|
#include "ggml.h" |
|
#include "ggml_v3b-opencl.h" |
|
#include "ggml-backend-impl.h" |
|
#include "ggml-cpu.h" |
|
|
|
#include <array> |
|
#include <atomic> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <limits> |
|
#include <sstream> |
|
#include <vector> |
|
|
|
#define CL_TARGET_OPENCL_VERSION 120 |
|
#include <clblast.h> |
|
#include <clblast_c.h> |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
#define CL_DMMV_LOCAL_SIZE 32 |
|
|
|
#ifndef K_QUANTS_PER_ITERATION |
|
#define K_QUANTS_PER_ITERATION 1 |
|
#else |
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); |
|
#endif |
|
|
|
#define MULTILINE_QUOTE(...) #__VA_ARGS__ |
|
static std::string program_source = MULTILINE_QUOTE( |
|
|
|
typedef char int8_t; |
|
typedef uchar uint8_t; |
|
typedef short int16_t; |
|
typedef ushort uint16_t; |
|
typedef int int32_t; |
|
typedef uint uint32_t; |
|
|
|
struct __attribute__ ((packed)) block_q4_0 |
|
{ |
|
half d; |
|
uint8_t qs[QK4_0 / 2]; |
|
}; |
|
|
|
struct __attribute__ ((packed)) block_q4_1 |
|
{ |
|
half d; |
|
half m; |
|
uint8_t qs[QK4_1 / 2]; |
|
}; |
|
|
|
struct __attribute__ ((packed)) block_q5_0 |
|
{ |
|
half d; |
|
uint32_t qh; |
|
uint8_t qs[QK5_0 / 2]; |
|
}; |
|
|
|
struct __attribute__ ((packed)) block_q5_1 |
|
{ |
|
half d; |
|
half m; |
|
uint32_t qh; |
|
uint8_t qs[QK5_1 / 2]; |
|
}; |
|
|
|
struct __attribute__ ((packed)) block_q8_0 |
|
{ |
|
half d; |
|
int8_t qs[QK8_0]; |
|
}; |
|
|
|
struct __attribute__((packed)) block_q2_K |
|
{ |
|
uint8_t scales[16]; |
|
uint8_t qs[64]; |
|
half d; |
|
half dmin; |
|
}; |
|
|
|
struct __attribute__((packed)) block_q3_K |
|
{ |
|
uint8_t hmask[32]; |
|
uint8_t qs[64]; |
|
uint8_t scales[12]; |
|
half d; |
|
}; |
|
|
|
struct __attribute__((packed)) block_q4_K |
|
{ |
|
half d; |
|
half dmin; |
|
uint8_t scales[12]; |
|
uint8_t qs[128]; |
|
}; |
|
|
|
struct __attribute__((packed)) block_q5_K |
|
{ |
|
half d; |
|
half dmin; |
|
uint8_t scales[12]; |
|
uint8_t qh[32]; |
|
uint8_t qs[128]; |
|
}; |
|
|
|
struct __attribute__((packed)) block_q6_K |
|
{ |
|
uint8_t ql[128]; |
|
uint8_t qh[64]; |
|
int8_t scales[16]; |
|
half d; |
|
}; |
|
|
|
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) { |
|
const uint i = get_global_id(0); |
|
|
|
y[i] = vload_half(0, &x[i]); |
|
} |
|
|
|
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = vload_half(0, &x[ib].d); |
|
|
|
const uint8_t vui = x[ib].qs[iqs]; |
|
|
|
const int8_t vi0 = vui & 0xF; |
|
const int8_t vi1 = vui >> 4; |
|
|
|
*v0 = (vi0 - 8)*d; |
|
*v1 = (vi1 - 8)*d; |
|
} |
|
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = vload_half(0, &x[ib].d); |
|
const float m = vload_half(0, &x[ib].m); |
|
|
|
const uint8_t vui = x[ib].qs[iqs]; |
|
|
|
const int8_t vi0 = vui & 0xF; |
|
const int8_t vi1 = vui >> 4; |
|
|
|
*v0 = vi0*d + m; |
|
*v1 = vi1*d + m; |
|
} |
|
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = vload_half(0, &x[ib].d); |
|
|
|
uint32_t qh = x[ib].qh; |
|
|
|
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; |
|
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; |
|
|
|
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; |
|
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; |
|
|
|
*v0 = x0*d; |
|
*v1 = x1*d; |
|
} |
|
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = vload_half(0, &x[ib].d); |
|
const float m = vload_half(0, &x[ib].m); |
|
|
|
uint32_t qh = x[ib].qh; |
|
|
|
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; |
|
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; |
|
|
|
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); |
|
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); |
|
|
|
*v0 = x0*d + m; |
|
*v1 = x1*d + m; |
|
} |
|
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) { |
|
const float d = vload_half(0, &x[ib].d); |
|
|
|
const int8_t vi0 = x[ib].qs[iqs + 0]; |
|
const int8_t vi1 = x[ib].qs[iqs + 1]; |
|
|
|
*v0 = vi0*d; |
|
*v1 = vi1*d; |
|
} |
|
void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){ |
|
*v0 = vload_half(0, &x[ib + 0]); |
|
*v1 = vload_half(0, &x[ib + 1]); |
|
} |
|
); |
|
|
|
static std::string k_quants_source = MULTILINE_QUOTE( |
|
inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m) |
|
{ |
|
if (j < 4) |
|
{ |
|
*d = q[j] & 63; |
|
*m = q[j + 4] & 63; |
|
} |
|
else |
|
{ |
|
*d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4); |
|
*m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4); |
|
} |
|
} |
|
|
|
__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy) |
|
{ |
|
const int i = get_group_id(0) + get_global_offset(0); |
|
const int tid = get_local_id(0); |
|
const int n = tid / 32; |
|
const int l = tid - 32 * n; |
|
const int is = 8 * n + l / 16; |
|
|
|
const uint8_t q = x[i].qs[32 * n + l]; |
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * n; |
|
|
|
const float dall = vload_half(0, &x[i].d); |
|
const float dmin = vload_half(0, &x[i].dmin); |
|
|
|
y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4); |
|
y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4); |
|
y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4); |
|
y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4); |
|
} |
|
|
|
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy) |
|
{ |
|
int r = get_local_id(0) / 4; |
|
int i = get_group_id(0) + get_global_offset(0); |
|
int tid = r / 2; |
|
int is0 = r % 2; |
|
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4); |
|
int n = tid / 4; |
|
int j = tid - 4 * n; |
|
|
|
uint8_t m = 1 << (4 * n + j); |
|
int is = 8 * n + 2 * j + is0; |
|
int shift = 2 * j; |
|
|
|
int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4) |
|
: is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4) |
|
: is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4) |
|
: (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4); |
|
float d_all = vload_half(0, &x[i].d); |
|
float dl = d_all * (us - 32); |
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j; |
|
const __global uint8_t *q = x[i].qs + 32 * n; |
|
const __global uint8_t *hm = x[i].hmask; |
|
|
|
for (int l = l0; l < l0 + 4; ++l) |
|
y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); |
|
} |
|
|
|
__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy) |
|
{ |
|
const int i = get_group_id(0) + get_global_offset(0); |
|
const int tid = get_local_id(0); |
|
const int il = tid / 8; |
|
const int ir = tid % 8; |
|
const int is = 2 * il; |
|
const int n = 4; |
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir; |
|
|
|
const float dall = vload_half(0, &x[i].d); |
|
const float dmin = vload_half(0, &x[i].dmin); |
|
|
|
__global const uint8_t *q = x[i].qs + 32 * il + n * ir; |
|
|
|
uint8_t sc, m; |
|
get_scale_min_k4(is + 0, x[i].scales, &sc, &m); |
|
float d1 = dall * sc; |
|
float m1 = dmin * m; |
|
get_scale_min_k4(is + 1, x[i].scales, &sc, &m); |
|
float d2 = dall * sc; |
|
float m2 = dmin * m; |
|
for (int l = 0; l < n; ++l) |
|
{ |
|
y[l + 0] = d1 * (q[l] & 0xF) - m1; |
|
y[l + 32] = d2 * (q[l] >> 4) - m2; |
|
} |
|
} |
|
|
|
__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy) |
|
{ |
|
const int i = get_group_id(0) + get_global_offset(0); |
|
const int tid = get_local_id(0); |
|
const int il = tid / 16; |
|
const int ir = tid % 16; |
|
const int is = 2 * il; |
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir; |
|
|
|
const float dall = vload_half(0, &x[i].d); |
|
const float dmin = vload_half(0, &x[i].dmin); |
|
|
|
__global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir; |
|
__global const uint8_t *qh = x[i].qh + 2 * ir; |
|
|
|
uint8_t sc, m; |
|
get_scale_min_k4(is + 0, x[i].scales, &sc, &m); |
|
const float d1 = dall * sc; |
|
const float m1 = dmin * m; |
|
get_scale_min_k4(is + 1, x[i].scales, &sc, &m); |
|
const float d2 = dall * sc; |
|
const float m2 = dmin * m; |
|
|
|
uint8_t hm = 1 << (2 * il); |
|
y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1; |
|
y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1; |
|
hm <<= 1; |
|
y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2; |
|
y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2; |
|
} |
|
|
|
__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy) |
|
{ |
|
const int i = get_group_id(0) + get_global_offset(0); |
|
const int tid = get_local_id(0); |
|
const int ip = tid / 32; |
|
const int il = tid - 32 * ip; |
|
const int is = 8 * ip + il / 16; |
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il; |
|
|
|
const float d = vload_half(0, &x[i].d); |
|
|
|
__global const uint8_t *ql = x[i].ql + 64 * ip + il; |
|
const uint8_t qh = x[i].qh[32 * ip + il]; |
|
__global const int8_t *sc = x[i].scales + is; |
|
|
|
y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); |
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); |
|
y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); |
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); |
|
} |
|
|
|
__kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { |
|
|
|
const int row = get_group_id(0); |
|
|
|
const int num_blocks_per_row = ncols / QK_K; |
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0); |
|
|
|
__global const struct block_q2_K * x = xx + ib0; |
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; |
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; |
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION; |
|
|
|
const int im = tid/step; |
|
const int in = tid - step*im; |
|
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; |
|
const int q_offset = 32*im + l0; |
|
const int s_offset = 8*im; |
|
const int y_offset = 128*im + l0; |
|
|
|
tmp[16 * ix + tid] = 0; |
|
|
|
uint32_t aux[4]; |
|
const uint8_t * d = (const uint8_t *)aux; |
|
const uint8_t * m = (const uint8_t *)(aux + 2); |
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { |
|
|
|
__global const float * y = yy + i * QK_K + y_offset; |
|
__global const uint8_t * q = x[i].qs + q_offset; |
|
|
|
const float dall = vload_half(0, &x[i].d); |
|
const float dmin = vload_half(0, &x[i].dmin); |
|
|
|
__global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset); |
|
aux[0] = a[0] & 0x0f0f0f0f; |
|
aux[1] = a[1] & 0x0f0f0f0f; |
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f; |
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f; |
|
|
|
float sum1 = 0, sum2 = 0; |
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { |
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3) |
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3) |
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3) |
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3) |
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3) |
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3) |
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3) |
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3); |
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6] |
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7]; |
|
|
|
} |
|
tmp[16 * ix + tid] += dall * sum1 - dmin * sum2; |
|
|
|
} |
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
for (int s=16; s>0; s>>=1) { |
|
if (tid < s) { |
|
tmp[tid] += tmp[tid + s]; |
|
} |
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
} |
|
if (tid == 0) { |
|
dst[row] = tmp[0]; |
|
} |
|
} |
|
|
|
__kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { |
|
const uint16_t kmask1 = 0x0303; |
|
const uint16_t kmask2 = 0x0f0f; |
|
|
|
const int row = get_group_id(0); |
|
|
|
const int num_blocks_per_row = ncols / QK_K; |
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0); |
|
|
|
__global const struct block_q3_K * x = xx + ib0; |
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; |
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; |
|
|
|
const int n = K_QUANTS_PER_ITERATION; |
|
const int step = 16/K_QUANTS_PER_ITERATION; |
|
const int im = tid/step; |
|
const int in = tid - step*im; |
|
|
|
const uint8_t m = 1 << (4*im); |
|
|
|
const int l0 = n*in; |
|
const int q_offset = 32*im + l0; |
|
const int y_offset = 128*im + l0; |
|
|
|
uint16_t utmp[4]; |
|
const int8_t * s = (const int8_t *)utmp; |
|
|
|
const uint16_t s_shift = 4*im; |
|
|
|
tmp[16 * ix + tid] = 0; |
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { |
|
|
|
__global const float * y = yy + i * QK_K + y_offset; |
|
__global const uint8_t * q = x[i].qs + q_offset; |
|
__global const uint8_t * h = x[i].hmask + l0; |
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales; |
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4); |
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4); |
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4); |
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4); |
|
|
|
const float d = vload_half(0, &x[i].d); |
|
|
|
float sum = 0; |
|
for (int l = 0; l < n; ++l) { |
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4)) |
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4)) |
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4)) |
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4)); |
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4)) |
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4)) |
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4)) |
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4)); |
|
} |
|
tmp[16 * ix + tid] += d * sum; |
|
|
|
} |
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
for (int s=16; s>0; s>>=1) { |
|
if (tid < s) { |
|
tmp[tid] += tmp[tid + s]; |
|
} |
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
} |
|
if (tid == 0) { |
|
dst[row] = tmp[0]; |
|
} |
|
} |
|
|
|
__kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { |
|
|
|
|
|
const uint16_t kmask1 = 0x3f3f; |
|
const uint16_t kmask2 = 0x0f0f; |
|
const uint16_t kmask3 = 0xc0c0; |
|
|
|
const int row = get_group_id(0); |
|
const int num_blocks_per_row = ncols / QK_K; |
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0); |
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; |
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; |
|
|
|
const int step = 8/K_QUANTS_PER_ITERATION; |
|
|
|
const int il = tid/step; |
|
const int ir = tid - step*il; |
|
const int n = 2*K_QUANTS_PER_ITERATION; |
|
|
|
const int im = il/2; |
|
const int in = il%2; |
|
|
|
const int l0 = n*(2*ir + in); |
|
const int q_offset = 32*im + l0; |
|
const int y_offset = 64*im + l0; |
|
|
|
uint16_t aux[4]; |
|
const uint8_t * sc = (const uint8_t *)aux; |
|
|
|
__global const struct block_q4_K * x = xx + ib0; |
|
|
|
tmp[16 * ix + tid] = 0; |
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { |
|
|
|
__global const uint8_t * q1 = x[i].qs + q_offset; |
|
__global const uint8_t * q2 = q1 + 64; |
|
__global const float * y1 = yy + i*QK_K + y_offset; |
|
__global const float * y2 = y1 + 128; |
|
|
|
const float dall = vload_half(0, &x[i].d); |
|
const float dmin = vload_half(0, &x[i].dmin); |
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales; |
|
aux[0] = a[im+0] & kmask1; |
|
aux[1] = a[im+2] & kmask1; |
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); |
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); |
|
|
|
float4 s = (float4)(0.f); |
|
float smin = 0; |
|
for (int l = 0; l < n; ++l) { |
|
s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4); |
|
s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4); |
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; |
|
} |
|
tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin; |
|
|
|
} |
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
for (int s=16; s>0; s>>=1) { |
|
if (tid < s) { |
|
tmp[tid] += tmp[tid + s]; |
|
} |
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
} |
|
if (tid == 0) { |
|
dst[row] = tmp[0]; |
|
} |
|
} |
|
|
|
__kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { |
|
|
|
const uint16_t kmask1 = 0x3f3f; |
|
const uint16_t kmask2 = 0x0f0f; |
|
const uint16_t kmask3 = 0xc0c0; |
|
|
|
const int row = get_group_id(0); |
|
const int num_blocks_per_row = ncols / QK_K; |
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0); |
|
|
|
const int tid = get_local_id(0)/2; |
|
const int ix = get_local_id(0)%2; |
|
|
|
const int il = tid/4; |
|
const int ir = tid - 4*il; |
|
const int n = 2; |
|
|
|
const int im = il/2; |
|
const int in = il%2; |
|
|
|
const int l0 = n*(2*ir + in); |
|
const int q_offset = 32*im + l0; |
|
const int y_offset = 64*im + l0; |
|
|
|
const uint8_t hm1 = 1 << (2*im); |
|
const uint8_t hm2 = hm1 << 4; |
|
|
|
uint16_t aux[4]; |
|
const uint8_t * sc = (const uint8_t *)aux; |
|
|
|
__global const struct block_q5_K * x = xx + ib0; |
|
|
|
tmp[16 * ix + tid] = 0; |
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2) { |
|
|
|
__global const uint8_t * ql1 = x[i].qs + q_offset; |
|
__global const uint8_t * ql2 = ql1 + 64; |
|
__global const uint8_t * qh = x[i].qh + l0; |
|
__global const float * y1 = yy + i*QK_K + y_offset; |
|
__global const float * y2 = y1 + 128; |
|
|
|
const float dall = vload_half(0, &x[i].d); |
|
const float dmin = vload_half(0, &x[i].dmin); |
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales; |
|
aux[0] = a[im+0] & kmask1; |
|
aux[1] = a[im+2] & kmask1; |
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); |
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); |
|
|
|
float4 sum = (float4)(0.f); |
|
float smin = 0; |
|
for (int l = 0; l < n; ++l) { |
|
sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0)) |
|
+ y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0)); |
|
sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0)) |
|
+ y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0)); |
|
sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0)) |
|
+ y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0)); |
|
sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0)) |
|
+ y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0)); |
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3] |
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; |
|
} |
|
tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; |
|
|
|
} |
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
for (int s=16; s>0; s>>=1) { |
|
if (tid < s) { |
|
tmp[tid] += tmp[tid + s]; |
|
} |
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
} |
|
if (tid == 0) { |
|
dst[row] = tmp[0]; |
|
} |
|
} |
|
|
|
__kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) { |
|
|
|
const int row = get_group_id(0); |
|
|
|
const int num_blocks_per_row = ncols / QK_K; |
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0); |
|
|
|
__global const struct block_q6_K * x = xx + ib0; |
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; |
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; |
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION; |
|
|
|
const int im = tid/step; |
|
const int in = tid - step*im; |
|
|
|
\n#if K_QUANTS_PER_ITERATION == 1\n |
|
const int l0 = K_QUANTS_PER_ITERATION*in; |
|
const int is = 0; |
|
|
|
\n#else\n |
|
|
|
const int l0 = 4 * in; |
|
const int is = in / 4; |
|
|
|
\n#endif\n |
|
|
|
const int ql_offset = 64*im + l0; |
|
const int qh_offset = 32*im + l0; |
|
const int s_offset = 8*im + is; |
|
const int y_offset = 128*im + l0; |
|
|
|
tmp[16 * ix + tid] = 0; |
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { |
|
|
|
__global const float * y = yy + i * QK_K + y_offset; |
|
__global const uint8_t * ql = x[i].ql + ql_offset; |
|
__global const uint8_t * qh = x[i].qh + qh_offset; |
|
__global const int8_t * s = x[i].scales + s_offset; |
|
|
|
const float d = vload_half(0, &x[i].d); |
|
|
|
\n#if K_QUANTS_PER_ITERATION == 1\n |
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32) |
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32) |
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32) |
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32) |
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32) |
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32) |
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32) |
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32); |
|
tmp[16 * ix + tid] += sum; |
|
\n#else\n |
|
float sum = 0; |
|
for (int l = 0; l < 4; ++l) { |
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32) |
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32) |
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32) |
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32); |
|
} |
|
tmp[16 * ix + tid] += sum; |
|
\n#endif\n |
|
|
|
} |
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
for (int s=16; s>0; s>>=1) { |
|
if (tid < s) { |
|
tmp[tid] += tmp[tid + s]; |
|
} |
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
} |
|
if (tid == 0) { |
|
dst[row] = tmp[0]; |
|
} |
|
} |
|
); |
|
|
|
|
|
std::string dequant_template = MULTILINE_QUOTE( |
|
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { |
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2; |
|
|
|
if (i >= get_global_size(0)) { |
|
return; |
|
} |
|
|
|
const uint qk = QUANT_K; |
|
const uint qr = QUANT_R; |
|
|
|
const int ib = i/qk + get_global_offset(0); |
|
const int iqs = (i%qk)/qr; |
|
const int iybs = i - i%qk; |
|
const int y_offset = qr == 1 ? 1 : qk/2; |
|
|
|
|
|
float v0, v1; |
|
DEQUANT_FUNC(x, ib, iqs, &v0, &v1); |
|
y[iybs + iqs + 0] = v0; |
|
y[iybs + iqs + y_offset] = v1; |
|
} |
|
); |
|
|
|
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( |
|
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { |
|
const int local_size = get_local_size(0); |
|
const int row = get_group_id(0); |
|
const int tid = get_local_id(0); |
|
|
|
const uint qk = QUANT_K; |
|
const uint qr = QUANT_R; |
|
|
|
const int col_step = local_size * 2; |
|
const int y_offset = qr == 1 ? 1 : qk/2; |
|
|
|
x += get_global_offset(0); |
|
|
|
tmp[tid] = 0; |
|
|
|
for (int col = tid*2; col < ncols; col += col_step) { |
|
const int ib = (row*ncols + col)/qk; |
|
const int iqs = (col%qk)/qr; |
|
const int iybs = col - col%qk; |
|
|
|
|
|
float v0, v1; |
|
DEQUANT_FUNC(x, ib, iqs, &v0, &v1); |
|
|
|
|
|
tmp[tid] += v0 * y[iybs + iqs + 0]; |
|
tmp[tid] += v1 * y[iybs + iqs + y_offset]; |
|
} |
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
for (int s=local_size/2; s>0; s>>=1) { |
|
if (tid < s) { |
|
tmp[tid] += tmp[tid + s]; |
|
} |
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
} |
|
if (tid == 0) { |
|
dst[row] = tmp[0]; |
|
} |
|
} |
|
|
|
); |
|
|
|
|
|
std::string mul_template = MULTILINE_QUOTE( |
|
__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) { |
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); |
|
|
|
if (i >= get_global_size(0)) { |
|
return; |
|
} |
|
|
|
dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky]; |
|
} |
|
); |
|
|
|
std::string add_template = MULTILINE_QUOTE( |
|
__kernel void add_f32(__global float * x, const int x_offset, __global float * y, const int y_offset, __global float * dst, const int dst_offset, const int ky) { |
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); |
|
|
|
if (i >= get_global_size(0)) { |
|
return; |
|
} |
|
|
|
dst[dst_offset + i] = x[x_offset + i] + y[y_offset + i%ky]; |
|
} |
|
); |
|
|
|
#define CL_CHECK(err) \ |
|
do { \ |
|
cl_int err_ = (err); \ |
|
if (err_ != CL_SUCCESS) { \ |
|
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ |
|
#err, err_, __FILE__, __LINE__); \ |
|
fprintf(stderr, "You may be out of VRAM. Please check if you have enough.\n");\ |
|
exit(1); \ |
|
} \ |
|
} while (0) |
|
|
|
#define CLBLAST_CHECK(err) \ |
|
do { \ |
|
CLBlastStatusCode err_ = (err); \ |
|
if (err_ != CLBlastSuccess) { \ |
|
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ |
|
#err, err_, __FILE__, __LINE__); \ |
|
fprintf(stderr, "You may be out of VRAM. Please check if you have enough.\n");\ |
|
exit(1); \ |
|
} \ |
|
} while (0) |
|
|
|
std::array<std::string, 5> dequant_str_keys = { |
|
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC" |
|
}; |
|
|
|
std::array<std::string, 30> dequant_str_values = { |
|
"dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", |
|
"dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", |
|
"dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", |
|
"dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", |
|
"dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", |
|
"convert_row_f16", "half", "1", "1", "convert_f16" |
|
}; |
|
|
|
std::array<std::string, 30> dequant_mul_mat_vec_str_values = { |
|
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", |
|
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", |
|
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", |
|
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", |
|
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", |
|
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" |
|
}; |
|
|
|
std::array<std::string, 2> mul_str_keys = { |
|
"KERNEL_NAME", "TYPE" |
|
}; |
|
std::array<std::string, 2> mul_str_values = { |
|
"mul_f32", "float" |
|
}; |
|
|
|
static std::string& replace(std::string& s, const std::string& from, const std::string& to) { |
|
size_t pos = 0; |
|
while ((pos = s.find(from, pos)) != std::string::npos) { |
|
s.replace(pos, from.length(), to); |
|
pos += to.length(); |
|
} |
|
return s; |
|
} |
|
|
|
static std::string generate_kernels() { |
|
std::stringstream src; |
|
src << program_source << '\n'; |
|
src << k_quants_source << '\n'; |
|
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) { |
|
std::string dequant_kernel = dequant_template; |
|
std::string dmmv_kernel = dequant_mul_mat_vec_template; |
|
for (size_t j = 0; j < dequant_str_keys.size(); j++) { |
|
replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]); |
|
replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]); |
|
} |
|
src << dequant_kernel << '\n'; |
|
src << dmmv_kernel << '\n'; |
|
} |
|
for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) { |
|
std::string mul_kernel = mul_template; |
|
for (size_t j = 0; j < mul_str_keys.size(); j++) { |
|
replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]); |
|
} |
|
src << mul_kernel << '\n'; |
|
} |
|
src << add_template << '\n'; |
|
|
|
return src.str(); |
|
} |
|
|
|
static cl_platform_id platform; |
|
static cl_device_id device; |
|
static cl_context context; |
|
static cl_command_queue queue; |
|
static cl_program program; |
|
static cl_kernel convert_row_f16_cl; |
|
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; |
|
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; |
|
static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl; |
|
static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl; |
|
static cl_kernel mul_f32_cl; |
|
static cl_kernel add_f32_cl; |
|
static bool fp16_support; |
|
|
|
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { |
|
cl_program p; |
|
char *program_log; |
|
size_t program_size; |
|
size_t log_size; |
|
int err; |
|
|
|
program_size = strlen(program_buffer); |
|
|
|
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); |
|
if(err < 0) { |
|
fprintf(stderr, "OpenCL error creating program"); |
|
exit(1); |
|
} |
|
|
|
std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math " |
|
"-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 " |
|
"-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION); |
|
|
|
err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL); |
|
if(err < 0) { |
|
|
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); |
|
program_log = (char*) malloc(log_size + 1); |
|
program_log[log_size] = '\0'; |
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); |
|
fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log); |
|
free(program_log); |
|
exit(1); |
|
} |
|
|
|
return p; |
|
} |
|
|
|
void ggml_cl_init(void) { |
|
static bool initialized = false; |
|
if (initialized) { |
|
return; |
|
} |
|
initialized = true; |
|
|
|
cl_int err; |
|
|
|
struct cl_device; |
|
struct cl_platform { |
|
cl_platform_id id; |
|
unsigned number; |
|
char name[128]; |
|
char vendor[128]; |
|
struct cl_device * devices; |
|
unsigned n_devices; |
|
struct cl_device * default_device; |
|
}; |
|
|
|
struct cl_device { |
|
struct cl_platform * platform; |
|
cl_device_id id; |
|
unsigned number; |
|
cl_device_type type; |
|
char name[128]; |
|
}; |
|
|
|
enum { NPLAT = 16, NDEV = 16 }; |
|
|
|
struct cl_platform platforms[NPLAT]; |
|
unsigned n_platforms = 0; |
|
struct cl_device devices[NDEV]; |
|
unsigned n_devices = 0; |
|
struct cl_device * default_device = NULL; |
|
|
|
platform = NULL; |
|
device = NULL; |
|
|
|
cl_platform_id platform_ids[NPLAT]; |
|
CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms)); |
|
|
|
for (unsigned i = 0; i < n_platforms; i++) { |
|
struct cl_platform * p = &platforms[i]; |
|
p->number = i; |
|
p->id = platform_ids[i]; |
|
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL)); |
|
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL)); |
|
|
|
cl_device_id device_ids[NDEV]; |
|
cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices); |
|
if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) { |
|
p->n_devices = 0; |
|
} else { |
|
CL_CHECK(clGetDeviceIDsError); |
|
} |
|
p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL; |
|
p->default_device = NULL; |
|
|
|
for (unsigned j = 0; j < p->n_devices; j++) { |
|
struct cl_device * d = &devices[n_devices]; |
|
d->number = n_devices++; |
|
d->id = device_ids[j]; |
|
d->platform = p; |
|
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL)); |
|
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL)); |
|
printf("\nPlatform:%d Device:%d - %s with %s",i,j,p->name,d->name); |
|
|
|
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) { |
|
p->default_device = d; |
|
} |
|
} |
|
|
|
if (default_device == NULL && p->default_device != NULL) { |
|
default_device = p->default_device; |
|
} |
|
} |
|
|
|
printf("\n\n"); |
|
|
|
if (n_devices == 0) { |
|
fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n"); |
|
exit(1); |
|
} |
|
|
|
char * user_platform_string = getenv("GGML_OPENCL_PLATFORM"); |
|
char * user_device_string = getenv("GGML_OPENCL_DEVICE"); |
|
int user_platform_number = -1; |
|
int user_device_number = -1; |
|
|
|
unsigned n; |
|
if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) { |
|
user_platform_number = (int)n; |
|
} |
|
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) { |
|
user_device_number = (int)n; |
|
} |
|
if (user_platform_number != -1 && user_device_number != -1) { |
|
cl_platform* platform = &platforms[user_platform_number]; |
|
if ((unsigned)user_device_number >= platform->n_devices) { |
|
fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number); |
|
exit(1); |
|
} |
|
default_device = &platform->devices[user_device_number]; |
|
} else { |
|
|
|
struct cl_device * selected_devices = devices; |
|
unsigned n_selected_devices = n_devices; |
|
|
|
if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) { |
|
for (unsigned i = 0; i < n_platforms; i++) { |
|
struct cl_platform * p = &platforms[i]; |
|
if (strstr(p->name, user_platform_string) != NULL || |
|
strstr(p->vendor, user_platform_string) != NULL) { |
|
user_platform_number = (int)i; |
|
break; |
|
} |
|
} |
|
if (user_platform_number == -1) { |
|
fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string); |
|
exit(1); |
|
} |
|
} |
|
if (user_platform_number != -1) { |
|
struct cl_platform * p = &platforms[user_platform_number]; |
|
selected_devices = p->devices; |
|
n_selected_devices = p->n_devices; |
|
default_device = p->default_device; |
|
if (n_selected_devices == 0) { |
|
fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name); |
|
exit(1); |
|
} |
|
} |
|
|
|
if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) { |
|
for (unsigned i = 0; i < n_selected_devices; i++) { |
|
struct cl_device * d = &selected_devices[i]; |
|
if (strstr(d->name, user_device_string) != NULL) { |
|
user_device_number = d->number; |
|
break; |
|
} |
|
} |
|
if (user_device_number == -1) { |
|
fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string); |
|
exit(1); |
|
} |
|
} |
|
if (user_device_number != -1) { |
|
selected_devices = &devices[user_device_number]; |
|
n_selected_devices = 1; |
|
default_device = &selected_devices[0]; |
|
} |
|
|
|
GGML_ASSERT(n_selected_devices > 0); |
|
|
|
if (default_device == NULL) { |
|
default_device = &selected_devices[0]; |
|
} |
|
} |
|
|
|
fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name); |
|
fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name); |
|
if (default_device->type != CL_DEVICE_TYPE_GPU) { |
|
fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name); |
|
} |
|
|
|
platform = default_device->platform->id; |
|
device = default_device->id; |
|
|
|
size_t ext_str_size; |
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size); |
|
char *ext_buffer = (char *)alloca(ext_str_size + 1); |
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL); |
|
ext_buffer[ext_str_size] = '\0'; |
|
|
|
|
|
fp16_support = false; |
|
|
|
|
|
cl_context_properties properties[] = { |
|
(intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0 |
|
}; |
|
|
|
CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err)); |
|
|
|
CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err), |
|
(err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err : |
|
(queue = clCreateCommandQueue(context, device, 0, &err), err) |
|
))); |
|
|
|
const std::string kernel_src = generate_kernels(); |
|
|
|
program = build_program_from_source(context, device, kernel_src.c_str()); |
|
|
|
|
|
CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err)); |
|
|
|
|
|
CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err)); |
|
CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err)); |
|
CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err)); |
|
CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err)); |
|
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); |
|
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); |
|
CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err)); |
|
CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err)); |
|
CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err)); |
|
CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err)); |
|
CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err)); |
|
|
|
|
|
CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); |
|
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err)); |
|
CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err)); |
|
|
|
|
|
CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err)); |
|
|
|
CL_CHECK((add_f32_cl = clCreateKernel(program, "add_f32", &err), err)); |
|
} |
|
|
|
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { |
|
switch (type) { |
|
case GGML_TYPE_Q4_0: |
|
return &dequantize_row_q4_0_cl; |
|
case GGML_TYPE_Q4_1: |
|
return &dequantize_row_q4_1_cl; |
|
case GGML_TYPE_Q5_0: |
|
return &dequantize_row_q5_0_cl; |
|
case GGML_TYPE_Q5_1: |
|
return &dequantize_row_q5_1_cl; |
|
case GGML_TYPE_Q8_0: |
|
return &dequantize_row_q8_0_cl; |
|
case GGML_TYPE_Q2_K: |
|
return &dequantize_block_q2_k_cl; |
|
case GGML_TYPE_Q3_K: |
|
return &dequantize_block_q3_k_cl; |
|
case GGML_TYPE_Q4_K: |
|
return &dequantize_block_q4_k_cl; |
|
case GGML_TYPE_Q5_K: |
|
return &dequantize_block_q5_k_cl; |
|
case GGML_TYPE_Q6_K: |
|
return &dequantize_block_q6_k_cl; |
|
case GGML_TYPE_F16: |
|
return &convert_row_f16_cl; |
|
default: |
|
return nullptr; |
|
} |
|
} |
|
|
|
static size_t ggml_cl_global_denom(ggml_type type) { |
|
switch (type) { |
|
case GGML_TYPE_Q4_0: |
|
case GGML_TYPE_Q4_1: |
|
case GGML_TYPE_Q5_0: |
|
case GGML_TYPE_Q5_1: |
|
case GGML_TYPE_Q8_0: |
|
return 1; |
|
case GGML_TYPE_Q2_K: |
|
case GGML_TYPE_Q3_K: |
|
return 4; |
|
case GGML_TYPE_Q4_K: |
|
return 8; |
|
case GGML_TYPE_Q5_K: |
|
case GGML_TYPE_Q6_K: |
|
return 4; |
|
case GGML_TYPE_F16: |
|
default: |
|
return 1; |
|
} |
|
} |
|
|
|
static size_t ggml_cl_local_size(ggml_type type) { |
|
switch (type) { |
|
case GGML_TYPE_Q4_0: |
|
case GGML_TYPE_Q4_1: |
|
case GGML_TYPE_Q5_0: |
|
case GGML_TYPE_Q5_1: |
|
case GGML_TYPE_Q8_0: |
|
return 0; |
|
case GGML_TYPE_Q2_K: |
|
case GGML_TYPE_Q3_K: |
|
return 64; |
|
case GGML_TYPE_Q4_K: |
|
return 32; |
|
case GGML_TYPE_Q5_K: |
|
case GGML_TYPE_Q6_K: |
|
return 64; |
|
case GGML_TYPE_F16: |
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) { |
|
switch (type) { |
|
case GGML_TYPE_Q4_0: |
|
return &dequantize_mul_mat_vec_q4_0_cl; |
|
case GGML_TYPE_Q4_1: |
|
return &dequantize_mul_mat_vec_q4_1_cl; |
|
case GGML_TYPE_Q5_0: |
|
return &dequantize_mul_mat_vec_q5_0_cl; |
|
case GGML_TYPE_Q5_1: |
|
return &dequantize_mul_mat_vec_q5_1_cl; |
|
case GGML_TYPE_Q8_0: |
|
return &dequantize_mul_mat_vec_q8_0_cl; |
|
case GGML_TYPE_F16: |
|
return &convert_mul_mat_vec_f16_cl; |
|
case GGML_TYPE_Q2_K: |
|
return &dequantize_mul_mat_vec_q2_K_cl; |
|
case GGML_TYPE_Q3_K: |
|
return &dequantize_mul_mat_vec_q3_K_cl; |
|
case GGML_TYPE_Q4_K: |
|
return &dequantize_mul_mat_vec_q4_K_cl; |
|
case GGML_TYPE_Q5_K: |
|
return &dequantize_mul_mat_vec_q5_K_cl; |
|
case GGML_TYPE_Q6_K: |
|
return &dequantize_mul_mat_vec_q6_K_cl; |
|
default: |
|
return nullptr; |
|
} |
|
} |
|
|
|
|
|
#define MAX_CL_BUFFERS 400 |
|
|
|
struct scoped_spin_lock { |
|
std::atomic_flag& lock; |
|
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { |
|
while (lock.test_and_set(std::memory_order_acquire)) { |
|
; |
|
} |
|
} |
|
~scoped_spin_lock() { |
|
lock.clear(std::memory_order_release); |
|
} |
|
scoped_spin_lock(const scoped_spin_lock&) = delete; |
|
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; |
|
}; |
|
|
|
struct cl_buffer { |
|
cl_mem mem; |
|
size_t size = 0; |
|
}; |
|
|
|
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS]; |
|
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT; |
|
|
|
static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) { |
|
scoped_spin_lock lock(g_cl_pool_lock); |
|
cl_int err; |
|
|
|
int best_i = -1; |
|
size_t best_size = std::numeric_limits<size_t>::max(); |
|
int worst_i = -1; |
|
size_t worst_size = 0; |
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) { |
|
cl_buffer &b = g_cl_buffer_pool[i]; |
|
if (b.size > 0 && b.size >= size && b.size < best_size) |
|
{ |
|
best_i = i; |
|
best_size = b.size; |
|
} |
|
if (b.size > 0 && b.size > worst_size) |
|
{ |
|
worst_i = i; |
|
worst_size = b.size; |
|
} |
|
} |
|
if(best_i!=-1) |
|
{ |
|
cl_buffer& b = g_cl_buffer_pool[best_i]; |
|
cl_mem mem = b.mem; |
|
*actual_size = b.size; |
|
b.size = 0; |
|
return mem; |
|
} |
|
if(worst_i!=-1) |
|
{ |
|
cl_buffer& b = g_cl_buffer_pool[worst_i]; |
|
cl_mem mem = b.mem; |
|
b.size = 0; |
|
clReleaseMemObject(mem); |
|
} |
|
cl_mem mem; |
|
CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err)); |
|
*actual_size = size; |
|
return mem; |
|
} |
|
|
|
static void ggml_cl_pool_free(cl_mem mem, size_t size) { |
|
scoped_spin_lock lock(g_cl_pool_lock); |
|
|
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) { |
|
cl_buffer& b = g_cl_buffer_pool[i]; |
|
if (b.size == 0) { |
|
b.mem = mem; |
|
b.size = size; |
|
return; |
|
} |
|
} |
|
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n"); |
|
clReleaseMemObject(mem); |
|
} |
|
|
|
void ggml_cl_free_data(const struct ggml_tensor* tensor) { |
|
if (!tensor->clblast_offload_gpu) { |
|
return; |
|
} |
|
|
|
cl_mem mem = (cl_mem)tensor->extra; |
|
clReleaseMemObject(mem); |
|
} |
|
|
|
static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) { |
|
cl_int err; |
|
const uint64_t ne0 = src->ne[0]; |
|
const uint64_t ne1 = src->ne[1]; |
|
const uint64_t nb0 = src->nb[0]; |
|
const uint64_t nb1 = src->nb[1]; |
|
const uint64_t nb2 = src->nb[2]; |
|
const uint64_t nb3 = src->nb[3]; |
|
const enum ggml_type type = src->type; |
|
const size_t ts = ggml_type_size(type); |
|
const size_t bs = ggml_blck_size(type); |
|
const uint64_t row_size = ts*ne0/bs; |
|
|
|
const char * x = (const char *) src->data + i2*nb2 + i3*nb3; |
|
if (nb0 == ts && nb1 == row_size) { |
|
return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev); |
|
} |
|
if (nb0 == ts) { |
|
const size_t buffer_origin[3] = { offset, 0, 0 }; |
|
const size_t host_origin[3] = { 0, 0, 0 }; |
|
const size_t region[3] = { row_size, ne1, 1 }; |
|
return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev); |
|
} |
|
std::vector<cl_event> events; |
|
if (ev && ne1>1) events.reserve(ne1-1); |
|
for (uint64_t i1 = 0; i1 < ne1; i1++) { |
|
|
|
const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 }; |
|
const size_t host_origin[3] = { 0, 0, 0 }; |
|
const size_t region[3] = { ts, ne0/bs, 1 }; |
|
|
|
if (ev && i1) { |
|
events.push_back(*ev); |
|
} |
|
cl_uint nevents = i1 == ne1-1 ? events.size() : 0U; |
|
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev); |
|
if (err != CL_SUCCESS) { |
|
for (auto event : events) { |
|
clReleaseEvent(event); |
|
} |
|
return err; |
|
} |
|
} |
|
for (auto event : events) { |
|
CL_CHECK(clReleaseEvent(event)); |
|
} |
|
return CL_SUCCESS; |
|
} |
|
|
|
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { |
|
GGML_ASSERT(src1->clblast_offload_gpu); |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
const int64_t ne12 = src1->ne[2]; |
|
const int64_t ne13 = src1->ne[3]; |
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
size_t x_size; |
|
size_t d_size; |
|
|
|
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); |
|
cl_mem d_Y = (cl_mem) src1->extra; |
|
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); |
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
cl_event ev; |
|
|
|
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev)); |
|
|
|
const int64_t i13 = i03%ne13; |
|
const int64_t i12 = i02%ne12; |
|
const int i1 = i13*ne12*ne11 + i12*ne11; |
|
|
|
cl_int x_offset = 0; |
|
cl_int y_offset = i1*ne10; |
|
cl_int d_offset = 0; |
|
|
|
size_t global = ne00 * ne01; |
|
cl_int ky = ne10 * ne11; |
|
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X)); |
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset)); |
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y)); |
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset)); |
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D)); |
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset)); |
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky)); |
|
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); |
|
|
|
CL_CHECK(clReleaseEvent(ev)); |
|
CL_CHECK(clFinish(queue)); |
|
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL)); |
|
} |
|
} |
|
ggml_cl_pool_free(d_X, x_size); |
|
ggml_cl_pool_free(d_D, d_size); |
|
} |
|
|
|
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { |
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); |
|
ggml_cl_mul_f32(src0, src1, dst); |
|
} |
|
|
|
static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { |
|
GGML_ASSERT(src1->clblast_offload_gpu); |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
const int64_t ne12 = src1->ne[2]; |
|
const int64_t ne13 = src1->ne[3]; |
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
size_t x_size; |
|
size_t d_size; |
|
|
|
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); |
|
cl_mem d_Y = (cl_mem) src1->extra; |
|
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); |
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
cl_event ev; |
|
|
|
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev)); |
|
|
|
const int64_t i13 = i03%ne13; |
|
const int64_t i12 = i02%ne12; |
|
const int i1 = i13*ne12*ne11 + i12*ne11; |
|
|
|
cl_int x_offset = 0; |
|
cl_int y_offset = i1*ne10; |
|
cl_int d_offset = 0; |
|
|
|
size_t global = ne00 * ne01; |
|
cl_int ky = ne10 * ne11; |
|
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 0, sizeof(cl_mem), &d_X)); |
|
CL_CHECK(clSetKernelArg(add_f32_cl, 1, sizeof(cl_int), &x_offset)); |
|
CL_CHECK(clSetKernelArg(add_f32_cl, 2, sizeof(cl_mem), &d_Y)); |
|
CL_CHECK(clSetKernelArg(add_f32_cl, 3, sizeof(cl_int), &y_offset)); |
|
CL_CHECK(clSetKernelArg(add_f32_cl, 4, sizeof(cl_mem), &d_D)); |
|
CL_CHECK(clSetKernelArg(add_f32_cl, 5, sizeof(cl_int), &d_offset)); |
|
CL_CHECK(clSetKernelArg(add_f32_cl, 6, sizeof(cl_int), &ky)); |
|
CL_CHECK(clEnqueueNDRangeKernel(queue, add_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); |
|
|
|
CL_CHECK(clReleaseEvent(ev)); |
|
CL_CHECK(clFinish(queue)); |
|
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL)); |
|
} |
|
} |
|
ggml_cl_pool_free(d_X, x_size); |
|
ggml_cl_pool_free(d_D, d_size); |
|
} |
|
|
|
void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { |
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); |
|
ggml_cl_add_f32(src0, src1, dst); |
|
} |
|
|
|
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
const int64_t ne12 = src1->ne[2]; |
|
const int64_t ne13 = src1->ne[3]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
|
|
const int64_t r2 = ne12 / ne02; |
|
const int64_t r3 = ne13 / ne03; |
|
|
|
const float alpha = 1.0f; |
|
const float beta = 0.0f; |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
|
|
size_t x_size; |
|
size_t y_size; |
|
size_t d_size; |
|
cl_mem d_X; |
|
if (src0->clblast_offload_gpu) { |
|
d_X = (cl_mem) src0->extra; |
|
} else { |
|
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); |
|
} |
|
cl_mem d_Y = src1->clblast_offload_gpu ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); |
|
cl_mem d_D = dst->clblast_offload_gpu ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); |
|
|
|
size_t x_offset = 0; |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
if (src0->clblast_offload_gpu) { |
|
x_offset = (i03 * ne02 + i02) * x_ne; |
|
} else { |
|
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); |
|
} |
|
|
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { |
|
|
|
if (!src1->clblast_offload_gpu) { |
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); |
|
} |
|
|
|
CL_CHECK(clFinish(queue)); |
|
|
|
|
|
cl_event ev_sgemm; |
|
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor, |
|
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, |
|
ne01, ne11, ne10, |
|
alpha, |
|
d_X, x_offset, ne00, |
|
d_Y, 0, ne10, |
|
beta, |
|
d_D, 0, ne01, |
|
&queue, &ev_sgemm); |
|
|
|
if (status != clblast::StatusCode::kSuccess) { |
|
printf("\nF32 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); |
|
GGML_ASSERT(false); |
|
} |
|
|
|
|
|
if (!dst->clblast_offload_gpu) { |
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); |
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (!src0->clblast_offload_gpu) { |
|
ggml_cl_pool_free(d_X, x_size); |
|
} |
|
if (!src1->clblast_offload_gpu) { |
|
ggml_cl_pool_free(d_Y, y_size); |
|
} |
|
if (!dst->clblast_offload_gpu) { |
|
ggml_cl_pool_free(d_D, d_size); |
|
} |
|
} |
|
|
|
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { |
|
GGML_ASSERT(fp16_support); |
|
|
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
const int64_t ne12 = src1->ne[2]; |
|
const int64_t ne13 = src1->ne[3]; |
|
|
|
const int nb10 = src1->nb[0]; |
|
const int nb11 = src1->nb[1]; |
|
const int nb12 = src1->nb[2]; |
|
const int nb13 = src1->nb[3]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
|
|
const int64_t r2 = ne12 / ne02; |
|
const int64_t r3 = ne13 / ne03; |
|
|
|
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f); |
|
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f); |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
|
|
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne); |
|
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne); |
|
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata; |
|
|
|
size_t x_size; |
|
size_t y_size; |
|
size_t d_size; |
|
cl_mem d_X; |
|
if (src0->clblast_offload_gpu) { |
|
d_X = (cl_mem) src0->extra; |
|
} else { |
|
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); |
|
} |
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size); |
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size); |
|
|
|
bool src1_cont_rows = nb10 == sizeof(float); |
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); |
|
|
|
size_t x_offset = 0; |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
if (src0->clblast_offload_gpu) { |
|
x_offset = (i03 * ne02 + i02) * x_ne; |
|
} else { |
|
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); |
|
} |
|
|
|
|
|
|
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { |
|
|
|
|
|
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12; |
|
if (src1_cont_rows) { |
|
if (src1_cont_cols) { |
|
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); |
|
} |
|
else { |
|
for (int64_t i11 = 0; i11 < ne11; i11++) { |
|
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10); |
|
} |
|
} |
|
} |
|
else { |
|
for (int64_t i11 = 0; i11 < ne11; i11++) { |
|
for (int64_t i10 = 0; i10 < ne10; i10++) { |
|
|
|
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10)); |
|
} |
|
} |
|
} |
|
|
|
|
|
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL)); |
|
|
|
CL_CHECK(clFinish(queue)); |
|
|
|
|
|
cl_event ev_sgemm; |
|
clblast::StatusCode status = (clblast::StatusCode)CLBlastHgemm((CLBlastLayout)clblast::Layout::kColMajor, |
|
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, |
|
ne01, ne11, ne10, |
|
alpha, |
|
d_X, x_offset, ne00, |
|
d_Y, 0, ne10, |
|
beta, |
|
d_D, 0, ne01, |
|
&queue, &ev_sgemm); |
|
|
|
if (status != clblast::StatusCode::kSuccess) { |
|
printf("\nF16 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); |
|
GGML_ASSERT(false); |
|
} |
|
|
|
|
|
if (!dst->clblast_offload_gpu) { |
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL)); |
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); |
|
ggml_fp16_to_fp32_row(tmp, d, d_ne); |
|
} else { |
|
|
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (!src0->clblast_offload_gpu) { |
|
ggml_cl_pool_free(d_X, x_size); |
|
} |
|
ggml_cl_pool_free(d_Y, y_size); |
|
ggml_cl_pool_free(d_D, d_size); |
|
} |
|
|
|
static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { |
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t ne01 = src0->ne[1]; |
|
const int64_t ne02 = src0->ne[2]; |
|
const int64_t ne03 = src0->ne[3]; |
|
|
|
const int64_t ne10 = src1->ne[0]; |
|
const int64_t ne11 = src1->ne[1]; |
|
const int64_t ne12 = src1->ne[2]; |
|
const int64_t ne13 = src1->ne[3]; |
|
|
|
const int nb2 = dst->nb[2]; |
|
const int nb3 = dst->nb[3]; |
|
const ggml_type type = src0->type; |
|
const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0; |
|
|
|
const int64_t r2 = ne12 / ne02; |
|
const int64_t r3 = ne13 / ne03; |
|
|
|
const float alpha = 1.0f; |
|
const float beta = 0.0f; |
|
const int x_ne = ne01 * ne00; |
|
const int y_ne = ne11 * ne10; |
|
const int d_ne = ne11 * ne01; |
|
const int x_bps = x_ne / ggml_blck_size(type); |
|
const size_t q_sz = ggml_type_size(type) * x_bps; |
|
|
|
size_t x_size; |
|
size_t y_size; |
|
size_t d_size; |
|
size_t q_size; |
|
cl_mem d_X; |
|
if (!mul_mat_vec) { |
|
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); |
|
} |
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); |
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); |
|
cl_mem d_Q; |
|
if (!src0->clblast_offload_gpu) { |
|
d_Q = ggml_cl_pool_malloc(q_sz, &q_size); |
|
} |
|
|
|
cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type); |
|
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); |
|
if(to_fp32_cl==nullptr) |
|
{ |
|
printf("\nOpenCL: Unsupported Tensor Type Detected: %d\n",type); |
|
} |
|
GGML_ASSERT(to_fp32_cl != nullptr); |
|
|
|
const size_t global_denom = ggml_cl_global_denom(type); |
|
const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type); |
|
|
|
size_t ev_idx = 0; |
|
std::vector<cl_event> events; |
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) { |
|
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { |
|
for (int64_t i02 = 0; i02 < ne02; i02++) { |
|
|
|
if (!src0->clblast_offload_gpu) { |
|
events.emplace_back(); |
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); |
|
} else if (src0->clblast_offload_gpu) { |
|
d_Q = (cl_mem) src0->extra; |
|
} else { |
|
GGML_ASSERT(false); |
|
} |
|
|
|
if (!mul_mat_vec) { |
|
|
|
const size_t global = x_ne / global_denom; |
|
const size_t offset = src0->clblast_offload_gpu ? (i03 * ne02 + i02) * x_bps : 0; |
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); |
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); |
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); |
|
} |
|
|
|
int64_t i12 = i02 * r2; |
|
int64_t e12 = i12 + r2; |
|
events.reserve(e12 - i12); |
|
for (; i12 < e12; i12++) { |
|
if (mul_mat_vec) { |
|
|
|
events.emplace_back(); |
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++)); |
|
|
|
|
|
const size_t global = ne01 * local; |
|
const size_t offset = src0->clblast_offload_gpu ? (i03 * ne02 + i02) * x_bps : 0; |
|
const cl_int ncols = ne00; |
|
events.emplace_back(); |
|
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); |
|
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL)); |
|
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y)); |
|
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D)); |
|
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols)); |
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++)); |
|
} else { |
|
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); |
|
|
|
|
|
CL_CHECK(clFinish(queue)); |
|
|
|
|
|
events.emplace_back(); |
|
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor, |
|
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, |
|
ne01, ne11, ne10, |
|
alpha, |
|
d_X, 0, ne00, |
|
d_Y, 0, ne10, |
|
beta, |
|
d_D, 0, ne01, |
|
&queue, events.data() + ev_idx++); |
|
|
|
if (status != clblast::StatusCode::kSuccess) { |
|
printf("\nQF32 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); |
|
GGML_ASSERT(false); |
|
} |
|
} |
|
|
|
|
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); |
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL)); |
|
for (auto *event : events) { |
|
clReleaseEvent(event); |
|
} |
|
|
|
ev_idx = 0; |
|
events.clear(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (!mul_mat_vec) { |
|
ggml_cl_pool_free(d_X, x_size); |
|
} |
|
ggml_cl_pool_free(d_Y, y_size); |
|
ggml_cl_pool_free(d_D, d_size); |
|
if (!src0->clblast_offload_gpu) { |
|
ggml_cl_pool_free(d_Q, q_size); |
|
} |
|
} |
|
|
|
|
|
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) { |
|
const int64_t ne10 = src1->ne[0]; |
|
|
|
const int64_t ne0 = dst->ne[0]; |
|
const int64_t ne1 = dst->ne[1]; |
|
|
|
|
|
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && |
|
src1->type == GGML_TYPE_F32 && |
|
dst->type == GGML_TYPE_F32 && |
|
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->clblast_offload_gpu)) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * ) { |
|
|
|
if (!fp16_support) { |
|
return false; |
|
} |
|
|
|
size_t src0_sz = ggml_nbytes(src0); |
|
size_t src1_sz = ggml_nbytes(src1); |
|
|
|
|
|
size_t mul_mat_q_transfer = src0_sz + src1_sz; |
|
|
|
|
|
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1); |
|
|
|
|
|
|
|
return mul_mat_f16_transfer < mul_mat_q_transfer; |
|
} |
|
|
|
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) { |
|
GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst)); |
|
|
|
if (src0->type == GGML_TYPE_F32) { |
|
ggml_cl_mul_mat_f32(src0, src1, dst); |
|
} |
|
else if (src0->type == GGML_TYPE_F16) { |
|
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) { |
|
ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize); |
|
} |
|
else { |
|
ggml_cl_mul_mat_q_f32(src0, src1, dst); |
|
} |
|
} |
|
else if (ggml_is_quantized(src0->type)) { |
|
ggml_cl_mul_mat_q_f32(src0, src1, dst); |
|
} |
|
else { |
|
GGML_ASSERT(false); |
|
} |
|
} |
|
|
|
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { |
|
if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) { |
|
return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]); |
|
} |
|
return 0; |
|
} |
|
|
|
void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) { |
|
const int64_t ne0 = tensor->ne[0]; |
|
const int64_t ne1 = tensor->ne[1]; |
|
const int64_t ne2 = tensor->ne[2]; |
|
const int64_t ne3 = tensor->ne[3]; |
|
|
|
const ggml_type type = tensor->type; |
|
const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type)); |
|
const size_t q_sz = s_sz * (size_t) (ne2 * ne3); |
|
|
|
size_t q_size; |
|
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size); |
|
|
|
tensor->data = data; |
|
|
|
size_t offset = 0; |
|
for (int64_t i3 = 0; i3 < ne3; i3++) { |
|
for (int64_t i2 = 0; i2 < ne2; i2++) { |
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL)); |
|
offset += s_sz; |
|
} |
|
} |
|
|
|
CL_CHECK(clFinish(queue)); |
|
|
|
tensor->extra = dst; |
|
GGML_ASSERT(tensor->clblast_offload_gpu); |
|
} |
|
|