |
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |
|
|
|
ggml_v2_fp16_to_fp32_row(tmp, d, d_ne); |
|
} |
|
} |
|
|
|
ggml_v2_cl_pool_free(d_X, x_size); |
|
ggml_v2_cl_pool_free(d_Y, y_size); |
|
ggml_v2_cl_pool_free(d_D, d_size); |
|
} |
|
|
|
static void ggml_v2_cl_mul_mat_q_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) { |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
const ggml_v2_type type = src0->type; |
|
const bool mul_mat_vec = ne11 == 1; |
|
|
|
const float alpha = 1.0f; |
|
const float beta = 0.0f; |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
const size_t q_sz = ggml_v2_type_size(type) * x_ne / ggml_v2_blck_size(type); |
|
|
|
size_t x_size, y_size, d_size, q_size; |
|
cl_mem d_X; |
|
if (!mul_mat_vec) { |
|
d_X = ggml_v2_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE); |
|
} |
|
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY); |
|
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY); |
|
cl_mem d_Q; |
|
if (src0->backend == GGML_V2_BACKEND_CPU) { |
|
d_Q = ggml_v2_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY); |
|
} |
|
|
|
cl_kernel* to_fp32_cl = ggml_v2_get_to_fp32_cl(type); |
|
cl_kernel* dmmv = ggml_v2_get_dequantize_mul_mat_vec_cl(type); |
|
GGML_V2_ASSERT(to_fp32_cl != nullptr); |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
cl_event ev_sgemm; |
|
|
|
|
|
if (src0->backend == GGML_V2_BACKEND_CPU) { |
|
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d"); |
|
} else if (src0->backend == GGML_V2_BACKEND_CL) { |
|
d_Q = *(cl_mem*) src0->data; |
|
} else { |
|
GGML_V2_ASSERT(false); |
|
} |
|
if (mul_mat_vec) { |
|
|
|
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d"); |
|
|
|
|
|
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE; |
|
const size_t local = CL_DMMV_BLOCK_SIZE; |
|
const cl_int ncols = ne00; |
|
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q), "clSetKernelArg"); |
|
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL), "clSetKernelArg"); |
|
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y), "clSetKernelArg"); |
|
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D), "clSetKernelArg"); |
|
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols), "clSetKernelArg"); |
|
CL_CHECK(clFinish(queue), "clFinish"); |
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm), "clEnqueueNDRangeKernel"); |
|
} else { |
|
|
|
const size_t global = x_ne; |
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q), "clSetKernelArg"); |
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X), "clSetKernelArg"); |
|
CL_CHECK(clFinish(queue), "clFinish"); |
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL), "clEnqueueNDRangeKernel"); |
|
|
|
|
|
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d"); |
|
|
|
|
|
CL_CHECK(clFinish(queue), "clFinish"); |
|
|
|
|
|
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor, |
|
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, |
|
ne01, ne11, ne10, |
|
alpha, |
|
d_X, 0, ne00, |
|
d_Y, 0, ne10, |
|
beta, |
|
d_D, 0, ne01, |
|
&queue, &ev_sgemm); |
|
|
|
if (status != clblast::StatusCode::kSuccess) { |
|
printf("\nQF32 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); |
|
GGML_V2_ASSERT(false); |
|
} |
|
} |
|
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL), "clEnqueueReadBuffer"); |
|
clReleaseEvent(ev_sgemm); |
|
} |
|
} |
|
|
|
if (!mul_mat_vec) { |
|
ggml_v2_cl_pool_free(d_X, x_size); |
|
} |
|
ggml_v2_cl_pool_free(d_Y, y_size); |
|
ggml_v2_cl_pool_free(d_D, d_size); |
|
if (src0->backend == GGML_V2_BACKEND_CPU) { |
|
ggml_v2_cl_pool_free(d_Q, q_size); |
|
} |
|
} |
|
|
|
|
|
bool ggml_v2_cl_can_mul_mat(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst) { |
|
const int64_t ne10 = src1->ne[0]; |
|
|
|
const int64_t ne0 = dst->ne[0]; |
|
const int64_t ne1 = dst->ne[1]; |
|
|
|
|
|
if ((src0->type == GGML_V2_TYPE_F32 || src0->type == GGML_V2_TYPE_F16 || ggml_v2_is_quantized(src0->type)) && |
|
src1->type == GGML_V2_TYPE_F32 && |
|
dst->type == GGML_V2_TYPE_F32 && |
|
((GetQuantsUnshuffled() && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_V2_BACKEND_CL)) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
bool ggml_v2_cl_mul_mat_use_f16(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * ) { |
|
|
|
if (!fp16_support) { |
|
return false; |
|
} |
|
|
|
size_t src0_sz = ggml_v2_nbytes(src0); |
|
size_t src1_sz = ggml_v2_nbytes(src1); |
|
|
|
|
|
size_t mul_mat_q_transfer = src0_sz + src1_sz; |
|
|
|
|
|
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_v2_fp16_t) * ggml_v2_nelements(src1); |
|
|
|
|
|
|
|
return mul_mat_f16_transfer < mul_mat_q_transfer; |
|
} |
|
|
|
void ggml_v2_cl_mul_mat(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst, void * wdata, size_t wsize) { |
|
GGML_V2_ASSERT(ggml_v2_cl_can_mul_mat(src0, src1, dst)); |
|
|
|
if (src0->type == GGML_V2_TYPE_F32) { |
|
ggml_v2_cl_mul_mat_f32(src0, src1, dst); |
|
} |
|
else if (src0->type == GGML_V2_TYPE_F16) { |
|
if (ggml_v2_cl_mul_mat_use_f16(src0, src1, dst)) { |
|
ggml_v2_cl_mul_mat_f16(src0, src1, dst, wdata, wsize); |
|
} |
|
else { |
|
ggml_v2_cl_mul_mat_q_f32(src0, src1, dst); |
|
} |
|
} |
|
else if (ggml_v2_is_quantized(src0->type)) { |
|
ggml_v2_cl_mul_mat_q_f32(src0, src1, dst); |
|
} |
|
else { |
|
GGML_V2_ASSERT(false); |
|
} |
|
} |
|
|
|
size_t ggml_v2_cl_mul_mat_get_wsize(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst) { |
|
if (ggml_v2_cl_mul_mat_use_f16(src0, src1, dst)) { |
|
return ggml_v2_nelements(src1) * sizeof(ggml_v2_fp16_t); |
|
} |
|
return 0; |
|
} |
|
|
|
void ggml_v2_cl_transform_tensor(ggml_v2_tensor * tensor) { |
|
const int64_t ne0 = tensor->ne[0]; |
|
const int64_t ne1 = tensor->ne[1]; |
|
const int64_t ne2 = tensor->ne[2]; |
|
const int64_t ne3 = tensor->ne[3]; |
|
|
|
const ggml_v2_type type = tensor->type; |
|
const size_t q_sz = ggml_v2_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_v2_blck_size(type); |
|
|
|
size_t q_size; |
|
cl_mem* dst = (cl_mem*) malloc(sizeof(cl_mem)); |
|
*dst = ggml_v2_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY); |
|
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) { |
|
for (int64_t i2 = 0; i2 < ne2; i2++) { |
|
int i = i3*ne2 + i2; |
|
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, *dst, i*ne0*ne1, tensor, i3, i2, NULL), "ggml_v2_cl_h2d_tensor_2d"); |
|
} |
|
} |
|
|
|
CL_CHECK(clFinish(queue), "clFinish"); |
|
|
|
tensor->data = dst; |
|
tensor->backend = GGML_V2_BACKEND_CL; |
|
} |
|
|
|
void ggml_v2_cl_sgemm_wrapper( |
|
const enum ggml_v2_blas_order order, const enum ggml_v2_blas_op trans_a, const enum ggml_v2_blas_op trans_b, |
|
const int m, const int n, const int k, |
|
const float alpha, const void *host_a, const int lda, |
|
const float *host_b, const int ldb, const float beta, |
|
float *host_c, const int ldc, const int btype) { |
|
cl_int err = 0; |
|
|
|
cl_kernel * kernel = ggml_v2_get_to_fp32_cl((ggml_v2_type)btype); |
|
size_t global = n * k, local, size_qb; |
|
bool dequant; |
|
|
|
switch (btype) { |
|
case GGML_V2_TYPE_F32: |
|
dequant = false; |
|
break; |
|
case GGML_V2_TYPE_Q4_0: |
|
dequant = true; |
|
local = 16; |
|
size_qb = global * (sizeof(float) + local) / 32; |
|
break; |
|
case GGML_V2_TYPE_Q4_1: |
|
dequant = true; |
|
local = 16; |
|
size_qb = global * (sizeof(float) * 2 + local) / 32; |
|
break; |
|
case GGML_V2_TYPE_Q5_0: |
|
dequant = true; |
|
local = 16; |
|
size_qb = global * (sizeof(ggml_v2_fp16_t) + sizeof(uint32_t) + local) / 32; |
|
break; |
|
case GGML_V2_TYPE_Q5_1: |
|
dequant = true; |
|
local = 16; |
|
size_qb = global * (sizeof(ggml_v2_fp16_t) * 2 + sizeof(uint32_t) + local) / 32; |
|
break; |
|
case GGML_V2_TYPE_Q8_0: |
|
dequant = true; |
|
local = 32; |
|
size_qb = global * (sizeof(float) + local) / 32; |
|
break; |
|
default: |
|
fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype); |
|
abort(); |
|
} |
|
|
|
const size_t size_a = m * k * sizeof(float); |
|
const size_t size_b = n * k * sizeof(float); |
|
const size_t size_c = m * n * sizeof(float); |
|
|
|
|
|
ggml_v2_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a); |
|
if (dequant) { |
|
ggml_v2_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb); |
|
} |
|
ggml_v2_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b); |
|
ggml_v2_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c); |
|
|
|
cl_event ev_a, ev_qb, ev_b; |
|
|
|
if (dequant) { |
|
err = clSetKernelArg(*kernel, 0, sizeof(cl_mem), &cl_buffer_qb); |
|
err |= clSetKernelArg(*kernel, 1, sizeof(cl_mem), &cl_buffer_b); |
|
CL_CHECK(err, "clSetKernelArg"); |
|
err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb); |
|
CL_CHECK(err, "clEnqueueWriteBuffer qb"); |
|
} else { |
|
err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b); |
|
CL_CHECK(err, "clEnqueueWriteBuffer b"); |
|
} |
|
|
|
err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a); |
|
CL_CHECK(err, "clEnqueueWriteBuffer a"); |
|
if (dequant) { |
|
err = clEnqueueNDRangeKernel(queue, *kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b); |
|
CL_CHECK(err, "clEnqueueNDRangeKernel"); |
|
clReleaseEvent(ev_qb); |
|
} |
|
clWaitForEvents(1, &ev_a); |
|
clWaitForEvents(1, &ev_b); |
|
clReleaseEvent(ev_a); |
|
clReleaseEvent(ev_b); |
|
|
|
cl_event ev_sgemm; |
|
CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order, |
|
(CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b, |
|
m, n, k, |
|
alpha, |
|
cl_buffer_a, 0, lda, |
|
cl_buffer_b, 0, ldb, |
|
beta, |
|
cl_buffer_c, 0, ldc, |
|
&queue, &ev_sgemm); |
|
|
|
if (status != CLBlastSuccess) { |
|
fprintf(stderr, "Error: CLBlast SGEMM %d\n", status); |
|
abort(); |
|
} |
|
|
|
cl_event ev_c; |
|
clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c); |
|
|
|
|
|
clWaitForEvents(1, &ev_c); |
|
clReleaseEvent(ev_sgemm); |
|
clReleaseEvent(ev_c); |
|
} |
|
|