|
|
|
#ifndef _GNU_SOURCE |
|
#define _GNU_SOURCE |
|
#include <cstdint> |
|
#include <cstdio> |
|
#endif |
|
|
|
#include "llama_v2-util.h" |
|
#include "llama_v2.h" |
|
|
|
#include "ggml_v2.h" |
|
|
|
#ifdef GGML_USE_CUDA |
|
#include "ggml_v2-cuda.h" |
|
#endif |
|
#if defined(GGML_USE_CLBLAST) |
|
#include "ggml_v2-opencl.h" |
|
#endif |
|
|
|
|
|
#include <array> |
|
#include <ctime> |
|
#include <cinttypes> |
|
#include <fstream> |
|
#include <random> |
|
#include <map> |
|
#include <unordered_map> |
|
#include <queue> |
|
#include <cassert> |
|
#include <cstring> |
|
#include <climits> |
|
#include <memory> |
|
#include <algorithm> |
|
#include <initializer_list> |
|
#include <thread> |
|
#include <atomic> |
|
#include <mutex> |
|
#include <sstream> |
|
#include <numeric> |
|
|
|
#define LLAMA_V2_USE_SCRATCH |
|
#define LLAMA_V2_MAX_SCRATCH_BUFFERS 16 |
|
|
|
|
|
enum e_model2 { |
|
MODEL_UNKNOWN_2, |
|
MODEL_7B_2, |
|
MODEL_13B_2, |
|
MODEL_30B_2, |
|
MODEL_65B_2, |
|
}; |
|
|
|
static const size_t MB_2 = 1024*1024; |
|
|
|
|
|
|
|
|
|
|
|
static const std::map<e_model2, size_t> & MEM_REQ_SCRATCH0_2() |
|
{ |
|
static std::map<e_model2, size_t> k_sizes = { |
|
{ MODEL_UNKNOWN_2, 512ull * MB_2 }, |
|
{ MODEL_7B_2, 512ull * MB_2 }, |
|
{ MODEL_13B_2, 512ull * MB_2 }, |
|
{ MODEL_30B_2, 640ull * MB_2 }, |
|
{ MODEL_65B_2, 1024ull * MB_2 }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
static const std::map<e_model2, size_t> & MEM_REQ_SCRATCH1_2() |
|
{ |
|
static std::map<e_model2, size_t> k_sizes = { |
|
{ MODEL_UNKNOWN_2, 512ull * MB_2 }, |
|
{ MODEL_7B_2, 512ull * MB_2 }, |
|
{ MODEL_13B_2, 512ull * MB_2 }, |
|
{ MODEL_30B_2, 640ull * MB_2 }, |
|
{ MODEL_65B_2, 1024ull * MB_2 }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
|
|
static const std::map<e_model2, size_t> & MEM_REQ_KV_SELF_2() |
|
{ |
|
static std::map<e_model2, size_t> k_sizes = { |
|
{ MODEL_UNKNOWN_2, 1026ull * MB_2 }, |
|
{ MODEL_7B_2, 1026ull * MB_2 }, |
|
{ MODEL_13B_2, 1608ull * MB_2 }, |
|
{ MODEL_30B_2, 3124ull * MB_2 }, |
|
{ MODEL_65B_2, 5120ull * MB_2 }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
|
|
|
|
static const std::map<e_model2, size_t> & MEM_REQ_EVAL_2() |
|
{ |
|
static std::map<e_model2, size_t> k_sizes = { |
|
{ MODEL_UNKNOWN_2, 800ull * MB_2 }, |
|
{ MODEL_7B_2, 800ull * MB_2 }, |
|
{ MODEL_13B_2, 1024ull * MB_2 }, |
|
{ MODEL_30B_2, 1280ull * MB_2 }, |
|
{ MODEL_65B_2, 1536ull * MB_2 }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
|
|
struct llama_v2_hparams { |
|
uint32_t n_vocab = 32000; |
|
uint32_t n_ctx = 512; |
|
uint32_t n_embd = 4096; |
|
uint32_t n_mult = 256; |
|
uint32_t n_head = 32; |
|
uint32_t n_layer = 32; |
|
uint32_t n_rot = 64; |
|
enum llama_v2_ftype ftype = LLAMA_V2_FTYPE_MOSTLY_F16; |
|
|
|
bool operator!=(const llama_v2_hparams & other) const { |
|
return memcmp(this, &other, sizeof(llama_v2_hparams)); |
|
} |
|
}; |
|
|
|
struct llama_v2_layer { |
|
|
|
struct ggml_v2_tensor * attention_norm; |
|
|
|
|
|
struct ggml_v2_tensor * wq; |
|
struct ggml_v2_tensor * wk; |
|
struct ggml_v2_tensor * wv; |
|
struct ggml_v2_tensor * wo; |
|
|
|
|
|
struct ggml_v2_tensor * ffn_norm; |
|
|
|
|
|
struct ggml_v2_tensor * w1; |
|
struct ggml_v2_tensor * w2; |
|
struct ggml_v2_tensor * w3; |
|
}; |
|
|
|
struct llama_v2_kv_cache { |
|
struct ggml_v2_tensor * k; |
|
struct ggml_v2_tensor * v; |
|
|
|
struct ggml_v2_context * ctx = NULL; |
|
|
|
llama_v2_ctx_buffer buf; |
|
|
|
int n; |
|
|
|
~llama_v2_kv_cache() { |
|
if (ctx) { |
|
ggml_v2_free(ctx); |
|
} |
|
} |
|
}; |
|
|
|
struct llama_v2_model { |
|
e_model2 type = MODEL_UNKNOWN_2; |
|
|
|
llama_v2_hparams hparams; |
|
|
|
struct ggml_v2_tensor * tok_embeddings; |
|
|
|
struct ggml_v2_tensor * norm; |
|
struct ggml_v2_tensor * output; |
|
|
|
std::vector<llama_v2_layer> layers; |
|
|
|
|
|
struct ggml_v2_context * ctx = NULL; |
|
|
|
|
|
|
|
struct llama_v2_kv_cache kv_self; |
|
|
|
|
|
llama_v2_ctx_buffer buf; |
|
|
|
|
|
std::unique_ptr<llama_v2_mmap> mapping; |
|
|
|
|
|
llama_v2_mlock mlock_buf; |
|
llama_v2_mlock mlock_mmap; |
|
|
|
|
|
std::vector<std::pair<std::string, struct ggml_v2_tensor *>> tensors_by_name; |
|
|
|
~llama_v2_model() { |
|
if (ctx) { |
|
ggml_v2_free(ctx); |
|
} |
|
} |
|
}; |
|
|
|
struct llama_v2_vocab { |
|
using id = int32_t; |
|
using token = std::string; |
|
|
|
struct token_score { |
|
token tok; |
|
float score; |
|
}; |
|
|
|
std::unordered_map<token, id> token_to_id; |
|
std::vector<token_score> id_to_token; |
|
}; |
|
|
|
struct llama_v2_context { |
|
std::mt19937 rng; |
|
|
|
int64_t t_load_us = 0; |
|
int64_t t_start_us = 0; |
|
bool has_evaluated_once = false; |
|
|
|
int64_t t_sample_us = 0; |
|
int64_t t_eval_us = 0; |
|
int64_t t_p_eval_us = 0; |
|
|
|
int32_t n_sample = 0; |
|
int32_t n_eval = 0; |
|
int32_t n_p_eval = 0; |
|
|
|
llama_v2_model model; |
|
llama_v2_vocab vocab; |
|
|
|
size_t mem_per_token = 0; |
|
|
|
|
|
std::vector<float> logits; |
|
bool logits_all = false; |
|
|
|
|
|
std::vector<float> embedding; |
|
|
|
|
|
|
|
llama_v2_ctx_buffer buf_compute; |
|
llama_v2_ctx_buffer buf_scratch[LLAMA_V2_MAX_SCRATCH_BUFFERS]; |
|
|
|
int buf_last = 0; |
|
size_t buf_max_size[LLAMA_V2_MAX_SCRATCH_BUFFERS] = { 0 }; |
|
|
|
void use_buf(struct ggml_v2_context * ctx, int i) { |
|
#if defined(LLAMA_V2_USE_SCRATCH) |
|
size_t last_size = 0; |
|
|
|
if (i == -1) { |
|
last_size = ggml_v2_set_scratch(ctx, { 0, 0, nullptr, }); |
|
} else { |
|
auto & buf = buf_scratch[i]; |
|
last_size = ggml_v2_set_scratch(ctx, { 0, buf.size, buf.addr, }); |
|
} |
|
|
|
if (buf_last >= 0) { |
|
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size); |
|
} |
|
|
|
buf_last = i; |
|
#else |
|
(void) i; |
|
(void) ctx; |
|
#endif |
|
} |
|
|
|
size_t get_buf_max_mem(int i) const { |
|
#if defined(LLAMA_V2_USE_SCRATCH) |
|
return buf_max_size[i]; |
|
#else |
|
(void) i; |
|
return 0; |
|
#endif |
|
} |
|
}; |
|
|
|
template <typename T> |
|
static T checked_mul2(T a, T b) { |
|
T ret = a * b; |
|
if (a != 0 && ret / a != b) { |
|
throw format_old("overflow multiplying %llu * %llu", |
|
(unsigned long long) a, (unsigned long long) b); |
|
} |
|
return ret; |
|
} |
|
|
|
static size_t checked_div2(size_t a, size_t b) { |
|
if (b == 0 || a % b != 0) { |
|
throw format_old("error dividing %zu / %zu", a, b); |
|
} |
|
return a / b; |
|
} |
|
|
|
static std::string llama_v2_format_tensor_shape(const std::vector<uint32_t> & ne) { |
|
char buf[256]; |
|
snprintf(buf, sizeof(buf), "%5u", ne.at(0)); |
|
for (size_t i = 1; i < ne.size(); i++) { |
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i)); |
|
} |
|
return buf; |
|
} |
|
|
|
static size_t llama_v2_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_v2_type type) { |
|
size_t size = ggml_v2_type_size(type); |
|
for (uint32_t dim : ne) { |
|
size = checked_mul2<size_t>(size, dim); |
|
} |
|
return size / ggml_v2_blck_size(type); |
|
} |
|
|
|
struct llama_v2_load_tensor_shard { |
|
std::vector<uint32_t> ne; |
|
size_t size; |
|
enum ggml_v2_type type; |
|
size_t file_idx; |
|
size_t file_off; |
|
|
|
void calc_size() { |
|
size = llama_v2_calc_tensor_size(ne, type); |
|
} |
|
}; |
|
|
|
enum llama_v2_split_type { |
|
SPLIT_NONE_2, |
|
SPLIT_BY_COLUMNS_2, |
|
SPLIT_BY_ROWS_2 |
|
}; |
|
|
|
struct llama_v2_load_tensor { |
|
std::vector<llama_v2_load_tensor_shard> shards; |
|
|
|
std::string name; |
|
enum ggml_v2_type type = GGML_V2_TYPE_F32; |
|
llama_v2_split_type split_type = SPLIT_NONE_2; |
|
std::vector<uint32_t> ne; |
|
size_t size; |
|
struct ggml_v2_tensor * ggml_v2_tensor = NULL; |
|
uint8_t * data; |
|
|
|
llama_v2_load_tensor(const std::string & name) : name(name) {} |
|
|
|
void calc_all() { |
|
calc_type(); |
|
calc_split_type(); |
|
calc_ne(); |
|
calc_size(); |
|
} |
|
|
|
void calc_type() { |
|
const auto & first_shard = shards.at(0); |
|
for (const auto & shard : shards) { |
|
if (shard.type != first_shard.type) { |
|
throw format_old("inconsistent tensor shard type in '%s'", name.c_str()); |
|
} |
|
} |
|
type = first_shard.type; |
|
} |
|
|
|
void calc_split_type() { |
|
if (shards.at(0).ne.size() == 1 || |
|
shards.size() == 1) { |
|
split_type = SPLIT_NONE_2; |
|
} else if (name.find("tok_embeddings.") == 0 || |
|
name.find(".attention.wo.weight") != std::string::npos || |
|
name.find(".feed_forward.w2.weight") != std::string::npos) { |
|
split_type = SPLIT_BY_COLUMNS_2; |
|
} else { |
|
split_type = SPLIT_BY_ROWS_2; |
|
} |
|
} |
|
|
|
void calc_ne() { |
|
const auto & first_shard = shards.at(0); |
|
for (const auto & shard : shards) { |
|
if (shard.ne != first_shard.ne) { |
|
throw format_old("inconsistent tensor shard shape in '%s': first was %s, other was %s", |
|
name.c_str(), llama_v2_format_tensor_shape(first_shard.ne).c_str(), llama_v2_format_tensor_shape(shard.ne).c_str()); |
|
} |
|
} |
|
ne = first_shard.ne; |
|
LLAMA_V2_ASSERT(shards.size() <= UINT32_MAX); |
|
uint32_t n_shards = (uint32_t) shards.size(); |
|
switch (split_type) { |
|
case SPLIT_NONE_2: |
|
ne = first_shard.ne; |
|
break; |
|
case SPLIT_BY_COLUMNS_2: |
|
ne = {checked_mul2<uint32_t>(first_shard.ne[0], n_shards), |
|
first_shard.ne[1]}; |
|
break; |
|
case SPLIT_BY_ROWS_2: |
|
ne = {first_shard.ne[0], |
|
checked_mul2<uint32_t>(first_shard.ne[1], n_shards)}; |
|
break; |
|
} |
|
} |
|
|
|
void calc_size() { |
|
size = llama_v2_calc_tensor_size(ne, type); |
|
} |
|
}; |
|
|
|
struct llama_v2_load_tensors_map { |
|
|
|
std::vector<llama_v2_load_tensor> tensors; |
|
std::unordered_map<std::string, size_t> name_to_idx; |
|
}; |
|
|
|
enum llama_v2_file_version { |
|
LLAMA_V2_FILE_VERSION_GGML, |
|
LLAMA_V2_FILE_VERSION_GGMF_V1, |
|
LLAMA_V2_FILE_VERSION_GGJT_V1, |
|
LLAMA_V2_FILE_VERSION_GGJT_V2, |
|
LLAMA_V2_FILE_VERSION_GGJT_V3, |
|
}; |
|
|
|
struct llama_v2_file_loader { |
|
llama_v2_file file; |
|
llama_v2_file_version file_version; |
|
llama_v2_hparams hparams; |
|
llama_v2_vocab vocab; |
|
|
|
llama_v2_file_loader(const char * fname, size_t file_idx, llama_v2_load_tensors_map & tensors_map) |
|
: file(fname, "rb") { |
|
fprintf(stderr, "llama.cpp: loading model from %s\n", fname); |
|
read_magic(); |
|
read_hparams(); |
|
read_vocab(); |
|
read_tensor_metadata(file_idx, tensors_map); |
|
} |
|
void read_magic() { |
|
uint32_t magic = file.read_u32(); |
|
uint32_t version = 0; |
|
|
|
uint32_t magic_ggjt = 0x67676a74u; |
|
uint32_t magic_ggmf = 0x67676d66u; |
|
uint32_t magic_ggml = 0x67676d6cu; |
|
|
|
if (magic != magic_ggml) { |
|
version = file.read_u32(); |
|
} |
|
|
|
if (magic == magic_ggml && version == 0) { |
|
file_version = LLAMA_V2_FILE_VERSION_GGML; |
|
} else if (magic == magic_ggmf && version == 1) { |
|
file_version = LLAMA_V2_FILE_VERSION_GGMF_V1; |
|
} else if (magic == magic_ggjt && version == 1) { |
|
file_version = LLAMA_V2_FILE_VERSION_GGJT_V1; |
|
} else if (magic == magic_ggjt && version == 2) { |
|
file_version = LLAMA_V2_FILE_VERSION_GGJT_V2; |
|
} else if (magic == magic_ggjt && version == 3) { |
|
file_version = LLAMA_V2_FILE_VERSION_GGJT_V3; |
|
} else { |
|
throw format_old("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?", |
|
magic, version); |
|
} |
|
} |
|
void read_hparams() { |
|
hparams.n_vocab = file.read_u32(); |
|
hparams.n_embd = file.read_u32(); |
|
hparams.n_mult = file.read_u32(); |
|
hparams.n_head = file.read_u32(); |
|
hparams.n_layer = file.read_u32(); |
|
hparams.n_rot = file.read_u32(); |
|
hparams.ftype = (enum llama_v2_ftype) file.read_u32(); |
|
} |
|
void read_vocab() { |
|
vocab.id_to_token.resize(hparams.n_vocab); |
|
|
|
int32_t vocabloops = hparams.n_vocab; |
|
if(vocabloops==32001 && file_version == LLAMA_V2_FILE_VERSION_GGML) |
|
{ |
|
printf("---\n!! WARNING: Model appears to be GPT4ALL v1 model, triggering compatibility fix !!\n---\n"); |
|
vocabloops -= 1; |
|
} |
|
|
|
for (uint32_t i = 0; i < vocabloops; i++) { |
|
uint32_t len = file.read_u32(); |
|
std::string word = file.read_string(len); |
|
|
|
float score = 0.0f; |
|
if (file_version >= LLAMA_V2_FILE_VERSION_GGMF_V1) { |
|
file.read_raw(&score, sizeof(score)); |
|
} |
|
|
|
vocab.token_to_id[word] = i; |
|
|
|
auto & tok_score = vocab.id_to_token[i]; |
|
tok_score.tok = std::move(word); |
|
tok_score.score = score; |
|
} |
|
} |
|
void read_tensor_metadata(size_t file_idx, llama_v2_load_tensors_map & tensors_map) { |
|
while (file.tell() < file.size) { |
|
llama_v2_load_tensor_shard shard; |
|
uint32_t n_dims = file.read_u32(); |
|
uint32_t name_len = file.read_u32(); |
|
shard.type = (enum ggml_v2_type) file.read_u32(); |
|
shard.ne.resize(n_dims); |
|
file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); |
|
std::string name = file.read_string(name_len); |
|
if (n_dims < 1 || n_dims > 2) { |
|
throw format_old("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims); |
|
} |
|
switch (shard.type) { |
|
case GGML_V2_TYPE_F32: |
|
case GGML_V2_TYPE_F16: |
|
case GGML_V2_TYPE_Q4_0: |
|
case GGML_V2_TYPE_Q4_1: |
|
case GGML_V2_TYPE_Q4_2: |
|
case GGML_V2_TYPE_Q4_3: |
|
case GGML_V2_TYPE_Q5_0: |
|
case GGML_V2_TYPE_Q5_1: |
|
case GGML_V2_TYPE_Q8_0: |
|
break; |
|
default: { |
|
throw format_old("unrecognized tensor type %u\n", shard.type); |
|
} |
|
} |
|
|
|
if (file_version >= LLAMA_V2_FILE_VERSION_GGJT_V1) { |
|
|
|
file.seek(-file.tell() & 31, SEEK_CUR); |
|
} |
|
shard.file_idx = file_idx; |
|
shard.file_off = file.tell(); |
|
|
|
shard.calc_size(); |
|
file.seek(shard.size, SEEK_CUR); |
|
|
|
auto it = tensors_map.name_to_idx.find(name); |
|
size_t idx; |
|
if (it != tensors_map.name_to_idx.end()) { |
|
idx = it->second; |
|
} else { |
|
tensors_map.tensors.emplace_back(name); |
|
idx = tensors_map.tensors.size() - 1; |
|
tensors_map.name_to_idx.emplace(name, idx); |
|
} |
|
tensors_map.tensors.at(idx).shards.push_back(shard); |
|
} |
|
} |
|
}; |
|
|
|
struct llama_v2_file_saver { |
|
llama_v2_file file; |
|
llama_v2_file_loader * any_file_loader; |
|
llama_v2_file_saver(const char * fname, llama_v2_file_loader * any_file_loader, enum llama_v2_ftype new_ftype) |
|
: file(fname, "wb"), any_file_loader(any_file_loader) { |
|
fprintf(stderr, "llama.cpp: saving model to %s\n", fname); |
|
write_magic(); |
|
write_hparams(new_ftype); |
|
write_vocab(); |
|
} |
|
void write_magic() { |
|
uint32_t magic_ggjt = 0x67676a74u; |
|
file.write_u32(magic_ggjt); |
|
file.write_u32(LLAMA_V2_FILE_VERSION); |
|
} |
|
void write_hparams(enum llama_v2_ftype new_ftype) { |
|
const llama_v2_hparams & hparams = any_file_loader->hparams; |
|
file.write_u32(hparams.n_vocab); |
|
file.write_u32(hparams.n_embd); |
|
file.write_u32(hparams.n_mult); |
|
file.write_u32(hparams.n_head); |
|
file.write_u32(hparams.n_layer); |
|
file.write_u32(hparams.n_rot); |
|
file.write_u32(new_ftype); |
|
} |
|
void write_vocab() { |
|
if (any_file_loader->file_version == LLAMA_V2_FILE_VERSION_GGML) { |
|
fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n"); |
|
} |
|
uint32_t n_vocab = any_file_loader->hparams.n_vocab; |
|
for (uint32_t i = 0; i < n_vocab; i++) { |
|
const auto & token_score = any_file_loader->vocab.id_to_token.at(i); |
|
file.write_u32((uint32_t) token_score.tok.size()); |
|
file.write_raw(token_score.tok.data(), token_score.tok.size()); |
|
file.write_raw(&token_score.score, sizeof(token_score.score)); |
|
} |
|
} |
|
void write_tensor(llama_v2_load_tensor & tensor, enum ggml_v2_type new_type, const void * new_data, size_t new_size) { |
|
switch (new_type) { |
|
case GGML_V2_TYPE_F32: |
|
case GGML_V2_TYPE_F16: |
|
case GGML_V2_TYPE_Q4_0: |
|
case GGML_V2_TYPE_Q4_1: |
|
case GGML_V2_TYPE_Q4_2: |
|
case GGML_V2_TYPE_Q4_3: |
|
case GGML_V2_TYPE_Q5_0: |
|
case GGML_V2_TYPE_Q5_1: |
|
case GGML_V2_TYPE_Q8_0: |
|
break; |
|
default: LLAMA_V2_ASSERT(false); |
|
} |
|
file.write_u32((uint32_t) tensor.ne.size()); |
|
file.write_u32((uint32_t) tensor.name.size()); |
|
file.write_u32(new_type); |
|
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size()); |
|
file.write_raw(tensor.name.data(), tensor.name.size()); |
|
file.seek(-file.tell() & 31, SEEK_CUR); |
|
LLAMA_V2_ASSERT(new_size == llama_v2_calc_tensor_size(tensor.ne, new_type)); |
|
file.write_raw(new_data, new_size); |
|
} |
|
}; |
|
|
|
struct llama_v2_model_loader { |
|
std::vector<std::unique_ptr<llama_v2_file_loader>> file_loaders; |
|
llama_v2_load_tensors_map tensors_map; |
|
bool use_mmap; |
|
size_t num_ggml_v2_tensors_created = 0; |
|
struct ggml_v2_context * ggml_v2_ctx = NULL; |
|
std::unique_ptr<llama_v2_mmap> mapping; |
|
|
|
llama_v2_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) { |
|
auto * first_file = new llama_v2_file_loader(fname_base.c_str(), 0, tensors_map); |
|
file_loaders.emplace_back(first_file); |
|
uint32_t n_parts = vocab_only ? 1 : guess_n_parts(); |
|
for (uint32_t i = 1; i < n_parts; i++) { |
|
std::string fname = fname_base + "." + std::to_string(i); |
|
auto * ith_file = new llama_v2_file_loader(fname.c_str(), i, tensors_map); |
|
file_loaders.emplace_back(ith_file); |
|
if (ith_file->hparams != first_file->hparams) { |
|
throw format_old("llama.cpp: hparams inconsistent between files"); |
|
} |
|
} |
|
if (!llama_v2_mmap::SUPPORTED) { |
|
use_mmap = false; |
|
} |
|
if (use_mmap && alignment_prevents_mmap()) { |
|
fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n"); |
|
use_mmap = false; |
|
} |
|
this->use_mmap = use_mmap; |
|
for (llama_v2_load_tensor & lt : tensors_map.tensors) { |
|
lt.calc_all(); |
|
} |
|
} |
|
|
|
bool alignment_prevents_mmap() { |
|
for (const llama_v2_load_tensor & lt : tensors_map.tensors) { |
|
for (const llama_v2_load_tensor_shard & shard : lt.shards) { |
|
if (shard.file_off & 3) { |
|
return true; |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
uint32_t guess_n_parts() const { |
|
auto it = tensors_map.name_to_idx.find("tok_embeddings.weight"); |
|
if (it == tensors_map.name_to_idx.end()) { |
|
throw std::string("missing tok_embeddings.weight"); |
|
} |
|
const llama_v2_load_tensor & lt = tensors_map.tensors.at(it->second); |
|
return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0); |
|
} |
|
|
|
void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const { |
|
*ctx_size_p = *mmapped_size_p = 0; |
|
for (const llama_v2_load_tensor & lt : tensors_map.tensors) { |
|
*ctx_size_p += sizeof(struct ggml_v2_tensor) + GGML_V2_OBJECT_SIZE; |
|
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size; |
|
} |
|
} |
|
|
|
struct ggml_v2_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne) { |
|
auto it = tensors_map.name_to_idx.find(name); |
|
if (it == tensors_map.name_to_idx.end()) { |
|
throw format_old("llama.cpp: tensor '%s' is missing from model", name.c_str()); |
|
} |
|
llama_v2_load_tensor & lt = tensors_map.tensors.at(it->second); |
|
if (lt.ne != ne) { |
|
throw format_old("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s", |
|
name.c_str(), llama_v2_format_tensor_shape(ne).c_str(), llama_v2_format_tensor_shape(lt.ne).c_str()); |
|
} |
|
|
|
return get_tensor_for(lt); |
|
} |
|
|
|
struct ggml_v2_tensor * get_tensor_for(llama_v2_load_tensor & lt) { |
|
struct ggml_v2_tensor * tensor; |
|
if (lt.ne.size() == 2) { |
|
tensor = ggml_v2_new_tensor_2d(ggml_v2_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); |
|
} else { |
|
LLAMA_V2_ASSERT(lt.ne.size() == 1); |
|
tensor = ggml_v2_new_tensor_1d(ggml_v2_ctx, lt.type, lt.ne.at(0)); |
|
} |
|
ggml_v2_set_name(tensor, lt.name.c_str()); |
|
LLAMA_V2_ASSERT(lt.ggml_v2_tensor == NULL); |
|
lt.ggml_v2_tensor = tensor; |
|
num_ggml_v2_tensors_created++; |
|
return tensor; |
|
} |
|
|
|
void done_getting_tensors() const { |
|
if (num_ggml_v2_tensors_created != tensors_map.tensors.size()) { |
|
throw std::string("llama.cpp: file contained more tensors than expected"); |
|
} |
|
} |
|
|
|
void load_all_data(llama_v2_progress_callback progress_callback, void * progress_callback_user_data, llama_v2_mlock * lmlock) { |
|
size_t data_size = 0; |
|
for (const llama_v2_load_tensor & lt : tensors_map.tensors) { |
|
data_size += lt.size; |
|
} |
|
|
|
if (use_mmap) { |
|
mapping.reset(new llama_v2_mmap(&file_loaders.at(0)->file)); |
|
if (!lmlock) { |
|
|
|
|
|
progress_callback = NULL; |
|
} |
|
if (lmlock) { |
|
lmlock->init(mapping->addr); |
|
} |
|
} |
|
|
|
size_t done_size = 0; |
|
for (llama_v2_load_tensor & lt : tensors_map.tensors) { |
|
if (progress_callback) { |
|
progress_callback((float) done_size / data_size, progress_callback_user_data); |
|
} |
|
LLAMA_V2_ASSERT(lt.ggml_v2_tensor); |
|
lt.data = (uint8_t *) lt.ggml_v2_tensor->data; |
|
load_data_for(lt); |
|
lt.ggml_v2_tensor->data = lt.data; |
|
done_size += lt.size; |
|
if (use_mmap && lmlock) { |
|
lmlock->grow_to(done_size); |
|
} |
|
} |
|
if (progress_callback) { |
|
progress_callback(1.0f, progress_callback_user_data); |
|
} |
|
} |
|
|
|
void load_data_for(llama_v2_load_tensor & lt) { |
|
if (use_mmap) { |
|
LLAMA_V2_ASSERT(lt.shards.size() == 1); |
|
lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off; |
|
} else if (lt.split_type == SPLIT_NONE_2) { |
|
llama_v2_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file; |
|
file.seek(lt.shards.at(0).file_off, SEEK_SET); |
|
file.read_raw(lt.data, lt.size); |
|
} else if (lt.split_type == SPLIT_BY_ROWS_2) { |
|
size_t offset = 0; |
|
for (llama_v2_load_tensor_shard & shard : lt.shards) { |
|
llama_v2_file & file = file_loaders.at(shard.file_idx)->file; |
|
file.seek(shard.file_off, SEEK_SET); |
|
file.read_raw(lt.data + offset, shard.size); |
|
offset += shard.size; |
|
} |
|
LLAMA_V2_ASSERT(offset == lt.size); |
|
} else if (lt.split_type == SPLIT_BY_COLUMNS_2) { |
|
|
|
std::vector<llama_v2_buffer> tmp_bufs(lt.shards.size()); |
|
for (size_t i = 0; i < lt.shards.size(); i++) { |
|
llama_v2_load_tensor_shard & shard = lt.shards.at(i); |
|
llama_v2_file & file = file_loaders.at(shard.file_idx)->file; |
|
file.seek(shard.file_off, SEEK_SET); |
|
tmp_bufs.at(i).resize(shard.size); |
|
file.read_raw(tmp_bufs.at(i).addr, shard.size); |
|
} |
|
|
|
size_t num_rows = lt.ne.at(1); |
|
size_t per_shard_row_size = lt.shards.at(0).size / num_rows; |
|
size_t out_offset = 0; |
|
for (size_t row = 0; row < num_rows; row++) { |
|
for (llama_v2_buffer & tmp_buf : tmp_bufs) { |
|
memcpy(lt.data + out_offset, |
|
tmp_buf.addr + row * per_shard_row_size, |
|
per_shard_row_size); |
|
out_offset += per_shard_row_size; |
|
} |
|
} |
|
LLAMA_V2_ASSERT(out_offset == lt.size); |
|
} |
|
if (0) { |
|
print_checksum(lt); |
|
} |
|
} |
|
|
|
static void print_checksum(llama_v2_load_tensor & lt) { |
|
uint32_t sum = 0; |
|
for (size_t i = 0; i < lt.size; i++) { |
|
uint8_t byte = lt.data[i]; |
|
sum = byte + (sum << 6) + (sum << 16) - sum; |
|
} |
|
fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum, |
|
llama_v2_format_tensor_shape(lt.ne).c_str(), lt.size); |
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool kv_cache_init( |
|
const struct llama_v2_hparams & hparams, |
|
struct llama_v2_kv_cache & cache, |
|
ggml_v2_type wtype, |
|
int n_ctx) { |
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
|
|
const int64_t n_mem = n_layer*n_ctx; |
|
const int64_t n_elements = n_embd*n_mem; |
|
|
|
cache.buf.resize(2u*n_elements*ggml_v2_type_size(wtype) + 2u*MB_2); |
|
|
|
struct ggml_v2_init_params params; |
|
params.mem_size = cache.buf.size; |
|
params.mem_buffer = cache.buf.addr; |
|
params.no_alloc = false; |
|
|
|
cache.ctx = ggml_v2_init(params); |
|
|
|
if (!cache.ctx) { |
|
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); |
|
return false; |
|
} |
|
|
|
cache.k = ggml_v2_new_tensor_1d(cache.ctx, wtype, n_elements); |
|
cache.v = ggml_v2_new_tensor_1d(cache.ctx, wtype, n_elements); |
|
ggml_v2_set_name(cache.k, "cache_k"); |
|
ggml_v2_set_name(cache.v, "cache_v"); |
|
|
|
return true; |
|
} |
|
|
|
struct llama_v2_context_params llama_v2_context_default_params() { |
|
struct llama_v2_context_params result = { |
|
512, |
|
0, |
|
-1, |
|
true, |
|
false, |
|
false, |
|
true, |
|
false, |
|
false, |
|
nullptr, |
|
nullptr, |
|
}; |
|
|
|
return result; |
|
} |
|
|
|
bool llama_v2_mmap_supported() { |
|
return llama_v2_mmap::SUPPORTED; |
|
} |
|
|
|
bool llama_v2_mlock_supported() { |
|
return llama_v2_mlock::SUPPORTED; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static const char *llama_v2_file_version_name(llama_v2_file_version version) { |
|
switch (version) { |
|
case LLAMA_V2_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)"; |
|
case LLAMA_V2_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)"; |
|
case LLAMA_V2_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)"; |
|
case LLAMA_V2_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)"; |
|
case LLAMA_V2_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)"; |
|
} |
|
|
|
return "unknown"; |
|
} |
|
|
|
static const char *llama_v2_ftype_name(enum llama_v2_ftype ftype) { |
|
switch (ftype) { |
|
case LLAMA_V2_FTYPE_ALL_F32: return "all F32"; |
|
case LLAMA_V2_FTYPE_MOSTLY_F16: return "mostly F16"; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_1_SOME_F16: |
|
return "mostly Q4_1, some F16"; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2"; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3"; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; |
|
default: return "unknown, may not work"; |
|
} |
|
} |
|
|
|
static const char *llama_v2_model_type_name(e_model2 type) { |
|
switch (type) { |
|
case MODEL_7B_2: return "7B"; |
|
case MODEL_13B_2: return "13B"; |
|
case MODEL_30B_2: return "30B"; |
|
case MODEL_65B_2: return "65B"; |
|
default: |
|
printf("\nWARNING: NON-STANDARD LLAMA FILE DETECTED. DEFAULT TO 7B SIZE.\n"); |
|
return "UNKNOWN"; |
|
} |
|
} |
|
|
|
static void llama_v2_model_load_internal( |
|
const std::string & fname, |
|
llama_v2_context & lctx, |
|
int n_ctx, |
|
int n_gpu_layers, |
|
ggml_v2_type memory_type, |
|
bool use_mmap, |
|
bool use_mlock, |
|
bool vocab_only, |
|
llama_v2_progress_callback progress_callback, |
|
void * progress_callback_user_data) { |
|
|
|
lctx.t_start_us = ggml_v2_time_us(); |
|
|
|
std::unique_ptr<llama_v2_model_loader> ml(new llama_v2_model_loader(fname, use_mmap, vocab_only)); |
|
|
|
lctx.vocab = std::move(ml->file_loaders.at(0)->vocab); |
|
auto & model = lctx.model; |
|
model.hparams = ml->file_loaders.at(0)->hparams; |
|
llama_v2_file_version file_version = ml->file_loaders.at(0)->file_version; |
|
auto & hparams = model.hparams; |
|
uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; |
|
|
|
{ |
|
switch (hparams.n_layer) { |
|
case 32: model.type = e_model2::MODEL_7B_2; break; |
|
case 40: model.type = e_model2::MODEL_13B_2; break; |
|
case 60: model.type = e_model2::MODEL_30B_2; break; |
|
case 80: model.type = e_model2::MODEL_65B_2; break; |
|
default: model.type = e_model2::MODEL_UNKNOWN_2; break; |
|
} |
|
|
|
hparams.n_ctx = n_ctx; |
|
} |
|
|
|
{ |
|
fprintf(stderr, "%s: format = %s\n", __func__, llama_v2_file_version_name(file_version)); |
|
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab); |
|
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx); |
|
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); |
|
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); |
|
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); |
|
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); |
|
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); |
|
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_v2_ftype_name(hparams.ftype)); |
|
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); |
|
fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size()); |
|
fprintf(stderr, "%s: model size = %s\n", __func__, llama_v2_model_type_name(model.type)); |
|
} |
|
|
|
if (file_version < LLAMA_V2_FILE_VERSION_GGJT_V2) { |
|
if (hparams.ftype != LLAMA_V2_FTYPE_ALL_F32 && |
|
hparams.ftype != LLAMA_V2_FTYPE_MOSTLY_F16 && |
|
hparams.ftype != LLAMA_V2_FTYPE_MOSTLY_Q8_0) { |
|
printf("\nLegacy LLAMA GGJT v1 compatability changes triggered.\n"); |
|
} |
|
} |
|
|
|
if (file_version < LLAMA_V2_FILE_VERSION_GGJT_V3) { |
|
if (hparams.ftype == LLAMA_V2_FTYPE_MOSTLY_Q4_0 || |
|
hparams.ftype == LLAMA_V2_FTYPE_MOSTLY_Q4_1 || |
|
hparams.ftype == LLAMA_V2_FTYPE_MOSTLY_Q8_0) { |
|
printf("\nLegacy LLAMA GGJT v2 compatability changes triggered.\n"); |
|
} |
|
} |
|
|
|
if (vocab_only) { |
|
return; |
|
} |
|
|
|
auto & ctx = model.ctx; |
|
|
|
size_t ctx_size; |
|
size_t mmapped_size; |
|
ml->calc_sizes(&ctx_size, &mmapped_size); |
|
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/1024.0/1024.0); |
|
|
|
|
|
{ |
|
const size_t scale = memory_type == GGML_V2_TYPE_F32 ? 2 : 1; |
|
|
|
|
|
const size_t mem_required = |
|
ctx_size + |
|
mmapped_size + |
|
MEM_REQ_SCRATCH0_2().at(model.type) + |
|
MEM_REQ_SCRATCH1_2().at(model.type) + |
|
MEM_REQ_EVAL_2().at(model.type); |
|
|
|
|
|
const size_t mem_required_state = |
|
scale*MEM_REQ_KV_SELF_2().at(model.type); |
|
|
|
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, |
|
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); |
|
} |
|
|
|
|
|
{ |
|
lctx.model.buf.resize(ctx_size); |
|
if (use_mlock) { |
|
lctx.model.mlock_buf.init(lctx.model.buf.addr); |
|
lctx.model.mlock_buf.grow_to(lctx.model.buf.size); |
|
} |
|
|
|
struct ggml_v2_init_params params = { |
|
lctx.model.buf.size, |
|
lctx.model.buf.addr, |
|
ml->use_mmap, |
|
}; |
|
|
|
model.ctx = ggml_v2_init(params); |
|
if (!model.ctx) { |
|
throw format_old("ggml_v2_init() failed"); |
|
} |
|
} |
|
|
|
|
|
{ |
|
const uint32_t n_embd = hparams.n_embd; |
|
const uint32_t n_layer = hparams.n_layer; |
|
const uint32_t n_vocab = hparams.n_vocab; |
|
|
|
ml->ggml_v2_ctx = ctx; |
|
|
|
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}); |
|
model.norm = ml->get_tensor("norm.weight", {n_embd}); |
|
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}); |
|
|
|
model.layers.resize(n_layer); |
|
for (uint32_t i = 0; i < n_layer; ++i) { |
|
auto & layer = model.layers[i]; |
|
|
|
std::string layers_i = "layers." + std::to_string(i); |
|
|
|
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}); |
|
|
|
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}); |
|
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}); |
|
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}); |
|
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}); |
|
|
|
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}); |
|
|
|
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}); |
|
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}); |
|
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}); |
|
} |
|
} |
|
|
|
ml->done_getting_tensors(); |
|
|
|
|
|
for (llama_v2_load_tensor & lt : ml->tensors_map.tensors) { |
|
model.tensors_by_name.emplace_back(lt.name, lt.ggml_v2_tensor); |
|
} |
|
|
|
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); |
|
|
|
model.mapping = std::move(ml->mapping); |
|
#if defined(GGML_USE_CUDA) |
|
{ |
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); |
|
if(GetQuantsUnshuffled()) |
|
{ |
|
|
|
fprintf(stderr, "%s: [old cublas] offloading %d layers to GPU\n", __func__, n_gpu); |
|
|
|
size_t vram_total = 0; |
|
|
|
for (int i = 0; i < n_gpu; ++i) { |
|
const auto & layer = model.layers[i]; |
|
|
|
ggml_v2_cuda_transform_tensor(layer.wq); vram_total += ggml_v2_nbytes(layer.wq); |
|
ggml_v2_cuda_transform_tensor(layer.wk); vram_total += ggml_v2_nbytes(layer.wk); |
|
ggml_v2_cuda_transform_tensor(layer.wv); vram_total += ggml_v2_nbytes(layer.wv); |
|
ggml_v2_cuda_transform_tensor(layer.wo); vram_total += ggml_v2_nbytes(layer.wo); |
|
ggml_v2_cuda_transform_tensor(layer.w1); vram_total += ggml_v2_nbytes(layer.w1); |
|
ggml_v2_cuda_transform_tensor(layer.w2); vram_total += ggml_v2_nbytes(layer.w2); |
|
ggml_v2_cuda_transform_tensor(layer.w3); vram_total += ggml_v2_nbytes(layer.w3); |
|
} |
|
if (n_gpu_layers > (int) hparams.n_layer) { |
|
fprintf(stderr, "%s: [old cublas] offloading output layer to GPU\n", __func__); |
|
ggml_v2_cuda_transform_tensor(model.output); vram_total += ggml_v2_nbytes(model.output); |
|
} |
|
|
|
fprintf(stderr, "%s: [old cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); |
|
} |
|
else |
|
{ |
|
if(n_gpu>0) |
|
{ |
|
printf("\n[WARNING: Old format does not support GPU offloading! It will be deactivated!]\n"); |
|
} |
|
} |
|
} |
|
#elif defined(GGML_USE_CLBLAST) |
|
{ |
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); |
|
if(GetQuantsUnshuffled()) |
|
{ |
|
|
|
fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu); |
|
|
|
size_t vram_total = 0; |
|
|
|
for (int i = 0; i < n_gpu; ++i) { |
|
const auto & layer = model.layers[i]; |
|
|
|
ggml_v2_cl_transform_tensor(layer.wq); vram_total += ggml_v2_nbytes(layer.wq); |
|
ggml_v2_cl_transform_tensor(layer.wk); vram_total += ggml_v2_nbytes(layer.wk); |
|
ggml_v2_cl_transform_tensor(layer.wv); vram_total += ggml_v2_nbytes(layer.wv); |
|
ggml_v2_cl_transform_tensor(layer.wo); vram_total += ggml_v2_nbytes(layer.wo); |
|
ggml_v2_cl_transform_tensor(layer.w1); vram_total += ggml_v2_nbytes(layer.w1); |
|
ggml_v2_cl_transform_tensor(layer.w2); vram_total += ggml_v2_nbytes(layer.w2); |
|
ggml_v2_cl_transform_tensor(layer.w3); vram_total += ggml_v2_nbytes(layer.w3); |
|
} |
|
if (n_gpu_layers > (int) hparams.n_layer) { |
|
fprintf(stderr, "%s: [opencl] offloading output layer to GPU\n", __func__); |
|
ggml_v2_cl_transform_tensor(model.output); vram_total += ggml_v2_nbytes(model.output); |
|
} |
|
|
|
fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); |
|
} |
|
else |
|
{ |
|
if(n_gpu>0) |
|
{ |
|
printf("\n[WARNING: Old format does not support GPU offloading! It will be deactivated!]\n"); |
|
} |
|
} |
|
} |
|
#else |
|
(void) n_gpu_layers; |
|
#endif |
|
|
|
|
|
|
|
lctx.t_load_us = ggml_v2_time_us() - lctx.t_start_us; |
|
} |
|
|
|
static bool llama_v2_model_load( |
|
const std::string & fname, |
|
llama_v2_context & lctx, |
|
int n_ctx, |
|
int n_gpu_layers, |
|
ggml_v2_type memory_type, |
|
bool use_mmap, |
|
bool use_mlock, |
|
bool vocab_only, |
|
llama_v2_progress_callback progress_callback, |
|
void *progress_callback_user_data) { |
|
try { |
|
llama_v2_model_load_internal(fname, lctx, n_ctx, n_gpu_layers, memory_type, use_mmap, use_mlock, |
|
vocab_only, progress_callback, progress_callback_user_data); |
|
return true; |
|
} catch (const std::string & err) { |
|
fprintf(stderr, "error loading model: %s\n", err.c_str()); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool llama_v2_eval_internal( |
|
llama_v2_context & lctx, |
|
const llama_v2_token * tokens, |
|
const int n_tokens, |
|
const int n_past, |
|
const int n_threads) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int64_t t_start_us = ggml_v2_time_us(); |
|
|
|
const int N = n_tokens; |
|
|
|
const auto & model = lctx.model; |
|
const auto & hparams = model.hparams; |
|
|
|
const auto & kv_self = model.kv_self; |
|
|
|
LLAMA_V2_ASSERT(!!kv_self.ctx); |
|
|
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
const int n_ctx = hparams.n_ctx; |
|
const int n_head = hparams.n_head; |
|
const int n_vocab = hparams.n_vocab; |
|
const int n_rot = hparams.n_embd/hparams.n_head; |
|
|
|
auto & mem_per_token = lctx.mem_per_token; |
|
auto & buf_compute = lctx.buf_compute; |
|
|
|
struct ggml_v2_init_params params = { |
|
buf_compute.size, |
|
buf_compute.addr, |
|
false, |
|
}; |
|
|
|
struct ggml_v2_context * ctx0 = ggml_v2_init(params); |
|
|
|
|
|
|
|
ggml_v2_cgraph gf = {}; |
|
gf.n_threads = N >= 32 && ggml_v2_cpu_has_blas() && !ggml_v2_cpu_has_gpublas() ? 1 : n_threads; |
|
|
|
struct ggml_v2_tensor * embd = ggml_v2_new_tensor_1d(ctx0, GGML_V2_TYPE_I32, N); |
|
ggml_v2_set_name(embd, "embd"); |
|
memcpy(embd->data, tokens, N*ggml_v2_element_size(embd)); |
|
|
|
struct ggml_v2_tensor * inpL = ggml_v2_get_rows(ctx0, model.tok_embeddings, embd); |
|
|
|
for (int il = 0; il < n_layer; ++il) { |
|
struct ggml_v2_tensor * inpSA = inpL; |
|
|
|
struct ggml_v2_tensor * cur; |
|
|
|
lctx.use_buf(ctx0, 0); |
|
|
|
|
|
{ |
|
cur = ggml_v2_rms_norm(ctx0, inpL); |
|
|
|
|
|
cur = ggml_v2_mul(ctx0, |
|
ggml_v2_repeat(ctx0, model.layers[il].attention_norm, cur), |
|
cur); |
|
} |
|
|
|
|
|
{ |
|
|
|
struct ggml_v2_tensor * Qcur = ggml_v2_rope_inplace(ctx0, ggml_v2_reshape_3d(ctx0, ggml_v2_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); |
|
struct ggml_v2_tensor * Kcur = ggml_v2_rope_inplace(ctx0, ggml_v2_reshape_3d(ctx0, ggml_v2_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); |
|
ggml_v2_set_name(Qcur, "Qcur"); |
|
ggml_v2_set_name(Kcur, "Kcur"); |
|
|
|
|
|
{ |
|
|
|
struct ggml_v2_tensor * Vcur = ggml_v2_transpose(ctx0, ggml_v2_reshape_2d(ctx0, ggml_v2_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N)); |
|
|
|
struct ggml_v2_tensor * k = ggml_v2_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_v2_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); |
|
struct ggml_v2_tensor * v = ggml_v2_view_2d(ctx0, kv_self.v, N, n_embd, |
|
( n_ctx)*ggml_v2_element_size(kv_self.v), |
|
(il*n_ctx)*ggml_v2_element_size(kv_self.v)*n_embd + n_past*ggml_v2_element_size(kv_self.v)); |
|
|
|
|
|
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(ctx0, Kcur, k)); |
|
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(ctx0, Vcur, v)); |
|
} |
|
|
|
struct ggml_v2_tensor * Q = |
|
ggml_v2_permute(ctx0, |
|
Qcur, |
|
0, 2, 1, 3); |
|
ggml_v2_set_name(Q, "Q"); |
|
|
|
struct ggml_v2_tensor * K = |
|
ggml_v2_permute(ctx0, |
|
ggml_v2_reshape_3d(ctx0, |
|
ggml_v2_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_v2_element_size(kv_self.k)*n_embd), |
|
n_embd/n_head, n_head, n_past + N), |
|
0, 2, 1, 3); |
|
ggml_v2_set_name(K, "K"); |
|
|
|
|
|
struct ggml_v2_tensor * KQ = ggml_v2_mul_mat(ctx0, K, Q); |
|
ggml_v2_set_name(KQ, "KQ"); |
|
|
|
|
|
struct ggml_v2_tensor * KQ_scale = ggml_v2_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)); |
|
ggml_v2_set_name(KQ_scale, "1/sqrt(n_embd/n_head)"); |
|
|
|
|
|
struct ggml_v2_tensor * KQ_scaled = ggml_v2_scale_inplace(ctx0, KQ, KQ_scale); |
|
ggml_v2_set_name(KQ_scaled, "KQ_scaled"); |
|
|
|
|
|
struct ggml_v2_tensor * KQ_masked = ggml_v2_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); |
|
ggml_v2_set_name(KQ_masked, "KQ_masked"); |
|
|
|
|
|
struct ggml_v2_tensor * KQ_soft_max = ggml_v2_soft_max_inplace(ctx0, KQ_masked); |
|
ggml_v2_set_name(KQ_soft_max, "KQ_soft_max"); |
|
|
|
|
|
|
|
struct ggml_v2_tensor * V = |
|
ggml_v2_view_3d(ctx0, kv_self.v, |
|
n_past + N, n_embd/n_head, n_head, |
|
n_ctx*ggml_v2_element_size(kv_self.v), |
|
n_ctx*ggml_v2_element_size(kv_self.v)*n_embd/n_head, |
|
il*n_ctx*ggml_v2_element_size(kv_self.v)*n_embd); |
|
ggml_v2_set_name(V, "V"); |
|
|
|
#if 1 |
|
struct ggml_v2_tensor * KQV = ggml_v2_mul_mat(ctx0, V, KQ_soft_max); |
|
ggml_v2_set_name(KQV, "KQV"); |
|
#else |
|
|
|
|
|
|
|
struct ggml_v2_tensor * V_cont = ggml_v2_cpy(ctx0, V, ggml_v2_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head)); |
|
struct ggml_v2_tensor * KQV = ggml_v2_mul_mat(ctx0, V_cont, KQ_soft_max); |
|
#endif |
|
|
|
|
|
struct ggml_v2_tensor * KQV_merged = ggml_v2_permute(ctx0, KQV, 0, 2, 1, 3); |
|
ggml_v2_set_name(KQV_merged, "KQV_merged"); |
|
|
|
|
|
cur = ggml_v2_cpy(ctx0, |
|
KQV_merged, |
|
ggml_v2_new_tensor_2d(ctx0, GGML_V2_TYPE_F32, n_embd, N)); |
|
ggml_v2_set_name(cur, "KQV_merged_contiguous"); |
|
|
|
|
|
cur = ggml_v2_mul_mat(ctx0, |
|
model.layers[il].wo, |
|
cur); |
|
} |
|
|
|
lctx.use_buf(ctx0, 1); |
|
|
|
struct ggml_v2_tensor * inpFF = ggml_v2_add(ctx0, cur, inpSA); |
|
|
|
|
|
{ |
|
|
|
{ |
|
cur = ggml_v2_rms_norm(ctx0, inpFF); |
|
|
|
|
|
cur = ggml_v2_mul(ctx0, |
|
ggml_v2_repeat(ctx0, model.layers[il].ffn_norm, cur), |
|
cur); |
|
} |
|
|
|
struct ggml_v2_tensor * tmp = ggml_v2_mul_mat(ctx0, |
|
model.layers[il].w3, |
|
cur); |
|
|
|
cur = ggml_v2_mul_mat(ctx0, |
|
model.layers[il].w1, |
|
cur); |
|
|
|
|
|
cur = ggml_v2_silu(ctx0, cur); |
|
|
|
cur = ggml_v2_mul(ctx0, cur, tmp); |
|
|
|
cur = ggml_v2_mul_mat(ctx0, |
|
model.layers[il].w2, |
|
cur); |
|
} |
|
|
|
cur = ggml_v2_add(ctx0, cur, inpFF); |
|
|
|
|
|
inpL = cur; |
|
} |
|
|
|
lctx.use_buf(ctx0, 0); |
|
|
|
|
|
struct ggml_v2_tensor * embeddings = NULL; |
|
|
|
|
|
{ |
|
|
|
inpL = ggml_v2_rms_norm(ctx0, inpL); |
|
|
|
|
|
inpL = ggml_v2_mul(ctx0, |
|
ggml_v2_repeat(ctx0, model.norm, inpL), |
|
inpL); |
|
|
|
embeddings = inpL; |
|
} |
|
|
|
|
|
inpL = ggml_v2_mul_mat(ctx0, model.output, inpL); |
|
|
|
lctx.use_buf(ctx0, -1); |
|
|
|
|
|
|
|
|
|
|
|
ggml_v2_build_forward_expand(&gf, inpL); |
|
ggml_v2_graph_compute (ctx0, &gf); |
|
|
|
#ifdef GGML_V2_PERF |
|
|
|
|
|
ggml_v2_graph_print(&gf); |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lctx.model.kv_self.n = n_past + N; |
|
|
|
|
|
{ |
|
auto & logits_out = lctx.logits; |
|
|
|
if (lctx.logits_all) { |
|
logits_out.resize(n_vocab * N); |
|
memcpy(logits_out.data(), (float *) ggml_v2_get_data(inpL), sizeof(float)*n_vocab*N); |
|
} else { |
|
|
|
logits_out.resize(n_vocab); |
|
memcpy(logits_out.data(), (float *) ggml_v2_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); |
|
} |
|
} |
|
|
|
|
|
if (!lctx.embedding.empty()) { |
|
auto & embedding_out = lctx.embedding; |
|
|
|
embedding_out.resize(n_embd); |
|
memcpy(embedding_out.data(), (float *) ggml_v2_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); |
|
} |
|
|
|
if (mem_per_token == 0) { |
|
mem_per_token = ggml_v2_used_mem(ctx0)/N; |
|
} |
|
|
|
#if 0 |
|
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__, |
|
ggml_v2_used_mem(ctx0)/1024.0/1024.0, |
|
lctx.get_buf_max_mem(0)/1024.0/1024.0, |
|
lctx.get_buf_max_mem(1)/1024.0/1024.0); |
|
#endif |
|
|
|
ggml_v2_free(ctx0); |
|
|
|
|
|
if (N == 1) { |
|
lctx.t_eval_us += ggml_v2_time_us() - t_start_us; |
|
lctx.n_eval++; |
|
} |
|
else if (N > 1) { |
|
lctx.t_p_eval_us += ggml_v2_time_us() - t_start_us; |
|
lctx.n_p_eval += N; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static size_t utf8_len2(char src) { |
|
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; |
|
uint8_t highbits = static_cast<uint8_t>(src) >> 4; |
|
return lookup[highbits]; |
|
} |
|
|
|
struct llama_v2_sp_symbol { |
|
using index = int; |
|
index prev; |
|
index next; |
|
const char * text; |
|
size_t n; |
|
}; |
|
|
|
static_assert(std::is_trivially_copyable<llama_v2_sp_symbol>::value, "llama_v2_sp_symbol is not trivially copyable"); |
|
|
|
struct llama_v2_sp_bigram { |
|
struct comparator { |
|
bool operator()(llama_v2_sp_bigram & l, llama_v2_sp_bigram & r) { |
|
return (l.score < r.score) || (l.score == r.score && l.left > r.left); |
|
} |
|
}; |
|
using queue_storage = std::vector<llama_v2_sp_bigram>; |
|
using queue = std::priority_queue<llama_v2_sp_bigram, queue_storage, comparator>; |
|
llama_v2_sp_symbol::index left; |
|
llama_v2_sp_symbol::index right; |
|
float score; |
|
size_t size; |
|
}; |
|
|
|
|
|
|
|
struct llama_v2_tokenizer { |
|
llama_v2_tokenizer(const llama_v2_vocab & vocab): vocab_(vocab) {} |
|
|
|
void tokenize(const std::string & text, std::vector<llama_v2_vocab::id> & output) { |
|
|
|
int index = 0; |
|
size_t offs = 0; |
|
while (offs < text.size()) { |
|
llama_v2_sp_symbol sym; |
|
size_t char_len = std::min(text.size() - offs, utf8_len2(text[offs])); |
|
sym.text = text.c_str() + offs; |
|
sym.n = char_len; |
|
offs += char_len; |
|
sym.prev = index - 1; |
|
sym.next = offs == text.size() ? -1 : index + 1; |
|
index++; |
|
symbols_.emplace_back(sym); |
|
} |
|
|
|
|
|
for (size_t i = 1; i < symbols_.size(); ++i) { |
|
try_add_bigram(i - 1, i); |
|
} |
|
|
|
|
|
while (!work_queue_.empty()) { |
|
auto bigram = work_queue_.top(); |
|
work_queue_.pop(); |
|
|
|
auto & left_sym = symbols_[bigram.left]; |
|
auto & right_sym = symbols_[bigram.right]; |
|
|
|
|
|
if (left_sym.n == 0 || right_sym.n == 0 || |
|
left_sym.n + right_sym.n != bigram.size) { |
|
continue; |
|
} |
|
|
|
|
|
left_sym.n += right_sym.n; |
|
right_sym.n = 0; |
|
|
|
|
|
|
|
|
|
left_sym.next = right_sym.next; |
|
if (right_sym.next >= 0) { |
|
symbols_[right_sym.next].prev = bigram.left; |
|
} |
|
|
|
|
|
try_add_bigram(left_sym.prev, bigram.left); |
|
try_add_bigram(bigram.left, left_sym.next); |
|
} |
|
|
|
for (int i = 0; i != -1; i = symbols_[i].next) { |
|
auto & symbol = symbols_[i]; |
|
auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n)); |
|
|
|
if (token == vocab_.token_to_id.end()) { |
|
|
|
for (int j = 0; j < (int) symbol.n; ++j) { |
|
llama_v2_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3; |
|
output.push_back(token_id); |
|
} |
|
} else { |
|
output.push_back((*token).second); |
|
} |
|
} |
|
} |
|
|
|
private: |
|
void try_add_bigram(int left, int right) { |
|
if (left == -1 || right == -1) { |
|
return; |
|
} |
|
|
|
const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n); |
|
auto token = vocab_.token_to_id.find(text); |
|
|
|
if (token == vocab_.token_to_id.end()) { |
|
return; |
|
} |
|
|
|
if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) { |
|
return; |
|
} |
|
|
|
const auto &tok_score = vocab_.id_to_token[(*token).second]; |
|
|
|
llama_v2_sp_bigram bigram; |
|
bigram.left = left; |
|
bigram.right = right; |
|
bigram.score = tok_score.score; |
|
bigram.size = text.size(); |
|
work_queue_.push(bigram); |
|
} |
|
|
|
const llama_v2_vocab & vocab_; |
|
std::vector<llama_v2_sp_symbol> symbols_; |
|
llama_v2_sp_bigram::queue work_queue_; |
|
}; |
|
|
|
static std::vector<llama_v2_vocab::id> llama_v2_tokenize(const llama_v2_vocab & vocab, const std::string & text, bool bos) { |
|
llama_v2_tokenizer tokenizer(vocab); |
|
std::vector<llama_v2_vocab::id> output; |
|
|
|
if (text.empty()) { |
|
return output; |
|
} |
|
|
|
if (bos) { |
|
output.push_back(llama_v2_token_bos()); |
|
} |
|
|
|
tokenizer.tokenize(text, output); |
|
return output; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
void llama_v2_sample_softmax(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates) { |
|
assert(candidates->size > 0); |
|
|
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
|
|
if (!candidates->sorted) { |
|
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_v2_token_data & a, const llama_v2_token_data & b) { |
|
return a.logit > b.logit; |
|
}); |
|
candidates->sorted = true; |
|
} |
|
|
|
float max_l = candidates->data[0].logit; |
|
float cum_sum = 0.0f; |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
float p = expf(candidates->data[i].logit - max_l); |
|
candidates->data[i].p = p; |
|
cum_sum += p; |
|
} |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
candidates->data[i].p /= cum_sum; |
|
} |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v2_sample_top_k(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, int k, size_t min_keep) { |
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
k = std::max(k, (int) min_keep); |
|
k = std::min(k, (int) candidates->size); |
|
|
|
|
|
if (!candidates->sorted) { |
|
auto comp = [](const llama_v2_token_data & a, const llama_v2_token_data & b) { |
|
return a.logit > b.logit; |
|
}; |
|
if (k == (int) candidates->size) { |
|
std::sort(candidates->data, candidates->data + candidates->size, comp); |
|
} else { |
|
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); |
|
} |
|
candidates->sorted = true; |
|
} |
|
candidates->size = k; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v2_sample_top_p(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep) { |
|
if (p >= 1.0f) { |
|
return; |
|
} |
|
|
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
llama_v2_sample_softmax(ctx, candidates); |
|
|
|
|
|
float cum_sum = 0.0f; |
|
size_t last_idx = candidates->size; |
|
|
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
cum_sum += candidates->data[i].p; |
|
|
|
|
|
if (cum_sum > p && i >= min_keep) { |
|
last_idx = i; |
|
break; |
|
} |
|
} |
|
|
|
|
|
candidates->size = last_idx; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v2_sample_tail_free(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float z, size_t min_keep) { |
|
if (z >= 1.0f || candidates->size <= 2) { |
|
return; |
|
} |
|
|
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
llama_v2_sample_softmax(nullptr, candidates); |
|
|
|
|
|
std::vector<float> first_derivatives(candidates->size - 1); |
|
std::vector<float> second_derivatives(candidates->size - 2); |
|
|
|
for (size_t i = 0; i < first_derivatives.size(); ++i) { |
|
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; |
|
} |
|
for (size_t i = 0; i < second_derivatives.size(); ++i) { |
|
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; |
|
} |
|
|
|
|
|
for (size_t i = 0; i < second_derivatives.size(); ++i) { |
|
second_derivatives[i] = abs(second_derivatives[i]); |
|
} |
|
|
|
|
|
float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); |
|
for (float & value : second_derivatives) { |
|
value /= second_derivatives_sum; |
|
} |
|
|
|
float cum_sum = 0.0f; |
|
size_t last_idx = candidates->size; |
|
for (size_t i = 0; i < second_derivatives.size(); ++i) { |
|
cum_sum += second_derivatives[i]; |
|
|
|
|
|
if (cum_sum > z && i >= min_keep) { |
|
last_idx = i; |
|
break; |
|
} |
|
} |
|
|
|
|
|
candidates->size = last_idx; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
|
|
void llama_v2_sample_typical(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep) { |
|
|
|
|
|
if (p >= 1.0f) { |
|
return; |
|
} |
|
|
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
|
|
llama_v2_sample_softmax(nullptr, candidates); |
|
|
|
float entropy = 0.0f; |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
entropy += -candidates->data[i].p * logf(candidates->data[i].p); |
|
} |
|
|
|
|
|
std::vector<float> shifted_scores; |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); |
|
shifted_scores.push_back(shifted_score); |
|
} |
|
|
|
|
|
std::vector<size_t> indices(candidates->size); |
|
std::iota(indices.begin(), indices.end(), 0); |
|
|
|
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { |
|
return shifted_scores[a] < shifted_scores[b]; |
|
}); |
|
|
|
|
|
float cum_sum = 0.0f; |
|
size_t last_idx = indices.size(); |
|
|
|
for (size_t i = 0; i < indices.size(); ++i) { |
|
size_t idx = indices[i]; |
|
cum_sum += candidates->data[idx].p; |
|
|
|
|
|
if (cum_sum > p && i >= min_keep - 1) { |
|
last_idx = i + 1; |
|
break; |
|
} |
|
} |
|
|
|
|
|
std::vector<llama_v2_token_data> new_candidates; |
|
for (size_t i = 0; i < last_idx; ++i) { |
|
size_t idx = indices[i]; |
|
new_candidates.push_back(candidates->data[idx]); |
|
} |
|
|
|
|
|
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); |
|
candidates->size = new_candidates.size(); |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v2_sample_temperature(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates_p, float temp) { |
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
for (size_t i = 0; i < candidates_p->size; ++i) { |
|
candidates_p->data[i].logit /= temp; |
|
} |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v2_sample_repetition_penalty(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens, size_t last_tokens_size, float penalty) { |
|
if (last_tokens_size == 0 || penalty == 1.0f) { |
|
return; |
|
} |
|
|
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id); |
|
if (token_iter == last_tokens + last_tokens_size) { |
|
continue; |
|
} |
|
|
|
|
|
|
|
if (candidates->data[i].logit <= 0) { |
|
candidates->data[i].logit *= penalty; |
|
} else { |
|
candidates->data[i].logit /= penalty; |
|
} |
|
} |
|
|
|
candidates->sorted = false; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v2_sample_frequency_and_presence_penalties(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) { |
|
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) { |
|
return; |
|
} |
|
|
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
|
|
std::unordered_map<llama_v2_token, int> token_count; |
|
for (size_t i = 0; i < last_tokens_size; ++i) { |
|
token_count[last_tokens_p[i]]++; |
|
} |
|
|
|
|
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
auto token_iter = token_count.find(candidates->data[i].id); |
|
if (token_iter == token_count.end()) { |
|
continue; |
|
} |
|
|
|
int count = token_iter->second; |
|
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence; |
|
} |
|
|
|
candidates->sorted = false; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
|
|
llama_v2_token llama_v2_sample_token_mirostat(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, int m, float * mu) { |
|
assert(ctx); |
|
auto N = float(llama_v2_n_vocab(ctx)); |
|
int64_t t_start_sample_us; |
|
t_start_sample_us = ggml_v2_time_us(); |
|
|
|
llama_v2_sample_softmax(nullptr, candidates); |
|
|
|
|
|
float s_hat = 0.0; |
|
float sum_ti_bi = 0.0; |
|
float sum_ti_sq = 0.0; |
|
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { |
|
float t_i = logf(float(i + 2) / float(i + 1)); |
|
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); |
|
sum_ti_bi += t_i * b_i; |
|
sum_ti_sq += t_i * t_i; |
|
} |
|
s_hat = sum_ti_bi / sum_ti_sq; |
|
|
|
|
|
float epsilon_hat = s_hat - 1; |
|
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); |
|
|
|
|
|
llama_v2_sample_top_k(nullptr, candidates, int(k), 1); |
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
llama_v2_token X = llama_v2_sample_token(ctx, candidates); |
|
t_start_sample_us = ggml_v2_time_us(); |
|
|
|
|
|
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v2_token_data & candidate) { |
|
return candidate.id == X; |
|
})); |
|
float observed_surprise = -log2f(candidates->data[X_idx].p); |
|
float e = observed_surprise - tau; |
|
|
|
|
|
*mu = *mu - eta * e; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
ctx->n_sample++; |
|
} |
|
return X; |
|
} |
|
|
|
llama_v2_token llama_v2_sample_token_mirostat_v2(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, float * mu) { |
|
assert(ctx); |
|
int64_t t_start_sample_us; |
|
t_start_sample_us = ggml_v2_time_us(); |
|
|
|
llama_v2_sample_softmax(ctx, candidates); |
|
|
|
|
|
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v2_token_data & candidate) { |
|
return -log2f(candidate.p) > *mu; |
|
})); |
|
|
|
|
|
llama_v2_sample_softmax(ctx, candidates); |
|
|
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
llama_v2_token X = llama_v2_sample_token(ctx, candidates); |
|
t_start_sample_us = ggml_v2_time_us(); |
|
|
|
|
|
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v2_token_data & candidate) { |
|
return candidate.id == X; |
|
})); |
|
float observed_surprise = -log2f(candidates->data[X_idx].p); |
|
float e = observed_surprise - tau; |
|
|
|
|
|
*mu = *mu - eta * e; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
} |
|
return X; |
|
} |
|
|
|
llama_v2_token llama_v2_sample_token_greedy(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates) { |
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
|
|
|
|
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_v2_token_data & a, const llama_v2_token_data & b) { |
|
return a.logit < b.logit; |
|
}); |
|
|
|
llama_v2_token result = max_iter->id; |
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
ctx->n_sample++; |
|
} |
|
return result; |
|
} |
|
|
|
llama_v2_token llama_v2_sample_token(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates) { |
|
assert(ctx); |
|
const int64_t t_start_sample_us = ggml_v2_time_us(); |
|
llama_v2_sample_softmax(nullptr, candidates); |
|
|
|
std::vector<float> probs; |
|
probs.reserve(candidates->size); |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
probs.push_back(candidates->data[i].p); |
|
} |
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end()); |
|
auto & rng = ctx->rng; |
|
int idx = dist(rng); |
|
|
|
llama_v2_token result = candidates->data[idx].id; |
|
|
|
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us; |
|
ctx->n_sample++; |
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void llama_v2_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_v2_ftype ftype, int nthread) { |
|
ggml_v2_type quantized_type; |
|
switch (ftype) { |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_V2_TYPE_Q4_0; break; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_V2_TYPE_Q4_1; break; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_V2_TYPE_Q4_2; break; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_V2_TYPE_Q4_3; break; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_V2_TYPE_Q5_0; break; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_V2_TYPE_Q5_1; break; |
|
case LLAMA_V2_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_V2_TYPE_Q8_0; break; |
|
default: throw format_old("invalid output file type %d\n", ftype); |
|
}; |
|
|
|
if (nthread <= 0) { |
|
nthread = std::thread::hardware_concurrency(); |
|
} |
|
|
|
std::unique_ptr<llama_v2_model_loader> model_loader(new llama_v2_model_loader(fname_inp, false, |
|
false)); |
|
llama_v2_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype); |
|
|
|
size_t total_size_org = 0; |
|
size_t total_size_new = 0; |
|
std::vector<int64_t> hist_all(1 << 4, 0); |
|
|
|
std::vector<std::thread> workers; |
|
std::mutex mutex; |
|
|
|
size_t idx = 0; |
|
for (llama_v2_load_tensor & tensor : model_loader->tensors_map.tensors) { |
|
llama_v2_buffer read_data; |
|
read_data.resize(tensor.size); |
|
tensor.data = read_data.addr; |
|
model_loader->load_data_for(tensor); |
|
|
|
printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", |
|
++idx, model_loader->tensors_map.tensors.size(), |
|
tensor.name.c_str(), llama_v2_format_tensor_shape(tensor.ne).c_str(), |
|
ggml_v2_type_name(tensor.type)); |
|
|
|
|
|
bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; |
|
|
|
|
|
quantize &= (tensor.ne.size() == 2); |
|
|
|
|
|
|
|
|
|
|
|
|
|
enum ggml_v2_type new_type; |
|
void * new_data; |
|
size_t new_size; |
|
llama_v2_buffer work; |
|
|
|
if (!quantize) { |
|
new_type = tensor.type; |
|
new_data = tensor.data; |
|
new_size = tensor.size; |
|
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); |
|
} else { |
|
new_type = quantized_type; |
|
float * f32_data; |
|
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); |
|
llama_v2_buffer f32_conv_buf; |
|
if (tensor.type == GGML_V2_TYPE_F32) { |
|
f32_data = (float *) tensor.data; |
|
} else if (tensor.type == GGML_V2_TYPE_F16) { |
|
f32_conv_buf.resize(nelements * sizeof(float)); |
|
f32_data = (float *) f32_conv_buf.addr; |
|
const auto * f16_data = (const ggml_v2_fp16_t *) tensor.data; |
|
for (size_t i = 0; i < nelements; i++) { |
|
f32_data[i] = ggml_v2_fp16_to_fp32(f16_data[i]); |
|
} |
|
} else { |
|
throw format_old("type %s unsupported for integer quantization", ggml_v2_type_name(tensor.type)); |
|
} |
|
|
|
printf("quantizing .. "); |
|
fflush(stdout); |
|
|
|
work.resize(nelements * 4); |
|
new_data = work.addr; |
|
std::vector<int64_t> hist_cur(1 << 4, 0); |
|
|
|
int chunk_size = 32 * 512; |
|
const int nchunk = (nelements + chunk_size - 1)/chunk_size; |
|
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; |
|
if (nthread_use < 2) { |
|
new_size = ggml_v2_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); |
|
} else { |
|
size_t counter = 0; |
|
new_size = 0; |
|
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () { |
|
std::vector<int64_t> local_hist; |
|
size_t local_size = 0; |
|
while (true) { |
|
std::unique_lock<std::mutex> lock(mutex); |
|
size_t first = counter; counter += chunk_size; |
|
if (first >= nelements) { |
|
if (!local_hist.empty()) { |
|
for (int j=0; j<int(local_hist.size()); ++j) { |
|
hist_cur[j] += local_hist[j]; |
|
} |
|
new_size += local_size; |
|
} |
|
break; |
|
} |
|
lock.unlock(); |
|
size_t last = std::min(nelements, first + chunk_size); |
|
if (local_hist.empty()) { |
|
local_hist.resize(hist_cur.size(), 0); |
|
} |
|
local_size += ggml_v2_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data()); |
|
} |
|
}; |
|
if ((int) workers.size() < nthread_use - 1) { |
|
workers.resize(nthread_use - 1); |
|
} |
|
for (int it = 0; it < nthread_use - 1; ++it) { |
|
workers[it] = std::thread(compute); |
|
} |
|
compute(); |
|
for (int it = 0; it < nthread_use - 1; ++it) { |
|
workers[it].join(); |
|
} |
|
} |
|
|
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); |
|
for (size_t i = 0; i < hist_cur.size(); i++) { |
|
hist_all[i] += hist_cur[i]; |
|
} |
|
|
|
for (size_t i = 0; i < hist_cur.size(); i++) { |
|
printf("%5.3f ", hist_cur[i] / float(nelements)); |
|
} |
|
printf("\n"); |
|
} |
|
total_size_org += tensor.size; |
|
total_size_new += new_size; |
|
file_saver.write_tensor(tensor, new_type, new_data, new_size); |
|
} |
|
|
|
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); |
|
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); |
|
|
|
{ |
|
int64_t sum_all = 0; |
|
for (size_t i = 0; i < hist_all.size(); i++) { |
|
sum_all += hist_all[i]; |
|
} |
|
|
|
printf("%s: hist: ", __func__); |
|
for (size_t i = 0; i < hist_all.size(); i++) { |
|
printf("%5.3f ", hist_all[i] / float(sum_all)); |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
struct llama_v2_context * llama_v2_init_from_file( |
|
const char * path_model, |
|
struct llama_v2_context_params params) { |
|
ggml_v2_time_init(); |
|
|
|
llama_v2_context * ctx = new llama_v2_context; |
|
|
|
if (params.seed < 0 || params.seed==0xFFFFFFFF) { |
|
params.seed = time(NULL); |
|
} |
|
|
|
unsigned cur_percentage = 0; |
|
if (params.progress_callback == NULL) { |
|
params.progress_callback_user_data = &cur_percentage; |
|
params.progress_callback = [](float progress, void * ctx) { |
|
unsigned * cur_percentage_p = (unsigned *) ctx; |
|
unsigned percentage = (unsigned) (100 * progress); |
|
while (percentage > *cur_percentage_p) { |
|
++*cur_percentage_p; |
|
fprintf(stderr, "."); |
|
fflush(stderr); |
|
if (percentage >= 100) { |
|
fprintf(stderr, "\n"); |
|
} |
|
} |
|
}; |
|
} |
|
|
|
ctx->rng = std::mt19937(params.seed); |
|
ctx->logits_all = params.logits_all; |
|
|
|
ggml_v2_type memory_type = params.f16_kv ? GGML_V2_TYPE_F16 : GGML_V2_TYPE_F32; |
|
|
|
if (!llama_v2_model_load(path_model, *ctx, params.n_ctx, params.n_gpu_layers, memory_type, |
|
params.use_mmap, params.use_mlock, params.vocab_only, |
|
params.progress_callback, params.progress_callback_user_data)) { |
|
fprintf(stderr, "%s: failed to load model\n", __func__); |
|
llama_v2_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
|
|
if (!params.vocab_only) { |
|
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) { |
|
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); |
|
llama_v2_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
{ |
|
const size_t memory_size = ggml_v2_nbytes(ctx->model.kv_self.k) + ggml_v2_nbytes(ctx->model.kv_self.v); |
|
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); |
|
} |
|
|
|
const auto & hparams = ctx->model.hparams; |
|
|
|
|
|
if (params.logits_all) { |
|
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); |
|
} else { |
|
ctx->logits.reserve(hparams.n_vocab); |
|
} |
|
|
|
if (params.embedding){ |
|
ctx->embedding.resize(hparams.n_embd); |
|
} |
|
|
|
ctx->buf_compute.resize(MEM_REQ_EVAL_2().at(ctx->model.type)); |
|
|
|
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0_2().at(ctx->model.type)); |
|
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1_2().at(ctx->model.type)); |
|
} |
|
|
|
return ctx; |
|
} |
|
|
|
void llama_v2_free(struct llama_v2_context * ctx) { |
|
delete ctx; |
|
} |
|
|
|
int llama_v2_model_quantize( |
|
const char * fname_inp, |
|
const char * fname_out, |
|
enum llama_v2_ftype ftype, |
|
int nthread) { |
|
try { |
|
llama_v2_model_quantize_internal(fname_inp, fname_out, ftype, nthread); |
|
return 0; |
|
} catch (const std::string & err) { |
|
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str()); |
|
return 1; |
|
} |
|
} |
|
|
|
int llama_v2_apply_lora_from_file_internal(struct llama_v2_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { |
|
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); |
|
|
|
auto & model = ctx->model; |
|
|
|
const int64_t t_start_lora_us = ggml_v2_time_us(); |
|
|
|
auto fin = std::ifstream(path_lora, std::ios::binary); |
|
if (!fin) { |
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora); |
|
return 1; |
|
} |
|
|
|
|
|
{ |
|
uint32_t magic; |
|
fin.read((char *) &magic, sizeof(magic)); |
|
uint32_t magic_ggla = 0x67676c61u; |
|
if (magic != magic_ggla) { |
|
fprintf(stderr, "%s: bad file magic\n", __func__); |
|
return 1; |
|
} |
|
uint32_t format_version; |
|
fin.read((char *) &format_version, sizeof(format_version)); |
|
|
|
if (format_version != 1) { |
|
fprintf(stderr, "%s: unsupported file version\n", __func__ ); |
|
return 1; |
|
} |
|
} |
|
|
|
int32_t lora_r; |
|
int32_t lora_alpha; |
|
fin.read((char *) &lora_r, sizeof(lora_r)); |
|
fin.read((char *) &lora_alpha, sizeof(lora_alpha)); |
|
float scaling = (float)lora_alpha / (float)lora_r; |
|
|
|
fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); |
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull); |
|
struct ggml_v2_init_params params; |
|
params.mem_size = lora_buf.size(); |
|
params.mem_buffer = lora_buf.data(); |
|
params.no_alloc = false; |
|
|
|
ggml_v2_context * lora_ctx = ggml_v2_init(params); |
|
std::unordered_map<std::string, struct ggml_v2_tensor *> lora_tensors; |
|
|
|
|
|
std::unordered_map<std::string, struct ggml_v2_tensor*> model_tensors; |
|
for (auto & kv: model.tensors_by_name) { |
|
model_tensors.insert(kv); |
|
} |
|
|
|
|
|
|
|
std::unique_ptr<llama_v2_model_loader> model_loader; |
|
ggml_v2_context * base_ctx = NULL; |
|
llama_v2_buffer base_buf; |
|
if (path_base_model) { |
|
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); |
|
model_loader.reset(new llama_v2_model_loader(path_base_model, true, false)); |
|
|
|
size_t ctx_size; |
|
size_t mmapped_size; |
|
model_loader->calc_sizes(&ctx_size, &mmapped_size); |
|
base_buf.resize(ctx_size); |
|
|
|
ggml_v2_init_params base_params; |
|
base_params.mem_size = base_buf.size; |
|
base_params.mem_buffer = base_buf.addr; |
|
base_params.no_alloc = model_loader->use_mmap; |
|
|
|
base_ctx = ggml_v2_init(base_params); |
|
|
|
model_loader->ggml_v2_ctx = base_ctx; |
|
|
|
|
|
if (model_loader->use_mmap) { |
|
model_loader->mapping.reset(new llama_v2_mmap(&model_loader->file_loaders.at(0)->file, false)); |
|
} |
|
} |
|
|
|
|
|
bool warned = false; |
|
int n_tensors = 0; |
|
while (true) { |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ftype; |
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); |
|
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype)); |
|
if (fin.eof()) { |
|
break; |
|
} |
|
|
|
int32_t ne[2] = { 1, 1 }; |
|
for (int i = 0; i < n_dims; ++i) { |
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
} |
|
|
|
std::string name; |
|
{ |
|
char buf[1024]; |
|
fin.read(buf, length); |
|
name = std::string(buf, length); |
|
} |
|
|
|
|
|
const std::string lora_suffix = ".lora"; |
|
size_t pos = name.rfind(lora_suffix); |
|
if (pos == std::string::npos) { |
|
fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); |
|
return 1; |
|
} |
|
|
|
std::string lora_type = name.substr(pos + lora_suffix.length()); |
|
std::string base_name = name; |
|
base_name.erase(pos); |
|
|
|
|
|
if (model_tensors.find(base_name) == model_tensors.end()) { |
|
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); |
|
return 1; |
|
} |
|
|
|
|
|
ggml_v2_type wtype; |
|
switch (ftype) { |
|
case 0: wtype = GGML_V2_TYPE_F32; break; |
|
case 1: wtype = GGML_V2_TYPE_F16; break; |
|
default: |
|
{ |
|
fprintf(stderr, "%s: invalid tensor data type '%d'\n", |
|
__func__, ftype); |
|
return false; |
|
} |
|
} |
|
ggml_v2_tensor* lora_tensor; |
|
if (n_dims == 2) { |
|
lora_tensor = ggml_v2_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); |
|
} |
|
else { |
|
fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims); |
|
return 1; |
|
} |
|
|
|
|
|
size_t offset = fin.tellg(); |
|
size_t tensor_data_size = ggml_v2_nbytes(lora_tensor); |
|
offset = (offset + 31) & -32; |
|
fin.seekg(offset); |
|
fin.read((char*)lora_tensor->data, tensor_data_size); |
|
|
|
lora_tensors[name] = lora_tensor; |
|
|
|
|
|
if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() && |
|
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) { |
|
|
|
ggml_v2_tensor * dest_t = model_tensors[base_name]; |
|
ggml_v2_tensor * base_t; |
|
if (model_loader) { |
|
|
|
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) { |
|
fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); |
|
return 1; |
|
} |
|
size_t idx = model_loader->tensors_map.name_to_idx[base_name]; |
|
llama_v2_load_tensor & lt = model_loader->tensors_map.tensors[idx]; |
|
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }); |
|
lt.data = (uint8_t *) lt.ggml_v2_tensor->data; |
|
model_loader->load_data_for(lt); |
|
lt.ggml_v2_tensor->data = lt.data; |
|
} |
|
else { |
|
base_t = dest_t; |
|
} |
|
|
|
if (ggml_v2_is_quantized(base_t->type)) { |
|
if (!warned) { |
|
fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, " |
|
"use a f16 or f32 base model with --lora-base\n", __func__); |
|
warned = true; |
|
} |
|
} |
|
|
|
ggml_v2_tensor * loraA = lora_tensors[base_name + ".loraA"]; |
|
ggml_v2_tensor * loraB = lora_tensors[base_name + ".loraB"]; |
|
|
|
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { |
|
fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" |
|
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); |
|
return 1; |
|
} |
|
|
|
|
|
ggml_v2_tensor * BA = ggml_v2_mul_mat(lora_ctx, loraA, loraB); |
|
|
|
if (scaling != 1.0f) { |
|
ggml_v2_tensor * scale_tensor = ggml_v2_new_f32(lora_ctx, scaling); |
|
BA = ggml_v2_scale_inplace(lora_ctx, BA, scale_tensor); |
|
} |
|
|
|
ggml_v2_tensor * r; |
|
if (base_t == dest_t) { |
|
r = ggml_v2_add_inplace(lora_ctx, dest_t, BA); |
|
} |
|
else { |
|
r = ggml_v2_add(lora_ctx, base_t, BA); |
|
r = ggml_v2_cpy(lora_ctx, r, dest_t); |
|
} |
|
|
|
struct ggml_v2_cgraph gf = ggml_v2_build_forward(r); |
|
gf.n_threads = n_threads; |
|
ggml_v2_graph_compute(lora_ctx, &gf); |
|
|
|
|
|
ggml_v2_free(lora_ctx); |
|
lora_ctx = ggml_v2_init(params); |
|
lora_tensors.clear(); |
|
|
|
n_tensors++; |
|
if (n_tensors % 4 == 0) { |
|
fprintf(stderr, "."); |
|
} |
|
} |
|
} |
|
|
|
|
|
ggml_v2_free(lora_ctx); |
|
if (base_ctx) { |
|
ggml_v2_free(base_ctx); |
|
} |
|
|
|
const int64_t t_lora_us = ggml_v2_time_us() - t_start_lora_us; |
|
fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0); |
|
|
|
return 0; |
|
} |
|
|
|
int llama_v2_apply_lora_from_file(struct llama_v2_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { |
|
try { |
|
return llama_v2_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads); |
|
} catch (const std::string & err) { |
|
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str()); |
|
return 1; |
|
} |
|
} |
|
|
|
int llama_v2_get_kv_cache_token_count(const struct llama_v2_context * ctx) { |
|
return ctx->model.kv_self.n; |
|
} |
|
|
|
#define LLAMA_V2_MAX_RNG_STATE (64*1024) |
|
|
|
void llama_v2_set_rng_seed(struct llama_v2_context * ctx, int seed) { |
|
if (seed < 0 || seed==0xFFFFFFFF) { |
|
seed = time(NULL); |
|
} |
|
ctx->rng.seed(seed); |
|
} |
|
|
|
|
|
size_t llama_v2_get_state_size(const struct llama_v2_context * ctx) { |
|
|
|
|
|
const size_t s_rng_size = sizeof(size_t); |
|
const size_t s_rng = LLAMA_V2_MAX_RNG_STATE; |
|
const size_t s_logits_capacity = sizeof(size_t); |
|
const size_t s_logits_size = sizeof(size_t); |
|
const size_t s_logits = ctx->logits.capacity() * sizeof(float); |
|
const size_t s_embedding_size = sizeof(size_t); |
|
const size_t s_embedding = ctx->embedding.size() * sizeof(float); |
|
const size_t s_kv_size = sizeof(size_t); |
|
const size_t s_kv_ntok = sizeof(int); |
|
const size_t s_kv = ctx->model.kv_self.buf.size; |
|
|
|
const size_t s_total = ( |
|
+ s_rng_size |
|
+ s_rng |
|
+ s_logits_capacity |
|
+ s_logits_size |
|
+ s_logits |
|
+ s_embedding_size |
|
+ s_embedding |
|
+ s_kv_size |
|
+ s_kv_ntok |
|
+ s_kv |
|
); |
|
|
|
return s_total; |
|
} |
|
|
|
|
|
size_t llama_v2_copy_state_data(struct llama_v2_context * ctx, uint8_t * dst) { |
|
uint8_t * out = dst; |
|
|
|
|
|
{ |
|
std::stringstream rng_ss; |
|
rng_ss << ctx->rng; |
|
|
|
const size_t rng_size = rng_ss.str().size(); |
|
char rng_buf[LLAMA_V2_MAX_RNG_STATE]; |
|
|
|
memset(&rng_buf[0], 0, LLAMA_V2_MAX_RNG_STATE); |
|
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); |
|
|
|
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); |
|
memcpy(out, &rng_buf[0], LLAMA_V2_MAX_RNG_STATE); out += LLAMA_V2_MAX_RNG_STATE; |
|
} |
|
|
|
|
|
{ |
|
const size_t logits_cap = ctx->logits.capacity(); |
|
const size_t logits_size = ctx->logits.size(); |
|
|
|
memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap); |
|
memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size); |
|
|
|
if (logits_size) { |
|
memcpy(out, ctx->logits.data(), logits_size * sizeof(float)); |
|
} |
|
|
|
out += logits_cap * sizeof(float); |
|
} |
|
|
|
|
|
{ |
|
const size_t embedding_size = ctx->embedding.size(); |
|
|
|
memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size); |
|
|
|
if (embedding_size) { |
|
memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float)); |
|
out += embedding_size * sizeof(float); |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & kv_self = ctx->model.kv_self; |
|
const auto & hparams = ctx->model.hparams; |
|
const int n_layer = hparams.n_layer; |
|
const int n_embd = hparams.n_embd; |
|
const int n_ctx = hparams.n_ctx; |
|
|
|
const size_t kv_size = kv_self.buf.size; |
|
const int kv_ntok = llama_v2_get_kv_cache_token_count(ctx); |
|
|
|
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); |
|
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); |
|
|
|
if (kv_size) { |
|
const size_t elt_size = ggml_v2_element_size(kv_self.k); |
|
|
|
char buffer[4096]; |
|
|
|
ggml_v2_context * cpy_ctx = ggml_v2_init({ sizeof(buffer), buffer, true }); |
|
ggml_v2_cgraph gf{}; |
|
gf.n_threads = 1; |
|
|
|
ggml_v2_tensor * kout3d = ggml_v2_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); |
|
kout3d->data = out; |
|
out += ggml_v2_nbytes(kout3d); |
|
|
|
ggml_v2_tensor * vout3d = ggml_v2_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); |
|
vout3d->data = out; |
|
out += ggml_v2_nbytes(vout3d); |
|
|
|
ggml_v2_tensor * k3d = ggml_v2_view_3d(cpy_ctx, kv_self.k, |
|
n_embd, kv_ntok, n_layer, |
|
elt_size*n_embd, elt_size*n_embd*n_ctx, 0); |
|
|
|
ggml_v2_tensor * v3d = ggml_v2_view_3d(cpy_ctx, kv_self.v, |
|
kv_ntok, n_embd, n_layer, |
|
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); |
|
|
|
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(cpy_ctx, k3d, kout3d)); |
|
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(cpy_ctx, v3d, vout3d)); |
|
ggml_v2_graph_compute(cpy_ctx, &gf); |
|
|
|
ggml_v2_free(cpy_ctx); |
|
} |
|
} |
|
|
|
const size_t written = out - dst; |
|
const size_t max_size = llama_v2_get_state_size(ctx); |
|
|
|
LLAMA_V2_ASSERT(written <= max_size); |
|
|
|
return written; |
|
} |
|
|
|
|
|
size_t llama_v2_set_state_data(struct llama_v2_context * ctx, const uint8_t * src) { |
|
const uint8_t * inp = src; |
|
|
|
|
|
{ |
|
size_t rng_size; |
|
char rng_buf[LLAMA_V2_MAX_RNG_STATE]; |
|
|
|
memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); |
|
memcpy(&rng_buf[0], inp, LLAMA_V2_MAX_RNG_STATE); inp += LLAMA_V2_MAX_RNG_STATE; |
|
|
|
std::stringstream rng_ss; |
|
rng_ss.str(std::string(&rng_buf[0], rng_size)); |
|
rng_ss >> ctx->rng; |
|
|
|
LLAMA_V2_ASSERT(rng_ss.fail() == false); |
|
} |
|
|
|
|
|
{ |
|
size_t logits_cap; |
|
size_t logits_size; |
|
|
|
memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap); |
|
memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); |
|
|
|
LLAMA_V2_ASSERT(ctx->logits.capacity() == logits_cap); |
|
|
|
if (logits_size) { |
|
ctx->logits.resize(logits_size); |
|
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float)); |
|
} |
|
|
|
inp += logits_cap * sizeof(float); |
|
} |
|
|
|
|
|
{ |
|
size_t embedding_size; |
|
|
|
memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size); |
|
|
|
LLAMA_V2_ASSERT(ctx->embedding.capacity() == embedding_size); |
|
|
|
if (embedding_size) { |
|
memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float)); |
|
inp += embedding_size * sizeof(float); |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & kv_self = ctx->model.kv_self; |
|
const auto & hparams = ctx->model.hparams; |
|
const int n_layer = hparams.n_layer; |
|
const int n_embd = hparams.n_embd; |
|
const int n_ctx = hparams.n_ctx; |
|
|
|
size_t kv_size; |
|
int kv_ntok; |
|
|
|
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); |
|
memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok); |
|
|
|
if (kv_size) { |
|
LLAMA_V2_ASSERT(kv_self.buf.size == kv_size); |
|
|
|
const size_t elt_size = ggml_v2_element_size(kv_self.k); |
|
|
|
char buffer[4096]; |
|
|
|
ggml_v2_context * cpy_ctx = ggml_v2_init({ sizeof(buffer), buffer, true }); |
|
ggml_v2_cgraph gf{}; |
|
gf.n_threads = 1; |
|
|
|
ggml_v2_tensor * kin3d = ggml_v2_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); |
|
kin3d->data = (void *) inp; |
|
inp += ggml_v2_nbytes(kin3d); |
|
|
|
ggml_v2_tensor * vin3d = ggml_v2_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); |
|
vin3d->data = (void *) inp; |
|
inp += ggml_v2_nbytes(vin3d); |
|
|
|
ggml_v2_tensor * k3d = ggml_v2_view_3d(cpy_ctx, kv_self.k, |
|
n_embd, kv_ntok, n_layer, |
|
elt_size*n_embd, elt_size*n_embd*n_ctx, 0); |
|
|
|
ggml_v2_tensor * v3d = ggml_v2_view_3d(cpy_ctx, kv_self.v, |
|
kv_ntok, n_embd, n_layer, |
|
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); |
|
|
|
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(cpy_ctx, kin3d, k3d)); |
|
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(cpy_ctx, vin3d, v3d)); |
|
ggml_v2_graph_compute(cpy_ctx, &gf); |
|
|
|
ggml_v2_free(cpy_ctx); |
|
} |
|
|
|
ctx->model.kv_self.n = kv_ntok; |
|
} |
|
|
|
const size_t nread = inp - src; |
|
const size_t max_size = llama_v2_get_state_size(ctx); |
|
|
|
LLAMA_V2_ASSERT(nread <= max_size); |
|
|
|
return nread; |
|
} |
|
|
|
int llama_v2_eval( |
|
struct llama_v2_context * ctx, |
|
const llama_v2_token * tokens, |
|
int n_tokens, |
|
int n_past, |
|
int n_threads) { |
|
if (!llama_v2_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) { |
|
fprintf(stderr, "%s: failed to eval\n", __func__); |
|
return 1; |
|
} |
|
|
|
|
|
|
|
if (!ctx->has_evaluated_once) { |
|
ctx->t_load_us = ggml_v2_time_us() - ctx->t_start_us; |
|
ctx->has_evaluated_once = true; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int llama_v2_tokenize( |
|
struct llama_v2_context * ctx, |
|
const char * text, |
|
llama_v2_token * tokens, |
|
int n_max_tokens, |
|
bool add_bos) { |
|
auto res = llama_v2_tokenize(ctx->vocab, text, add_bos); |
|
|
|
if (n_max_tokens < (int) res.size()) { |
|
fprintf(stderr, "%s: too many tokens\n", __func__); |
|
return -((int) res.size()); |
|
} |
|
|
|
for (size_t i = 0; i < res.size(); i++) { |
|
tokens[i] = res[i]; |
|
} |
|
|
|
return res.size(); |
|
} |
|
|
|
int llama_v2_n_vocab(const struct llama_v2_context * ctx) { |
|
return ctx->vocab.id_to_token.size(); |
|
} |
|
|
|
int llama_v2_n_ctx(const struct llama_v2_context * ctx) { |
|
return ctx->model.hparams.n_ctx; |
|
} |
|
|
|
int llama_v2_n_embd(const struct llama_v2_context * ctx) { |
|
return ctx->model.hparams.n_embd; |
|
} |
|
|
|
float * llama_v2_get_logits(struct llama_v2_context * ctx) { |
|
return ctx->logits.data(); |
|
} |
|
|
|
float * llama_v2_get_embeddings(struct llama_v2_context * ctx) { |
|
return ctx->embedding.data(); |
|
} |
|
|
|
const char * llama_v2_token_to_str(const struct llama_v2_context * ctx, llama_v2_token token) { |
|
if (token >= llama_v2_n_vocab(ctx)) { |
|
return nullptr; |
|
} |
|
|
|
return ctx->vocab.id_to_token[token].tok.c_str(); |
|
} |
|
|
|
llama_v2_token llama_v2_token_bos() { |
|
return 1; |
|
} |
|
|
|
llama_v2_token llama_v2_token_eos() { |
|
return 2; |
|
} |
|
|
|
llama_v2_token llama_v2_token_nl() { |
|
return 13; |
|
} |
|
|
|
|
|
void llama_v2_print_timings(struct llama_v2_context * ctx) { |
|
const int64_t t_end_us = ggml_v2_time_us(); |
|
|
|
const int32_t n_sample = std::max(1, ctx->n_sample); |
|
const int32_t n_eval = std::max(1, ctx->n_eval); |
|
const int32_t n_p_eval = std::max(1, ctx->n_p_eval); |
|
|
|
fprintf(stderr, "\n"); |
|
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0); |
|
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample); |
|
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval); |
|
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval); |
|
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0); |
|
} |
|
|
|
void llama_v2_reset_timings(struct llama_v2_context * ctx) { |
|
ctx->t_start_us = ggml_v2_time_us(); |
|
ctx->t_sample_us = ctx->n_sample = 0; |
|
ctx->t_eval_us = ctx->n_eval = 0; |
|
ctx->t_p_eval_us = ctx->n_p_eval = 0; |
|
} |
|
|
|
const char * llama_v2_print_system_info(void) { |
|
static std::string s; |
|
|
|
s = ""; |
|
s += "AVX = " + std::to_string(ggml_v2_cpu_has_avx()) + " | "; |
|
s += "AVX2 = " + std::to_string(ggml_v2_cpu_has_avx2()) + " | "; |
|
s += "AVX512 = " + std::to_string(ggml_v2_cpu_has_avx512()) + " | "; |
|
s += "AVX512_VBMI = " + std::to_string(ggml_v2_cpu_has_avx512_vbmi()) + " | "; |
|
s += "AVX512_VNNI = " + std::to_string(ggml_v2_cpu_has_avx512_vnni()) + " | "; |
|
s += "FMA = " + std::to_string(ggml_v2_cpu_has_fma()) + " | "; |
|
s += "NEON = " + std::to_string(ggml_v2_cpu_has_neon()) + " | "; |
|
s += "ARM_FMA = " + std::to_string(ggml_v2_cpu_has_arm_fma()) + " | "; |
|
s += "F16C = " + std::to_string(ggml_v2_cpu_has_f16c()) + " | "; |
|
s += "FP16_VA = " + std::to_string(ggml_v2_cpu_has_fp16_va()) + " | "; |
|
s += "WASM_SIMD = " + std::to_string(ggml_v2_cpu_has_wasm_simd()) + " | "; |
|
s += "BLAS = " + std::to_string(ggml_v2_cpu_has_blas()) + " | "; |
|
s += "SSE3 = " + std::to_string(ggml_v2_cpu_has_sse3()) + " | "; |
|
s += "VSX = " + std::to_string(ggml_v2_cpu_has_vsx()) + " | "; |
|
|
|
return s.c_str(); |
|
} |
|
|
|
|
|
std::vector<std::pair<std::string, struct ggml_v2_tensor *>>& llama_v2_internal_get_tensor_map(struct llama_v2_context * ctx) { |
|
return ctx->model.tensors_by_name; |
|
} |
|
|
|
|
|
|
|
#define MAX_TOKEN_LEN 18 |
|
|
|
std::vector<llama_v2_token> legacy_llama_v2_tokenize(const llama_v2_vocab & vocab, const std::string & text, bool bos) { |
|
std::vector<llama_v2_token> res; |
|
std::vector<int> score; |
|
std::vector<llama_v2_token> prev; |
|
int len = text.length(); |
|
|
|
score.resize(len + 1); |
|
prev.resize(len + 1); |
|
|
|
|
|
for (int i = 0; i < len; i++) { |
|
int max_len = std::min(len - i, MAX_TOKEN_LEN); |
|
for (int sub_len = 1; sub_len <= max_len; sub_len++) { |
|
auto sub = text.substr(i, sub_len); |
|
auto token = vocab.token_to_id.find(sub); |
|
if (token != vocab.token_to_id.end()) { |
|
int token_score = sub.length() * sub.length(); |
|
int local_score = score[i] + token_score; |
|
int next = i + sub_len; |
|
if (score[next] < local_score) { |
|
score[next] = local_score; |
|
prev[next] = (*token).second; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
int i = len; |
|
while (i > 0) { |
|
llama_v2_token token_id = prev[i]; |
|
if (token_id == 0) { |
|
|
|
printf("failed to tokenize string!\n"); |
|
break; |
|
} |
|
res.push_back(token_id); |
|
auto token = vocab.id_to_token[token_id].tok; |
|
i -= token.length(); |
|
} |
|
|
|
if (bos) { |
|
res.push_back(1); |
|
} |
|
|
|
|
|
std::reverse(res.begin(), res.end()); |
|
|
|
return res; |
|
} |
|
|
|
int legacy_llama_v2_tokenize( |
|
struct llama_v2_context * ctx, |
|
const char * text, |
|
llama_v2_token * tokens, |
|
int n_max_tokens, |
|
bool add_bos) { |
|
auto res = legacy_llama_v2_tokenize(ctx->vocab, text, add_bos); |
|
|
|
if (n_max_tokens < (int) res.size()) { |
|
fprintf(stderr, "%s: too many tokens\n", __func__); |
|
return -((int) res.size()); |
|
} |
|
|
|
for (size_t i = 0; i < res.size(); i++) { |
|
tokens[i] = res[i]; |
|
} |
|
|
|
return res.size(); |
|
} |
|
|
|
std::vector<llama_v2_token> legacy_llama_v2_tokenize(struct llama_v2_context * ctx, const std::string & text, bool add_bos) { |
|
std::vector<llama_v2_token> res(8096); |
|
int n = legacy_llama_v2_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos); |
|
res.resize(n); |
|
|
|
return res; |
|
} |
|
|
|
std::vector<llama_token> llama_v2_tokenize(struct llama_v2_context * ctx, const std::string & text, bool add_bos) { |
|
|
|
std::vector<llama_token> res(text.size() + (int) add_bos); |
|
const int n = llama_v2_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos); |
|
assert(n >= 0); |
|
res.resize(n); |
|
|
|
return res; |
|
} |