|
|
|
#ifndef _GNU_SOURCE |
|
#define _GNU_SOURCE |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstdio> |
|
#endif |
|
|
|
#define GGML_USE_K_QUANTS |
|
|
|
#include "llama-util.h" |
|
#include "llama_v3.h" |
|
|
|
#include "ggml_v3.h" |
|
#include "otherarch.h" |
|
#ifdef GGML_USE_CUDA |
|
#include "ggml_v3-cuda.h" |
|
#endif |
|
#if defined(GGML_USE_CLBLAST) |
|
#include "ggml_v3-opencl.h" |
|
#endif |
|
|
|
|
|
#ifdef GGML_USE_K_QUANTS |
|
#ifndef QK_K |
|
#ifdef GGML_QKK_64 |
|
#define QK_K 64 |
|
#else |
|
#define QK_K 256 |
|
#endif |
|
#endif |
|
#endif |
|
|
|
#include <array> |
|
#include <ctime> |
|
#include <cinttypes> |
|
#include <fstream> |
|
#include <random> |
|
#include <map> |
|
#include <unordered_map> |
|
#include <queue> |
|
#include <cassert> |
|
#include <cstring> |
|
#include <climits> |
|
#include <memory> |
|
#include <algorithm> |
|
#include <initializer_list> |
|
#include <thread> |
|
#include <atomic> |
|
#include <mutex> |
|
#include <sstream> |
|
#include <numeric> |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
static void llama_v3_log_internal(llama_v3_log_level level, const char* format, ...); |
|
static void llama_v3_log_callback_default(llama_v3_log_level level, const char * text, void * user_data); |
|
#define LLAMA_V3_LOG_INFO(...) llama_v3_log_internal(LLAMA_V3_LOG_LEVEL_INFO , __VA_ARGS__) |
|
#define LLAMA_V3_LOG_WARN(...) llama_v3_log_internal(LLAMA_V3_LOG_LEVEL_WARN , __VA_ARGS__) |
|
#define LLAMA_V3_LOG_ERROR(...) llama_v3_log_internal(LLAMA_V3_LOG_LEVEL_ERROR, __VA_ARGS__) |
|
|
|
#if !defined(GGML_USE_CUDA) |
|
#define LLAMA_V3_USE_ALLOCATOR |
|
#else |
|
#define LLAMA_V3_USE_SCRATCH |
|
#define LLAMA_V3_MAX_SCRATCH_BUFFERS 16 |
|
#endif |
|
|
|
|
|
|
|
enum e_model3 { |
|
MODEL_UNKNOWN_3, |
|
MODEL_3B_3, |
|
MODEL_7B_3, |
|
MODEL_13B_3, |
|
MODEL_30B_3, |
|
MODEL_34B_3, |
|
MODEL_65B_3, |
|
MODEL_70B_3, |
|
}; |
|
|
|
static const size_t kB3 = 1024; |
|
static const size_t MB3 = 1024*1024; |
|
|
|
|
|
|
|
|
|
|
|
typedef void (*offload_func_v3_t)(struct ggml_v3_tensor * tensor); |
|
|
|
void llama_v3_nop(struct ggml_v3_tensor * tensor) { |
|
(void) tensor; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void llv3_graph_compute_helper(std::vector<uint8_t> & buf, ggml_v3_cgraph * graph, int n_threads) { |
|
struct ggml_v3_cplan plan = ggml_v3_graph_plan(graph, n_threads); |
|
|
|
if (plan.work_size > 0) { |
|
buf.resize(plan.work_size); |
|
plan.work_data = buf.data(); |
|
} |
|
|
|
ggml_v3_graph_compute(graph, &plan); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
static std::map<e_model3, size_t> MEM_REQ_SCRATCH0_3(int n_ctx) |
|
{ |
|
std::map<e_model3, size_t> k_sizes = { |
|
{ MODEL_3B_3, ((size_t) n_ctx / 16ull + 156ull) * MB3 }, |
|
{ MODEL_7B_3, ((size_t) n_ctx / 16ull + 164ull) * MB3 }, |
|
{ MODEL_13B_3, ((size_t) n_ctx / 12ull + 184ull) * MB3 }, |
|
{ MODEL_30B_3, ((size_t) n_ctx / 9ull + 224ull) * MB3 }, |
|
{ MODEL_34B_3, ((size_t) n_ctx / 8ull + 256ull) * MB3 }, |
|
{ MODEL_65B_3, ((size_t) n_ctx / 6ull + 320ull) * MB3 }, |
|
{ MODEL_70B_3, ((size_t) n_ctx / 7ull + 320ull) * MB3 }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
static const std::map<e_model3, size_t> & MEM_REQ_SCRATCH1_3() |
|
{ |
|
static std::map<e_model3, size_t> k_sizes = { |
|
{ MODEL_3B_3, 192ull * MB3 }, |
|
{ MODEL_7B_3, 224ull * MB3 }, |
|
{ MODEL_13B_3, 256ull * MB3 }, |
|
{ MODEL_30B_3, 320ull * MB3 }, |
|
{ MODEL_34B_3, 380ull * MB3 }, |
|
{ MODEL_65B_3, 448ull * MB3 }, |
|
{ MODEL_70B_3, 448ull * MB3 }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
|
|
static const std::map<e_model3, size_t> & MEM_REQ_EVAL_3() |
|
{ |
|
static std::map<e_model3, size_t> k_sizes = { |
|
{ MODEL_3B_3, 16ull * MB3 }, |
|
{ MODEL_7B_3, 20ull * MB3 }, |
|
{ MODEL_13B_3, 24ull * MB3 }, |
|
{ MODEL_30B_3, 32ull * MB3 }, |
|
{ MODEL_34B_3, 38ull * MB3 }, |
|
{ MODEL_65B_3, 48ull * MB3 }, |
|
{ MODEL_70B_3, 48ull * MB3 }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
|
|
|
|
static const std::map<e_model3, size_t> & VRAM_REQ_SCRATCH_BASE_3() |
|
{ |
|
static std::map<e_model3, size_t> k_sizes = { |
|
{ MODEL_3B_3, 512ull * kB3 }, |
|
{ MODEL_7B_3, 512ull * kB3 }, |
|
{ MODEL_13B_3, 640ull * kB3 }, |
|
{ MODEL_30B_3, 768ull * kB3 }, |
|
{ MODEL_34B_3, 960ull * kB3 }, |
|
{ MODEL_65B_3, 1360ull * kB3 }, |
|
{ MODEL_70B_3, 1360ull * kB3 }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
|
|
|
|
static const std::map<e_model3, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT_3() |
|
{ |
|
static std::map<e_model3, size_t> k_sizes = { |
|
{ MODEL_3B_3, 128ull }, |
|
{ MODEL_7B_3, 128ull }, |
|
{ MODEL_13B_3, 160ull }, |
|
{ MODEL_30B_3, 208ull }, |
|
{ MODEL_34B_3, 256ull }, |
|
{ MODEL_65B_3, 320ull }, |
|
{ MODEL_70B_3, 320ull }, |
|
}; |
|
return k_sizes; |
|
} |
|
|
|
|
|
struct llama_v3_hparams { |
|
uint32_t n_vocab = 32000; |
|
uint32_t n_ctx = 512; |
|
uint32_t n_embd = 4096; |
|
uint32_t n_mult = 256; |
|
uint32_t n_head = 32; |
|
uint32_t n_head_kv = 32; |
|
uint32_t n_layer = 32; |
|
uint32_t n_rot = 64; |
|
|
|
|
|
|
|
float f_ffn_mult = 1.0f; |
|
float f_rms_norm_eps = LLAMA_V3_DEFAULT_RMS_EPS; |
|
|
|
float rope_freq_base = 10000.0f; |
|
float rope_freq_scale = 1.0f; |
|
|
|
enum llama_v3_ftype ftype = LLAMA_V3_FTYPE_MOSTLY_F16; |
|
|
|
bool operator!=(const llama_v3_hparams & other) const { |
|
return static_cast<bool>(memcmp(this, &other, sizeof(llama_v3_hparams))); |
|
} |
|
|
|
uint32_t n_gqa() const { |
|
return n_head/n_head_kv; |
|
} |
|
|
|
uint32_t n_embd_head() const { |
|
return n_embd/n_head; |
|
} |
|
|
|
uint32_t n_embd_gqa() const { |
|
return n_embd/n_gqa(); |
|
} |
|
|
|
size_t kv_size() const { |
|
size_t result = 2ull; |
|
result *= (size_t) n_embd_gqa(); |
|
result *= (size_t) n_ctx; |
|
result *= (size_t) n_layer; |
|
result *= sizeof(ggml_v3_fp16_t); |
|
return result; |
|
} |
|
}; |
|
|
|
struct llama_v3_layer { |
|
|
|
struct ggml_v3_tensor * attention_norm; |
|
|
|
|
|
struct ggml_v3_tensor * wq; |
|
struct ggml_v3_tensor * wk; |
|
struct ggml_v3_tensor * wv; |
|
struct ggml_v3_tensor * wo; |
|
|
|
|
|
struct ggml_v3_tensor * ffn_norm; |
|
|
|
|
|
struct ggml_v3_tensor * w1; |
|
struct ggml_v3_tensor * w2; |
|
struct ggml_v3_tensor * w3; |
|
}; |
|
|
|
struct llama_v3_kv_cache { |
|
struct ggml_v3_tensor * k = NULL; |
|
struct ggml_v3_tensor * v = NULL; |
|
|
|
struct ggml_v3_context * ctx = NULL; |
|
|
|
llama_v3_ctx_buffer buf; |
|
|
|
int n; |
|
|
|
~llama_v3_kv_cache() { |
|
if (ctx) { |
|
ggml_v3_free(ctx); |
|
} |
|
|
|
#ifdef GGML_USE_CUDA |
|
ggml_v3_cuda_free_data(k); |
|
ggml_v3_cuda_free_data(v); |
|
#endif |
|
} |
|
}; |
|
|
|
struct llama_v3_vocab { |
|
using id = int32_t; |
|
using token = std::string; |
|
|
|
struct token_score { |
|
token tok; |
|
float score; |
|
}; |
|
|
|
std::unordered_map<token, id> token_to_id; |
|
std::vector<token_score> id_to_token; |
|
}; |
|
|
|
struct llama_v3_model { |
|
e_model3 type = MODEL_UNKNOWN_3; |
|
|
|
llama_v3_hparams hparams; |
|
|
|
struct ggml_v3_tensor * tok_embeddings; |
|
|
|
struct ggml_v3_tensor * norm; |
|
struct ggml_v3_tensor * output; |
|
|
|
std::vector<llama_v3_layer> layers; |
|
int n_gpu_layers; |
|
|
|
|
|
struct ggml_v3_context * ctx = NULL; |
|
|
|
|
|
llama_v3_ctx_buffer buf; |
|
|
|
|
|
std::unique_ptr<llama_v3_mmap> mapping; |
|
|
|
|
|
llama_v3_mlock mlock_buf; |
|
llama_v3_mlock mlock_mmap; |
|
|
|
|
|
std::vector<std::pair<std::string, struct ggml_v3_tensor *>> tensors_by_name; |
|
|
|
int64_t t_load_us = 0; |
|
int64_t t_start_us = 0; |
|
|
|
llama_v3_vocab vocab; |
|
|
|
~llama_v3_model() { |
|
if (ctx) { |
|
ggml_v3_free(ctx); |
|
} |
|
|
|
#ifdef GGML_USE_CUDA |
|
for (size_t i = 0; i < tensors_by_name.size(); ++i) { |
|
ggml_v3_cuda_free_data(tensors_by_name[i].second); |
|
} |
|
ggml_v3_cuda_free_scratch(); |
|
#elif defined(GGML_USE_CLBLAST) |
|
for (size_t i = 0; i < tensors_by_name.size(); ++i) { |
|
ggml_v3_cl_free_data(tensors_by_name[i].second); |
|
} |
|
#endif |
|
} |
|
}; |
|
|
|
struct llama_v3_context { |
|
llama_v3_context(const llama_v3_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} |
|
~llama_v3_context() { |
|
if (model_owner) { |
|
delete &model; |
|
} |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
if (alloc) { |
|
ggml_v3_allocr_free(alloc); |
|
} |
|
#endif |
|
} |
|
|
|
std::mt19937 rng; |
|
|
|
bool has_evaluated_once = false; |
|
|
|
int64_t t_sample_us = 0; |
|
int64_t t_eval_us = 0; |
|
int64_t t_p_eval_us = 0; |
|
|
|
int32_t n_sample = 0; |
|
int32_t n_eval = 0; |
|
int32_t n_p_eval = 0; |
|
|
|
const llama_v3_model & model; |
|
|
|
bool model_owner = false; |
|
|
|
int64_t t_load_us; |
|
int64_t t_start_us; |
|
|
|
|
|
struct llama_v3_kv_cache kv_self; |
|
|
|
size_t mem_per_token = 0; |
|
|
|
|
|
std::vector<float> logits; |
|
bool logits_all = false; |
|
|
|
|
|
std::vector<float> embedding; |
|
|
|
|
|
std::vector<uint8_t> work_buffer; |
|
|
|
|
|
|
|
llama_v3_ctx_buffer buf_compute; |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
llama_v3_ctx_buffer buf_alloc; |
|
ggml_v3_allocr * alloc = NULL; |
|
#endif |
|
|
|
#ifdef LLAMA_V3_USE_SCRATCH |
|
llama_v3_ctx_buffer buf_scratch[LLAMA_V3_MAX_SCRATCH_BUFFERS]; |
|
int buf_last = 0; |
|
size_t buf_max_size[LLAMA_V3_MAX_SCRATCH_BUFFERS] = { 0 }; |
|
#endif |
|
|
|
|
|
void use_buf(struct ggml_v3_context * ctx, int i) { |
|
#if defined(LLAMA_V3_USE_SCRATCH) |
|
size_t last_size = 0; |
|
|
|
if (i == -1) { |
|
last_size = ggml_v3_set_scratch(ctx, { 0, 0, nullptr, }); |
|
} else { |
|
auto & buf = buf_scratch[i]; |
|
last_size = ggml_v3_set_scratch(ctx, { 0, buf.size, buf.addr, }); |
|
} |
|
|
|
if (buf_last >= 0) { |
|
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size); |
|
} |
|
|
|
buf_last = i; |
|
#else |
|
(void) i; |
|
(void) ctx; |
|
#endif |
|
} |
|
|
|
size_t get_buf_max_mem(int i) const { |
|
#if defined(LLAMA_V3_USE_SCRATCH) |
|
return buf_max_size[i]; |
|
#else |
|
(void) i; |
|
return 0; |
|
#endif |
|
} |
|
}; |
|
|
|
struct llama_v3_state { |
|
|
|
llama_v3_log_callback log_callback = llama_v3_log_callback_default; |
|
void * log_callback_user_data = nullptr; |
|
}; |
|
|
|
static llama_v3_state llv3_g_state; |
|
|
|
template <typename T> |
|
static T checked_mul(T a, T b) { |
|
T ret = a * b; |
|
if (a != 0 && ret / a != b) { |
|
throw std::runtime_error(format_old("overflow multiplying %llu * %llu", |
|
(unsigned long long) a, (unsigned long long) b)); |
|
} |
|
return ret; |
|
} |
|
|
|
static size_t checked_div(size_t a, size_t b) { |
|
if (b == 0 || a % b != 0) { |
|
throw std::runtime_error(format_old("error dividing %zu / %zu", a, b)); |
|
} |
|
return a / b; |
|
} |
|
|
|
static std::string llama_v3_format_tensor_shape(const std::vector<uint32_t> & ne) { |
|
char buf[256]; |
|
snprintf(buf, sizeof(buf), "%5u", ne.at(0)); |
|
for (size_t i = 1; i < ne.size(); i++) { |
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i)); |
|
} |
|
return buf; |
|
} |
|
|
|
static size_t llama_v3_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_v3_type type) { |
|
size_t size = ggml_v3_type_size(type); |
|
for (uint32_t dim : ne) { |
|
size = checked_mul<size_t>(size, dim); |
|
} |
|
return size / ggml_v3_blck_size(type); |
|
} |
|
|
|
struct llama_v3_load_tensor { |
|
std::string name; |
|
enum ggml_v3_type type = GGML_V3_TYPE_F32; |
|
std::vector<uint32_t> ne; |
|
size_t file_off; |
|
size_t size; |
|
struct ggml_v3_tensor * ggml_v3_tensor = NULL; |
|
uint8_t * data; |
|
}; |
|
|
|
struct llama_v3_load_tensors_map { |
|
|
|
std::vector<llama_v3_load_tensor> tensors; |
|
std::unordered_map<std::string, size_t> name_to_idx; |
|
}; |
|
|
|
enum llama_v3_file_version { |
|
LLAMA_V3_FILE_VERSION_GGML, |
|
LLAMA_V3_FILE_VERSION_GGMF_V1, |
|
LLAMA_V3_FILE_VERSION_GGJT_V1, |
|
LLAMA_V3_FILE_VERSION_GGJT_V2, |
|
LLAMA_V3_FILE_VERSION_GGJT_V3, |
|
}; |
|
|
|
struct llama_v3_file_loader { |
|
llama_v3_file file; |
|
llama_v3_file_version file_version; |
|
llama_v3_hparams hparams; |
|
llama_v3_vocab vocab; |
|
|
|
llama_v3_file_loader(const char * fname, llama_v3_load_tensors_map & tensors_map) |
|
: file(fname, "rb") { |
|
LLAMA_V3_LOG_INFO("llama.cpp: loading model from %s\n", fname); |
|
read_magic(); |
|
read_hparams(); |
|
read_vocab(); |
|
read_tensor_metadata(tensors_map); |
|
} |
|
void read_magic() { |
|
uint32_t magic = file.read_u32(); |
|
|
|
if (magic == LLAMA_V3_FILE_MAGIC_GGML) { |
|
file_version = LLAMA_V3_FILE_VERSION_GGML; |
|
return; |
|
} |
|
|
|
uint32_t version = file.read_u32(); |
|
|
|
switch (magic) { |
|
case LLAMA_V3_FILE_MAGIC_GGMF: |
|
switch (version) { |
|
case 1: file_version = LLAMA_V3_FILE_VERSION_GGMF_V1; return; |
|
} |
|
break; |
|
case LLAMA_V3_FILE_MAGIC_GGJT: |
|
switch (version) { |
|
case 1: file_version = LLAMA_V3_FILE_VERSION_GGJT_V1; return; |
|
case 2: file_version = LLAMA_V3_FILE_VERSION_GGJT_V2; return; |
|
case 3: file_version = LLAMA_V3_FILE_VERSION_GGJT_V3; return; |
|
} |
|
} |
|
|
|
throw std::runtime_error(format_old("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?", |
|
magic, version)); |
|
} |
|
void read_hparams() { |
|
hparams.n_vocab = file.read_u32(); |
|
hparams.n_embd = file.read_u32(); |
|
hparams.n_mult = file.read_u32(); |
|
hparams.n_head = file.read_u32(); |
|
hparams.n_layer = file.read_u32(); |
|
hparams.n_rot = file.read_u32(); |
|
hparams.ftype = (enum llama_v3_ftype) file.read_u32(); |
|
|
|
|
|
|
|
hparams.n_head_kv = hparams.n_head; |
|
} |
|
void read_vocab() { |
|
vocab.id_to_token.resize(hparams.n_vocab); |
|
|
|
for (uint32_t i = 0; i < hparams.n_vocab; i++) { |
|
uint32_t len = file.read_u32(); |
|
std::string word = file.read_string(len); |
|
|
|
float score = 0.0f; |
|
file.read_raw(&score, sizeof(score)); |
|
|
|
vocab.token_to_id[word] = i; |
|
|
|
auto & tok_score = vocab.id_to_token[i]; |
|
tok_score.tok = std::move(word); |
|
tok_score.score = score; |
|
} |
|
} |
|
void read_tensor_metadata(llama_v3_load_tensors_map & tensors_map) { |
|
while (file.tell() < file.size) { |
|
llama_v3_load_tensor tensor; |
|
uint32_t n_dims = file.read_u32(); |
|
uint32_t name_len = file.read_u32(); |
|
tensor.type = (enum ggml_v3_type) file.read_u32(); |
|
tensor.ne.resize(n_dims); |
|
file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims); |
|
std::string name = file.read_string(name_len); |
|
if (n_dims < 1 || n_dims > 2) { |
|
throw std::runtime_error(format_old("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims)); |
|
} |
|
switch (tensor.type) { |
|
case GGML_V3_TYPE_F32: |
|
case GGML_V3_TYPE_F16: |
|
case GGML_V3_TYPE_Q4_0: |
|
case GGML_V3_TYPE_Q4_1: |
|
case GGML_V3_TYPE_Q5_0: |
|
case GGML_V3_TYPE_Q5_1: |
|
case GGML_V3_TYPE_Q8_0: |
|
case GGML_V3_TYPE_Q2_K: |
|
case GGML_V3_TYPE_Q3_K: |
|
case GGML_V3_TYPE_Q4_K: |
|
case GGML_V3_TYPE_Q5_K: |
|
case GGML_V3_TYPE_Q6_K: |
|
break; |
|
default: { |
|
throw std::runtime_error(format_old("unrecognized tensor type %u\n", tensor.type)); |
|
} |
|
} |
|
|
|
|
|
if (file_version >= LLAMA_V3_FILE_VERSION_GGJT_V1) { |
|
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR); |
|
} |
|
|
|
tensor.file_off = file.tell(); |
|
tensor.name = name; |
|
tensor.size = llama_v3_calc_tensor_size(tensor.ne, tensor.type); |
|
file.seek(tensor.size, SEEK_CUR); |
|
|
|
tensors_map.tensors.push_back(tensor); |
|
tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1; |
|
} |
|
} |
|
}; |
|
|
|
struct llama_v3_file_saver { |
|
llama_v3_file file; |
|
llama_v3_file_loader * any_file_loader; |
|
llama_v3_file_saver(const char * fname, llama_v3_file_loader * any_file_loader, enum llama_v3_ftype new_ftype) |
|
: file(fname, "wb"), any_file_loader(any_file_loader) { |
|
LLAMA_V3_LOG_INFO("llama.cpp: saving model to %s\n", fname); |
|
write_magic(); |
|
write_hparams(new_ftype); |
|
write_vocab(); |
|
} |
|
void write_magic() { |
|
file.write_u32(LLAMA_V3_FILE_MAGIC); |
|
file.write_u32(LLAMA_V3_FILE_VERSION); |
|
} |
|
void write_hparams(enum llama_v3_ftype new_ftype) { |
|
const llama_v3_hparams & hparams = any_file_loader->hparams; |
|
file.write_u32(hparams.n_vocab); |
|
file.write_u32(hparams.n_embd); |
|
file.write_u32(hparams.n_mult); |
|
file.write_u32(hparams.n_head); |
|
file.write_u32(hparams.n_layer); |
|
file.write_u32(hparams.n_rot); |
|
file.write_u32(new_ftype); |
|
} |
|
void write_vocab() { |
|
if (any_file_loader->file_version == LLAMA_V3_FILE_VERSION_GGML) { |
|
LLAMA_V3_LOG_WARN("llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n"); |
|
} |
|
uint32_t n_vocab = any_file_loader->hparams.n_vocab; |
|
for (uint32_t i = 0; i < n_vocab; i++) { |
|
const auto & token_score = any_file_loader->vocab.id_to_token.at(i); |
|
file.write_u32((uint32_t) token_score.tok.size()); |
|
file.write_raw(token_score.tok.data(), token_score.tok.size()); |
|
file.write_raw(&token_score.score, sizeof(token_score.score)); |
|
} |
|
} |
|
void write_tensor(llama_v3_load_tensor & tensor, enum ggml_v3_type new_type, const void * new_data, size_t new_size) { |
|
switch (new_type) { |
|
case GGML_V3_TYPE_F32: |
|
case GGML_V3_TYPE_F16: |
|
case GGML_V3_TYPE_Q4_0: |
|
case GGML_V3_TYPE_Q4_1: |
|
case GGML_V3_TYPE_Q5_0: |
|
case GGML_V3_TYPE_Q5_1: |
|
case GGML_V3_TYPE_Q8_0: |
|
case GGML_V3_TYPE_Q2_K: |
|
case GGML_V3_TYPE_Q3_K: |
|
case GGML_V3_TYPE_Q4_K: |
|
case GGML_V3_TYPE_Q5_K: |
|
case GGML_V3_TYPE_Q6_K: |
|
break; |
|
default: LLAMA_V3_ASSERT(false); |
|
} |
|
file.write_u32((uint32_t) tensor.ne.size()); |
|
file.write_u32((uint32_t) tensor.name.size()); |
|
file.write_u32(new_type); |
|
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size()); |
|
file.write_raw(tensor.name.data(), tensor.name.size()); |
|
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR); |
|
LLAMA_V3_ASSERT(new_size == llama_v3_calc_tensor_size(tensor.ne, new_type)); |
|
file.write_raw(new_data, new_size); |
|
} |
|
}; |
|
|
|
struct llama_v3_model_loader { |
|
std::unique_ptr<llama_v3_file_loader> file_loader; |
|
llama_v3_load_tensors_map tensors_map; |
|
bool use_mmap; |
|
size_t num_ggml_v3_tensors_created = 0; |
|
struct ggml_v3_context * ggml_v3_ctx = NULL; |
|
std::unique_ptr<llama_v3_mmap> mapping; |
|
|
|
llama_v3_model_loader(const std::string & fname_base, bool use_mmap) { |
|
file_loader = std::unique_ptr<llama_v3_file_loader>(new llama_v3_file_loader(fname_base.c_str(), tensors_map)); |
|
if (!llama_v3_mmap::SUPPORTED) { |
|
use_mmap = false; |
|
} |
|
this->use_mmap = use_mmap; |
|
} |
|
|
|
void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const { |
|
*ctx_size_p = *mmapped_size_p = 0; |
|
for (const llama_v3_load_tensor & lt : tensors_map.tensors) { |
|
*ctx_size_p += sizeof(struct ggml_v3_tensor) + GGML_V3_OBJECT_SIZE; |
|
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size + 16; |
|
} |
|
} |
|
|
|
struct ggml_v3_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_v3_backend_type backend) { |
|
auto it = tensors_map.name_to_idx.find(name); |
|
if (it == tensors_map.name_to_idx.end()) { |
|
throw std::runtime_error(std::runtime_error(format_old("llama.cpp: tensor '%s' is missing from model", name.c_str()))); |
|
} |
|
llama_v3_load_tensor & lt = tensors_map.tensors.at(it->second); |
|
if (lt.ne != ne) { |
|
throw std::runtime_error(format_old("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s", |
|
name.c_str(), llama_v3_format_tensor_shape(ne).c_str(), llama_v3_format_tensor_shape(lt.ne).c_str())); |
|
} |
|
|
|
return get_tensor_for(lt, backend); |
|
} |
|
|
|
struct ggml_v3_tensor * get_tensor_for(llama_v3_load_tensor & lt, ggml_v3_backend_type backend) { |
|
struct ggml_v3_tensor * tensor; |
|
if (backend != GGML_V3_BACKEND_CPU) { |
|
ggml_v3_set_no_alloc(ggml_v3_ctx, true); |
|
} |
|
if (lt.ne.size() == 2) { |
|
tensor = ggml_v3_new_tensor_2d(ggml_v3_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); |
|
} else { |
|
LLAMA_V3_ASSERT(lt.ne.size() == 1); |
|
tensor = ggml_v3_new_tensor_1d(ggml_v3_ctx, lt.type, lt.ne.at(0)); |
|
} |
|
ggml_v3_set_name(tensor, lt.name.c_str()); |
|
LLAMA_V3_ASSERT(lt.ggml_v3_tensor == NULL); |
|
|
|
if (backend != GGML_V3_BACKEND_CPU) { |
|
ggml_v3_set_no_alloc(ggml_v3_ctx, use_mmap); |
|
} |
|
tensor->backend = backend; |
|
lt.ggml_v3_tensor = tensor; |
|
num_ggml_v3_tensors_created++; |
|
return tensor; |
|
} |
|
|
|
void done_getting_tensors() const { |
|
if (num_ggml_v3_tensors_created != tensors_map.tensors.size()) { |
|
throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected")); |
|
} |
|
} |
|
|
|
void load_all_data(llama_v3_progress_callback progress_callback, void * progress_callback_user_data, llama_v3_mlock * lmlock) { |
|
size_t data_size = 0; |
|
size_t prefetch_size = file_loader->file.size; |
|
size_t lock_size = 0; |
|
for (const llama_v3_load_tensor & lt : tensors_map.tensors) { |
|
data_size += lt.size; |
|
if (lt.ggml_v3_tensor->backend != GGML_V3_BACKEND_CPU) { |
|
prefetch_size -= lt.size; |
|
} |
|
} |
|
|
|
if (use_mmap) { |
|
mapping.reset(new llama_v3_mmap(&file_loader->file, prefetch_size, ggml_v3_is_numa())); |
|
if (lmlock) { |
|
lmlock->init(mapping->addr); |
|
} |
|
} |
|
|
|
size_t done_size = 0; |
|
for (llama_v3_load_tensor & lt : tensors_map.tensors) { |
|
if (progress_callback) { |
|
progress_callback((float) done_size / data_size, progress_callback_user_data); |
|
} |
|
LLAMA_V3_ASSERT(lt.ggml_v3_tensor); |
|
lt.data = (uint8_t *) lt.ggml_v3_tensor->data; |
|
|
|
|
|
if (!use_mmap && lt.data == NULL) { |
|
GGML_V3_ASSERT(lt.ggml_v3_tensor->backend != GGML_V3_BACKEND_CPU); |
|
lt.data = (uint8_t*)malloc(ggml_v3_nbytes(lt.ggml_v3_tensor)); |
|
} |
|
|
|
load_data_for(lt); |
|
|
|
switch(lt.ggml_v3_tensor->backend) { |
|
case GGML_V3_BACKEND_CPU: |
|
lt.ggml_v3_tensor->data = lt.data; |
|
if (use_mmap && lmlock) { |
|
lock_size += lt.size; |
|
lmlock->grow_to(lock_size); |
|
} |
|
break; |
|
#if defined(GGML_USE_CUDA) |
|
case GGML_V3_BACKEND_GPU: |
|
case GGML_V3_BACKEND_GPU_SPLIT: |
|
ggml_v3_cuda_transform_tensor(lt.data, lt.ggml_v3_tensor); |
|
if (!use_mmap) { |
|
free(lt.data); |
|
} |
|
break; |
|
#elif defined(GGML_USE_CLBLAST) |
|
case GGML_V3_BACKEND_GPU: |
|
ggml_v3_cl_transform_tensor(lt.data, lt.ggml_v3_tensor); |
|
if (!use_mmap) { |
|
free(lt.data); |
|
} |
|
break; |
|
#endif |
|
default: |
|
continue; |
|
} |
|
|
|
done_size += lt.size; |
|
} |
|
} |
|
|
|
void load_data_for(llama_v3_load_tensor & lt) { |
|
if (use_mmap) { |
|
lt.data = (uint8_t *) mapping->addr + lt.file_off; |
|
} else { |
|
llama_v3_file & file = file_loader->file; |
|
file.seek(lt.file_off, SEEK_SET); |
|
file.read_raw(lt.data, lt.size); |
|
} |
|
|
|
if (0) { |
|
print_checksum(lt); |
|
} |
|
} |
|
|
|
static void print_checksum(llama_v3_load_tensor & lt) { |
|
uint32_t sum = 0; |
|
for (size_t i = 0; i < lt.size; i++) { |
|
uint8_t byte = lt.data[i]; |
|
sum = byte + (sum << 6) + (sum << 16) - sum; |
|
} |
|
LLAMA_V3_LOG_INFO("%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum, |
|
llama_v3_format_tensor_shape(lt.ne).c_str(), lt.size); |
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
static bool kv_cache_init( |
|
const struct llama_v3_hparams & hparams, |
|
struct llama_v3_kv_cache & cache, |
|
ggml_v3_type wtype, |
|
int n_ctx, |
|
int n_gpu_layers) { |
|
const int n_embd = hparams.n_embd_gqa(); |
|
const int n_layer = hparams.n_layer; |
|
|
|
const int64_t n_mem = n_layer*n_ctx; |
|
const int64_t n_elements = n_embd*n_mem; |
|
|
|
cache.buf.resize(2u*n_elements*ggml_v3_type_size(wtype) + 2u*MB3); |
|
cache.n = 0; |
|
|
|
struct ggml_v3_init_params params; |
|
params.mem_size = cache.buf.size; |
|
params.mem_buffer = cache.buf.addr; |
|
params.no_alloc = false; |
|
|
|
cache.ctx = ggml_v3_init(params); |
|
|
|
if (!cache.ctx) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__); |
|
return false; |
|
} |
|
|
|
cache.k = ggml_v3_new_tensor_1d(cache.ctx, wtype, n_elements); |
|
cache.v = ggml_v3_new_tensor_1d(cache.ctx, wtype, n_elements); |
|
ggml_v3_set_name(cache.k, "cache_k"); |
|
ggml_v3_set_name(cache.v, "cache_v"); |
|
|
|
(void) n_gpu_layers; |
|
#ifdef GGML_USE_CUDA |
|
if (n_gpu_layers > n_layer + 1) { |
|
ggml_v3_cuda_assign_buffers_no_scratch(cache.v); |
|
} |
|
if (n_gpu_layers > n_layer + 2) { |
|
ggml_v3_cuda_assign_buffers_no_scratch(cache.k); |
|
} |
|
#endif |
|
|
|
return true; |
|
} |
|
|
|
struct llama_v3_context_params llama_v3_context_default_params() { |
|
struct llama_v3_context_params result = { |
|
LLAMA_V3_DEFAULT_SEED, |
|
512, |
|
512, |
|
1, |
|
LLAMA_V3_DEFAULT_RMS_EPS, |
|
0, |
|
0, |
|
nullptr, |
|
10000.0f, |
|
1.0f, |
|
nullptr, |
|
nullptr, |
|
false, |
|
false, |
|
true, |
|
false, |
|
false, |
|
true, |
|
false, |
|
false, |
|
}; |
|
|
|
return result; |
|
} |
|
|
|
struct llama_v3_model_quantize_params llama_v3_model_quantize_default_params() { |
|
struct llama_v3_model_quantize_params result = { |
|
0, |
|
LLAMA_V3_FTYPE_MOSTLY_Q5_1, |
|
false, |
|
true, |
|
}; |
|
|
|
return result; |
|
} |
|
|
|
int llama_v3_max_devices() { |
|
return LLAMA_V3_MAX_DEVICES; |
|
} |
|
|
|
bool llama_v3_mmap_supported() { |
|
return llama_v3_mmap::SUPPORTED; |
|
} |
|
|
|
bool llama_v3_mlock_supported() { |
|
return llama_v3_mlock::SUPPORTED; |
|
} |
|
|
|
int get_blas_batch_mul3(int batch) |
|
{ |
|
return (batch>512?(batch>1024?4:2):1); |
|
} |
|
|
|
void llama_v3_backend_init(bool numa) { |
|
ggml_v3_time_init(); |
|
|
|
|
|
{ |
|
struct ggml_v3_init_params params = { 0, NULL, false }; |
|
struct ggml_v3_context * ctx = ggml_v3_init(params); |
|
ggml_v3_free(ctx); |
|
} |
|
|
|
if (numa) { |
|
ggml_v3_numa_init(); |
|
} |
|
|
|
|
|
} |
|
|
|
void llama_v3_backend_free() { |
|
|
|
} |
|
|
|
int64_t llama_v3_time_us() { |
|
return ggml_v3_time_us(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static const char * llama_v3_file_version_name(llama_v3_file_version version) { |
|
switch (version) { |
|
case LLAMA_V3_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)"; |
|
case LLAMA_V3_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)"; |
|
case LLAMA_V3_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)"; |
|
case LLAMA_V3_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)"; |
|
case LLAMA_V3_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)"; |
|
} |
|
|
|
return "unknown"; |
|
} |
|
|
|
const char * llama_v3_ftype_name(enum llama_v3_ftype ftype) { |
|
switch (ftype) { |
|
case LLAMA_V3_FTYPE_ALL_F32: return "all F32"; |
|
case LLAMA_V3_FTYPE_MOSTLY_F16: return "mostly F16"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_1_SOME_F16: |
|
return "mostly Q4_1, some F16"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; |
|
|
|
case LLAMA_V3_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium"; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K"; |
|
default: return "unknown, may not work"; |
|
} |
|
} |
|
|
|
static const char * llama_v3_model_type_name(e_model3 type) { |
|
switch (type) { |
|
case MODEL_3B_3: return "3B"; |
|
case MODEL_7B_3: return "7B"; |
|
case MODEL_13B_3: return "13B"; |
|
case MODEL_30B_3: return "30B"; |
|
case MODEL_34B_3: return "34B"; |
|
case MODEL_65B_3: return "65B"; |
|
case MODEL_70B_3: return "70B"; |
|
default: LLAMA_V3_ASSERT(false); |
|
} |
|
} |
|
|
|
static void llama_v3_model_load_internal( |
|
const std::string & fname, |
|
llama_v3_model & model, |
|
llama_v3_vocab & vocab, |
|
int n_ctx, |
|
int n_batch, |
|
int n_gqa, |
|
float rms_norm_eps, |
|
int n_gpu_layers, |
|
int main_gpu, |
|
const float * tensor_split, |
|
const bool mul_mat_q, |
|
float rope_freq_base, |
|
float rope_freq_scale, |
|
bool low_vram, |
|
ggml_v3_type memory_type, |
|
bool use_mmap, |
|
bool use_mlock, |
|
bool vocab_only, |
|
llama_v3_progress_callback progress_callback, |
|
void * progress_callback_user_data) { |
|
|
|
model.t_start_us = ggml_v3_time_us(); |
|
size_t blasbatchmul = get_blas_batch_mul3(n_batch); |
|
|
|
std::unique_ptr<llama_v3_model_loader> ml(new llama_v3_model_loader(fname, use_mmap)); |
|
|
|
vocab = std::move(ml->file_loader->vocab); |
|
model.hparams = ml->file_loader->hparams; |
|
model.n_gpu_layers = n_gpu_layers; |
|
llama_v3_file_version file_version = ml->file_loader->file_version; |
|
|
|
auto & hparams = model.hparams; |
|
|
|
|
|
hparams.f_rms_norm_eps = rms_norm_eps; |
|
|
|
{ |
|
switch (hparams.n_layer) { |
|
case 26: model.type = e_model3::MODEL_3B_3; break; |
|
case 32: model.type = e_model3::MODEL_7B_3; break; |
|
case 40: model.type = e_model3::MODEL_13B_3; break; |
|
case 48: model.type = e_model3::MODEL_34B_3; break; |
|
case 60: model.type = e_model3::MODEL_30B_3; break; |
|
case 80: model.type = e_model3::MODEL_65B_3; break; |
|
default: |
|
{ |
|
if (hparams.n_layer < 32) { |
|
model.type = e_model3::MODEL_7B_3; |
|
} |
|
} break; |
|
} |
|
|
|
hparams.n_ctx = n_ctx; |
|
|
|
|
|
|
|
|
|
if (model.type == e_model3::MODEL_65B_3 && (hparams.n_mult >= 4096 && hparams.n_mult != 5504)) { |
|
fprintf(stderr, "%s: Applying KCPP Patch for 70B model, setting GQA to 8\n", __func__); |
|
n_gqa = 8; |
|
} |
|
|
|
if (model.type == e_model3::MODEL_34B_3) { |
|
fprintf(stderr, "%s: Applying KCPP Patch for 34B model, setting GQA to 8\n", __func__); |
|
n_gqa = 8; |
|
} |
|
LLAMA_V3_ASSERT(hparams.n_head % n_gqa == 0); |
|
hparams.n_head_kv = hparams.n_head / n_gqa; |
|
if (model.type == e_model3::MODEL_65B_3 && n_gqa == 8) { |
|
LLAMA_V3_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa); |
|
model.type = e_model3::MODEL_70B_3; |
|
hparams.f_ffn_mult = 1.3f; |
|
} |
|
|
|
hparams.rope_freq_base = rope_freq_base; |
|
hparams.rope_freq_scale = rope_freq_scale; |
|
} |
|
|
|
|
|
const uint32_t n_ff_raw = 2*(4*hparams.n_embd)/3; |
|
const uint32_t n_ff_mult = hparams.f_ffn_mult*n_ff_raw; |
|
const uint32_t n_ff = ((n_ff_mult + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; |
|
|
|
|
|
{ |
|
LLAMA_V3_LOG_INFO("%s: format = %s\n", __func__, llama_v3_file_version_name(file_version)); |
|
LLAMA_V3_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); |
|
LLAMA_V3_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx); |
|
LLAMA_V3_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); |
|
LLAMA_V3_LOG_INFO("%s: n_mult = %u\n", __func__, hparams.n_mult); |
|
LLAMA_V3_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); |
|
LLAMA_V3_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); |
|
LLAMA_V3_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); |
|
LLAMA_V3_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); |
|
LLAMA_V3_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); |
|
LLAMA_V3_LOG_INFO("%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps); |
|
LLAMA_V3_LOG_INFO("%s: n_ff = %u\n", __func__, n_ff); |
|
LLAMA_V3_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); |
|
LLAMA_V3_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); |
|
LLAMA_V3_LOG_INFO("%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_v3_ftype_name(hparams.ftype)); |
|
LLAMA_V3_LOG_INFO("%s: model size = %s\n", __func__, llama_v3_model_type_name(model.type)); |
|
} |
|
|
|
if (file_version < LLAMA_V3_FILE_VERSION_GGJT_V2) { |
|
if (hparams.ftype != LLAMA_V3_FTYPE_ALL_F32 && |
|
hparams.ftype != LLAMA_V3_FTYPE_MOSTLY_F16 && |
|
hparams.ftype != LLAMA_V3_FTYPE_MOSTLY_Q8_0) { |
|
printf("\nthis format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"); |
|
} |
|
} |
|
|
|
if (file_version < LLAMA_V3_FILE_VERSION_GGJT_V3) { |
|
if (hparams.ftype == LLAMA_V3_FTYPE_MOSTLY_Q4_0 || |
|
hparams.ftype == LLAMA_V3_FTYPE_MOSTLY_Q4_1 || |
|
hparams.ftype == LLAMA_V3_FTYPE_MOSTLY_Q8_0) { |
|
printf("\nthis format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"); |
|
} |
|
} |
|
|
|
if (vocab_only) { |
|
return; |
|
} |
|
|
|
auto & ctx = model.ctx; |
|
|
|
size_t ctx_size; |
|
size_t mmapped_size; |
|
ml->calc_sizes(&ctx_size, &mmapped_size); |
|
LLAMA_V3_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0); |
|
|
|
|
|
{ |
|
model.buf.resize(ctx_size); |
|
if (use_mlock) { |
|
model.mlock_buf.init (model.buf.addr); |
|
model.mlock_buf.grow_to(model.buf.size); |
|
} |
|
|
|
struct ggml_v3_init_params params = { |
|
model.buf.size, |
|
model.buf.addr, |
|
ml->use_mmap, |
|
}; |
|
|
|
model.ctx = ggml_v3_init(params); |
|
if (!model.ctx) { |
|
throw std::runtime_error(format_old("ggml_v3_init() failed")); |
|
} |
|
} |
|
|
|
(void) main_gpu; |
|
(void) mul_mat_q; |
|
#if defined(GGML_USE_CUDA) |
|
LLAMA_V3_LOG_INFO("%s: using CUDA for GPU acceleration\n", __func__); |
|
ggml_v3_cuda_set_main_device(main_gpu); |
|
ggml_v3_cuda_set_mul_mat_q(mul_mat_q); |
|
#define LLAMA_V3_BACKEND_OFFLOAD GGML_V3_BACKEND_GPU |
|
#define LLAMA_V3_BACKEND_OFFLOAD_SPLIT GGML_V3_BACKEND_GPU_SPLIT |
|
#elif defined(GGML_USE_CLBLAST) |
|
LLAMA_V3_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__); |
|
#define LLAMA_V3_BACKEND_OFFLOAD GGML_V3_BACKEND_GPU |
|
#define LLAMA_V3_BACKEND_OFFLOAD_SPLIT GGML_V3_BACKEND_GPU |
|
#else |
|
#define LLAMA_V3_BACKEND_OFFLOAD GGML_V3_BACKEND_CPU |
|
#define LLAMA_V3_BACKEND_OFFLOAD_SPLIT GGML_V3_BACKEND_CPU |
|
#endif |
|
|
|
|
|
size_t vram_weights = 0; |
|
size_t vram_scratch = 0; |
|
{ |
|
const uint32_t n_embd = hparams.n_embd; |
|
const uint32_t n_embd_gqa = hparams.n_embd_gqa(); |
|
const uint32_t n_layer = hparams.n_layer; |
|
const uint32_t n_vocab = hparams.n_vocab; |
|
|
|
ml->ggml_v3_ctx = ctx; |
|
|
|
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_V3_BACKEND_CPU); |
|
|
|
|
|
{ |
|
ggml_v3_backend_type backend_norm; |
|
ggml_v3_backend_type backend_output; |
|
if (n_gpu_layers > int(n_layer)) { |
|
|
|
|
|
#ifndef _WIN32 |
|
backend_norm = low_vram ? GGML_V3_BACKEND_CPU : LLAMA_V3_BACKEND_OFFLOAD; |
|
#else |
|
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_V3_BACKEND_CPU : LLAMA_V3_BACKEND_OFFLOAD; |
|
#endif |
|
|
|
backend_output = LLAMA_V3_BACKEND_OFFLOAD_SPLIT; |
|
} else { |
|
backend_norm = GGML_V3_BACKEND_CPU; |
|
backend_output = GGML_V3_BACKEND_CPU; |
|
} |
|
|
|
model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm); |
|
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output); |
|
if (backend_norm == GGML_V3_BACKEND_GPU) { |
|
vram_weights += ggml_v3_nbytes(model.norm); |
|
} |
|
if (backend_output == GGML_V3_BACKEND_GPU_SPLIT) { |
|
vram_weights += ggml_v3_nbytes(model.output); |
|
} |
|
} |
|
|
|
const int i_gpu_start = n_layer - n_gpu_layers; |
|
|
|
model.layers.resize(n_layer); |
|
for (uint32_t i = 0; i < n_layer; ++i) { |
|
const ggml_v3_backend_type backend = int(i) < i_gpu_start ? GGML_V3_BACKEND_CPU : LLAMA_V3_BACKEND_OFFLOAD; |
|
const ggml_v3_backend_type backend_split = int(i) < i_gpu_start ? GGML_V3_BACKEND_CPU : LLAMA_V3_BACKEND_OFFLOAD_SPLIT; |
|
|
|
auto & layer = model.layers[i]; |
|
|
|
std::string layers_i = "layers." + std::to_string(i); |
|
|
|
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend); |
|
|
|
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split); |
|
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd_gqa}, backend_split); |
|
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd_gqa}, backend_split); |
|
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split); |
|
|
|
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend); |
|
|
|
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split); |
|
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split); |
|
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split); |
|
|
|
if (backend == GGML_V3_BACKEND_GPU) { |
|
vram_weights += |
|
ggml_v3_nbytes(layer.attention_norm) + ggml_v3_nbytes(layer.wq) + ggml_v3_nbytes(layer.wk) + |
|
ggml_v3_nbytes(layer.wv) + ggml_v3_nbytes(layer.wo) + ggml_v3_nbytes(layer.ffn_norm) + |
|
ggml_v3_nbytes(layer.w1) + ggml_v3_nbytes(layer.w2) + ggml_v3_nbytes(layer.w3); |
|
} |
|
} |
|
} |
|
|
|
ml->done_getting_tensors(); |
|
|
|
|
|
{ |
|
const size_t scale = memory_type == GGML_V3_TYPE_F32 ? 2 : 1; |
|
|
|
|
|
size_t mem_required = |
|
ctx_size + |
|
mmapped_size - vram_weights; |
|
|
|
#ifndef LLAMA_V3_USE_ALLOCATOR |
|
mem_required += |
|
blasbatchmul*MEM_REQ_SCRATCH0_3(hparams.n_ctx).at(model.type) + |
|
blasbatchmul*MEM_REQ_SCRATCH1_3().at(model.type) + |
|
blasbatchmul*MEM_REQ_EVAL_3().at(model.type); |
|
#endif |
|
|
|
|
|
const size_t mem_required_state = |
|
scale*hparams.kv_size(); |
|
|
|
LLAMA_V3_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, |
|
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); |
|
|
|
(void) vram_scratch; |
|
(void) n_batch; |
|
#ifdef GGML_USE_CUDA |
|
if (low_vram) { |
|
LLAMA_V3_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); |
|
ggml_v3_cuda_set_scratch_size(0); |
|
} else { |
|
const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE_3().at(model.type); |
|
const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT_3().at(model.type); |
|
vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context); |
|
ggml_v3_cuda_set_scratch_size(vram_scratch); |
|
if (n_gpu_layers > 0) { |
|
LLAMA_V3_LOG_INFO("%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n", |
|
__func__, vram_scratch_base / kB3, vram_scratch_per_context, |
|
(vram_scratch + MB3 - 1) / MB3); |
|
} |
|
} |
|
#endif |
|
|
|
#if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) |
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); |
|
|
|
LLAMA_V3_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); |
|
if (n_gpu_layers > (int) hparams.n_layer) { |
|
LLAMA_V3_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); |
|
} |
|
size_t vram_kv_cache = 0; |
|
|
|
#ifdef GGML_USE_CUDA |
|
const int max_backend_supported_layers = hparams.n_layer + 3; |
|
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; |
|
if (n_gpu_layers > (int) hparams.n_layer + 1) { |
|
if (low_vram) { |
|
LLAMA_V3_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); |
|
} else { |
|
LLAMA_V3_LOG_INFO("%s: offloading v cache to GPU\n", __func__); |
|
vram_kv_cache += hparams.kv_size() / 2; |
|
} |
|
} |
|
if (n_gpu_layers > (int) hparams.n_layer + 2) { |
|
if (low_vram) { |
|
LLAMA_V3_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); |
|
} else { |
|
LLAMA_V3_LOG_INFO("%s: offloading k cache to GPU\n", __func__); |
|
vram_kv_cache += hparams.kv_size() / 2; |
|
} |
|
} |
|
#elif defined(GGML_USE_CLBLAST) |
|
const int max_backend_supported_layers = hparams.n_layer + 1; |
|
const int max_offloadable_layers = hparams.n_layer + 1; |
|
#endif |
|
|
|
LLAMA_V3_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", |
|
__func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); |
|
LLAMA_V3_LOG_INFO("%s: total VRAM used: %zu MB\n", |
|
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB3 - 1) / MB3); |
|
#else |
|
(void) n_gpu_layers; |
|
#endif |
|
} |
|
|
|
|
|
for (llama_v3_load_tensor & lt : ml->tensors_map.tensors) { |
|
model.tensors_by_name.emplace_back(lt.name, lt.ggml_v3_tensor); |
|
} |
|
|
|
(void) tensor_split; |
|
#if defined(GGML_USE_CUDA) |
|
{ |
|
ggml_v3_cuda_set_tensor_split(tensor_split); |
|
} |
|
#endif |
|
|
|
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL); |
|
|
|
if (progress_callback) { |
|
progress_callback(1.0f, progress_callback_user_data); |
|
} |
|
|
|
model.mapping = std::move(ml->mapping); |
|
|
|
|
|
|
|
model.t_load_us = ggml_v3_time_us() - model.t_start_us; |
|
} |
|
|
|
static bool llama_v3_model_load( |
|
const std::string & fname, |
|
llama_v3_model & model, |
|
llama_v3_vocab & vocab, |
|
int n_ctx, |
|
int n_batch, |
|
int n_gqa, |
|
float rms_norm_eps, |
|
int n_gpu_layers, |
|
int main_gpu, |
|
const float * tensor_split, |
|
const bool mul_mat_q, |
|
float rope_freq_base, |
|
float rope_freq_scale, |
|
bool low_vram, |
|
ggml_v3_type memory_type, |
|
bool use_mmap, |
|
bool use_mlock, |
|
bool vocab_only, |
|
llama_v3_progress_callback progress_callback, |
|
void *progress_callback_user_data) { |
|
try { |
|
llama_v3_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers, |
|
main_gpu, tensor_split, mul_mat_q, rope_freq_base, rope_freq_scale, low_vram, memory_type, |
|
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); |
|
return true; |
|
} catch (const std::exception & err) { |
|
LLAMA_V3_LOG_ERROR("error loading model: %s\n", err.what()); |
|
return false; |
|
} |
|
} |
|
|
|
static struct ggml_v3_cgraph * llama_v3_build_graph( |
|
llama_v3_context & lctx, |
|
const llama_v3_token * tokens, |
|
const float * embd, |
|
int n_tokens, |
|
int n_past) { |
|
|
|
LLAMA_V3_ASSERT((!tokens && embd) || (tokens && !embd)); |
|
|
|
const int N = n_tokens; |
|
|
|
const auto & model = lctx.model; |
|
const auto & hparams = model.hparams; |
|
|
|
const auto & kv_self = lctx.kv_self; |
|
|
|
LLAMA_V3_ASSERT(!!kv_self.ctx); |
|
|
|
const int64_t n_embd = hparams.n_embd; |
|
const int64_t n_layer = hparams.n_layer; |
|
const int64_t n_ctx = hparams.n_ctx; |
|
const int64_t n_head = hparams.n_head; |
|
const int64_t n_head_kv = hparams.n_head_kv; |
|
const int64_t n_embd_head = hparams.n_embd_head(); |
|
const int64_t n_embd_gqa = hparams.n_embd_gqa(); |
|
|
|
LLAMA_V3_ASSERT(n_embd_head == hparams.n_rot); |
|
|
|
const float freq_base = hparams.rope_freq_base; |
|
const float freq_scale = hparams.rope_freq_scale; |
|
const float rms_norm_eps = hparams.f_rms_norm_eps; |
|
|
|
const int n_gpu_layers = model.n_gpu_layers; |
|
|
|
auto & mem_per_token = lctx.mem_per_token; |
|
auto & buf_compute = lctx.buf_compute; |
|
|
|
|
|
struct ggml_v3_init_params params = { |
|
buf_compute.size, |
|
buf_compute.addr, |
|
false, |
|
}; |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
params.no_alloc = true; |
|
#endif |
|
|
|
struct ggml_v3_context * ctx0 = ggml_v3_init(params); |
|
|
|
ggml_v3_cgraph * gf = ggml_v3_new_graph_custom(ctx0, GGML_V3_MAX_NODES, false); |
|
|
|
struct ggml_v3_tensor * cur; |
|
struct ggml_v3_tensor * inpL; |
|
|
|
if (tokens) { |
|
struct ggml_v3_tensor * inp_tokens = ggml_v3_new_tensor_1d(ctx0, GGML_V3_TYPE_I32, N); |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
ggml_v3_allocr_alloc(lctx.alloc, inp_tokens); |
|
if (!ggml_v3_allocr_is_measure(lctx.alloc)) { |
|
memcpy(inp_tokens->data, tokens, N*ggml_v3_element_size(inp_tokens)); |
|
} |
|
#else |
|
memcpy(inp_tokens->data, tokens, N*ggml_v3_element_size(inp_tokens)); |
|
#endif |
|
ggml_v3_set_name(inp_tokens, "inp_tokens"); |
|
|
|
inpL = ggml_v3_get_rows(ctx0, model.tok_embeddings, inp_tokens); |
|
} else { |
|
|
|
|
|
inpL = ggml_v3_new_tensor_2d(ctx0, GGML_V3_TYPE_F32, n_embd, N); |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
ggml_v3_allocr_alloc(lctx.alloc, inpL); |
|
if (!ggml_v3_allocr_is_measure(lctx.alloc)) { |
|
memcpy(inpL->data, embd, N * n_embd * ggml_v3_element_size(inpL)); |
|
} |
|
#else |
|
memcpy(inpL->data, embd, N * n_embd * ggml_v3_element_size(inpL)); |
|
#endif |
|
} |
|
|
|
const int i_gpu_start = n_layer - n_gpu_layers; |
|
(void) i_gpu_start; |
|
|
|
|
|
|
|
|
|
|
|
|
|
offload_func_v3_t offload_func_nr = llama_v3_nop; |
|
offload_func_v3_t offload_func_kq = llama_v3_nop; |
|
offload_func_v3_t offload_func_v = llama_v3_nop; |
|
|
|
#ifdef GGML_USE_CUDA |
|
if (n_gpu_layers > n_layer) { |
|
offload_func_nr = ggml_v3_cuda_assign_buffers; |
|
} |
|
if (n_gpu_layers > n_layer + 1) { |
|
offload_func_v = ggml_v3_cuda_assign_buffers; |
|
} |
|
if (n_gpu_layers > n_layer + 2) { |
|
offload_func_kq = ggml_v3_cuda_assign_buffers; |
|
} |
|
#endif |
|
|
|
struct ggml_v3_tensor * KQ_scale = ggml_v3_new_tensor_1d(ctx0, GGML_V3_TYPE_F32, 1); |
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
ggml_v3_allocr_alloc(lctx.alloc, KQ_scale); |
|
if (!ggml_v3_allocr_is_measure(lctx.alloc)) { |
|
ggml_v3_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); |
|
} |
|
#else |
|
ggml_v3_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); |
|
#endif |
|
|
|
float KQ_scale_float = 1.0f/sqrtf(float(n_embd)/n_head); |
|
|
|
ggml_v3_set_name(KQ_scale, "1/sqrt(n_embd_head)"); |
|
|
|
for (int il = 0; il < n_layer; ++il) { |
|
ggml_v3_format_name(inpL, "layer_inp_%d", il); |
|
|
|
offload_func_v3_t offload_func = llama_v3_nop; |
|
|
|
#ifdef GGML_USE_CUDA |
|
if (il >= i_gpu_start) { |
|
offload_func = ggml_v3_cuda_assign_buffers; |
|
} |
|
#endif |
|
|
|
struct ggml_v3_tensor * inpSA = inpL; |
|
|
|
lctx.use_buf(ctx0, 0); |
|
|
|
|
|
{ |
|
cur = ggml_v3_rms_norm(ctx0, inpL, rms_norm_eps); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "rms_norm_0"); |
|
|
|
|
|
cur = ggml_v3_mul(ctx0, cur, model.layers[il].attention_norm); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "attention_norm_0"); |
|
} |
|
|
|
|
|
{ |
|
|
|
struct ggml_v3_tensor * tmpk = ggml_v3_mul_mat(ctx0, model.layers[il].wk, cur); |
|
offload_func_kq(tmpk); |
|
ggml_v3_set_name(tmpk, "tmpk"); |
|
|
|
struct ggml_v3_tensor * tmpq = ggml_v3_mul_mat(ctx0, model.layers[il].wq, cur); |
|
offload_func_kq(tmpq); |
|
ggml_v3_set_name(tmpq, "tmpq"); |
|
|
|
struct ggml_v3_tensor * KQ_pos = ggml_v3_new_tensor_1d(ctx0, GGML_V3_TYPE_I32, n_tokens); |
|
ggml_v3_set_name(KQ_pos, "KQ_pos"); |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
offload_func_kq(KQ_pos); |
|
ggml_v3_allocr_alloc(lctx.alloc, KQ_pos); |
|
if (!ggml_v3_allocr_is_measure(lctx.alloc)) { |
|
int * data = (int *) KQ_pos->data; |
|
for (int i = 0; i < N; ++i) { |
|
data[i] = n_past + i; |
|
} |
|
} |
|
#else |
|
{ |
|
int * data = (int *) KQ_pos->data; |
|
for (int i = 0; i < N; ++i) { |
|
data[i] = n_past + i; |
|
} |
|
} |
|
#endif |
|
|
|
struct ggml_v3_tensor *Kcur = ggml_v3_rope_custom_inplace(ctx0, ggml_v3_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), KQ_pos, n_embd_head, 0, 0, 0, freq_base, freq_scale, 0, 1, 32, 1); |
|
offload_func_kq(Kcur); |
|
ggml_v3_set_name(Kcur, "Kcur"); |
|
|
|
struct ggml_v3_tensor *Qcur = ggml_v3_rope_custom_inplace(ctx0, ggml_v3_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), KQ_pos, n_embd_head, 0, 0, 0, freq_base, freq_scale, 0, 1, 32, 1); |
|
offload_func_kq(Qcur); |
|
ggml_v3_set_name(Qcur, "Qcur"); |
|
|
|
|
|
{ |
|
|
|
|
|
struct ggml_v3_tensor * tmpv = ggml_v3_mul_mat(ctx0, model.layers[il].wv, cur); |
|
offload_func_v(tmpv); |
|
ggml_v3_set_name(tmpv, "tmpv"); |
|
|
|
struct ggml_v3_tensor * Vcur = ggml_v3_transpose(ctx0, ggml_v3_reshape_2d(ctx0, tmpv, n_embd_gqa, N)); |
|
offload_func_v(Vcur); |
|
ggml_v3_set_name(Vcur, "Vcur"); |
|
|
|
struct ggml_v3_tensor * k = ggml_v3_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_v3_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past)); |
|
offload_func_kq(k); |
|
ggml_v3_set_name(k, "k"); |
|
|
|
struct ggml_v3_tensor * v = ggml_v3_view_2d(ctx0, kv_self.v, N, n_embd_gqa, |
|
( n_ctx)*ggml_v3_element_size(kv_self.v), |
|
(il*n_ctx)*ggml_v3_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_v3_element_size(kv_self.v)); |
|
offload_func_v(v); |
|
ggml_v3_set_name(v, "v"); |
|
|
|
|
|
ggml_v3_build_forward_expand(gf, ggml_v3_cpy(ctx0, Kcur, k)); |
|
ggml_v3_build_forward_expand(gf, ggml_v3_cpy(ctx0, Vcur, v)); |
|
} |
|
|
|
struct ggml_v3_tensor * Q = |
|
ggml_v3_permute(ctx0, |
|
Qcur, |
|
0, 2, 1, 3); |
|
offload_func_kq(Q); |
|
ggml_v3_set_name(Q, "Q"); |
|
|
|
struct ggml_v3_tensor * K = |
|
ggml_v3_view_3d(ctx0, kv_self.k, |
|
n_embd_head, n_past + N, n_head_kv, |
|
ggml_v3_element_size(kv_self.k)*n_embd_gqa, |
|
ggml_v3_element_size(kv_self.k)*n_embd_head, |
|
ggml_v3_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); |
|
offload_func_kq(K); |
|
ggml_v3_set_name(K, "K"); |
|
|
|
|
|
struct ggml_v3_tensor * KQ = ggml_v3_mul_mat(ctx0, K, Q); |
|
offload_func_kq(KQ); |
|
ggml_v3_set_name(KQ, "KQ"); |
|
|
|
|
|
|
|
struct ggml_v3_tensor * KQ_scaled = ggml_v3_scale_inplace(ctx0, KQ, KQ_scale_float); |
|
offload_func_kq(KQ_scaled); |
|
ggml_v3_set_name(KQ_scaled, "KQ_scaled"); |
|
|
|
|
|
struct ggml_v3_tensor * KQ_masked = ggml_v3_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); |
|
offload_func_kq(KQ_masked); |
|
ggml_v3_set_name(KQ_masked, "KQ_masked"); |
|
|
|
|
|
struct ggml_v3_tensor * KQ_soft_max = ggml_v3_soft_max_inplace(ctx0, KQ_masked); |
|
offload_func_v(KQ_soft_max); |
|
ggml_v3_set_name(KQ_soft_max, "KQ_soft_max"); |
|
|
|
|
|
struct ggml_v3_tensor * V = |
|
ggml_v3_view_3d(ctx0, kv_self.v, |
|
n_past + N, n_embd_head, n_head_kv, |
|
ggml_v3_element_size(kv_self.v)*n_ctx, |
|
ggml_v3_element_size(kv_self.v)*n_ctx*n_embd_head, |
|
ggml_v3_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); |
|
offload_func_v(V); |
|
ggml_v3_set_name(V, "V"); |
|
|
|
#if 1 |
|
struct ggml_v3_tensor * KQV = ggml_v3_mul_mat(ctx0, V, KQ_soft_max); |
|
offload_func_v(KQV); |
|
ggml_v3_set_name(KQV, "KQV"); |
|
#else |
|
|
|
|
|
|
|
struct ggml_v3_tensor * V_cont = ggml_v3_cpy(ctx0, V, ggml_v3_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head)); |
|
struct ggml_v3_tensor * KQV = ggml_v3_mul_mat(ctx0, V_cont, KQ_soft_max); |
|
#endif |
|
|
|
|
|
struct ggml_v3_tensor * KQV_merged = ggml_v3_permute(ctx0, KQV, 0, 2, 1, 3); |
|
offload_func_v(KQV_merged); |
|
ggml_v3_set_name(KQV_merged, "KQV_merged"); |
|
|
|
|
|
cur = ggml_v3_cpy(ctx0, |
|
KQV_merged, |
|
ggml_v3_new_tensor_2d(ctx0, GGML_V3_TYPE_F32, n_embd, N)); |
|
offload_func_v(cur); |
|
ggml_v3_set_name(cur, "KQV_merged_contiguous"); |
|
|
|
|
|
cur = ggml_v3_mul_mat(ctx0, |
|
model.layers[il].wo, |
|
cur); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "result_wo"); |
|
} |
|
|
|
lctx.use_buf(ctx0, 1); |
|
|
|
struct ggml_v3_tensor * inpFF = ggml_v3_add(ctx0, cur, inpSA); |
|
offload_func(inpFF); |
|
ggml_v3_set_name(inpFF, "inpFF"); |
|
|
|
|
|
{ |
|
|
|
{ |
|
cur = ggml_v3_rms_norm(ctx0, inpFF, rms_norm_eps); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "rms_norm_1"); |
|
|
|
|
|
cur = ggml_v3_mul(ctx0, cur, model.layers[il].ffn_norm); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "ffn_norm"); |
|
} |
|
|
|
struct ggml_v3_tensor * tmp = ggml_v3_mul_mat(ctx0, |
|
model.layers[il].w3, |
|
cur); |
|
offload_func(tmp); |
|
ggml_v3_set_name(tmp, "result_w3"); |
|
|
|
cur = ggml_v3_mul_mat(ctx0, |
|
model.layers[il].w1, |
|
cur); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "result_w1"); |
|
|
|
|
|
cur = ggml_v3_silu(ctx0, cur); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "silu"); |
|
|
|
cur = ggml_v3_mul(ctx0, cur, tmp); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "silu_x_result_w3"); |
|
|
|
cur = ggml_v3_mul_mat(ctx0, |
|
model.layers[il].w2, |
|
cur); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "result_w2"); |
|
} |
|
|
|
cur = ggml_v3_add(ctx0, cur, inpFF); |
|
offload_func(cur); |
|
ggml_v3_set_name(cur, "inpFF_+_result_w2"); |
|
|
|
|
|
inpL = cur; |
|
} |
|
|
|
lctx.use_buf(ctx0, 0); |
|
|
|
|
|
{ |
|
cur = ggml_v3_rms_norm(ctx0, inpL, rms_norm_eps); |
|
offload_func_nr(cur); |
|
ggml_v3_set_name(cur, "rms_norm_2"); |
|
|
|
|
|
cur = ggml_v3_mul(ctx0, cur, model.norm); |
|
|
|
ggml_v3_set_name(cur, "result_norm"); |
|
} |
|
|
|
|
|
cur = ggml_v3_mul_mat(ctx0, model.output, cur); |
|
ggml_v3_set_name(cur, "result_output"); |
|
|
|
lctx.use_buf(ctx0, -1); |
|
|
|
|
|
|
|
|
|
ggml_v3_build_forward_expand(gf, cur); |
|
|
|
if (mem_per_token == 0) { |
|
mem_per_token = ggml_v3_used_mem(ctx0)/N; |
|
} |
|
|
|
#if 0 |
|
LLAMA_V3_LOG_INFO("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__, |
|
ggml_v3_used_mem(ctx0)/1024.0/1024.0, |
|
lctx.get_buf_max_mem(0)/1024.0/1024.0, |
|
lctx.get_buf_max_mem(1)/1024.0/1024.0, |
|
lctx.work_buffer.size()/1024.0/1024.0, |
|
n_past, N); |
|
#endif |
|
|
|
ggml_v3_free(ctx0); |
|
|
|
return gf; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool llama_v3_eval_internal( |
|
llama_v3_context & lctx, |
|
const llama_v3_token * tokens, |
|
const float * embd, |
|
int n_tokens, |
|
int n_past, |
|
int n_threads, |
|
const char * cgraph_fname) { |
|
|
|
LLAMA_V3_ASSERT((!tokens && embd) || (tokens && !embd)); |
|
|
|
LLAMA_V3_ASSERT(n_tokens > 0); |
|
LLAMA_V3_ASSERT(n_past >= 0); |
|
LLAMA_V3_ASSERT(n_threads > 0); |
|
|
|
|
|
|
|
|
|
const int64_t t_start_us = ggml_v3_time_us(); |
|
|
|
|
|
|
|
const int N = n_tokens; |
|
|
|
const auto & model = lctx.model; |
|
const auto & hparams = model.hparams; |
|
|
|
const auto & kv_self = lctx.kv_self; |
|
|
|
LLAMA_V3_ASSERT(!!kv_self.ctx); |
|
|
|
const int64_t n_embd = hparams.n_embd; |
|
const int64_t n_vocab = hparams.n_vocab; |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
ggml_v3_allocr_reset(lctx.alloc); |
|
#endif |
|
|
|
ggml_v3_cgraph * gf = llama_v3_build_graph(lctx, tokens, embd, n_tokens, n_past); |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
ggml_v3_allocr_alloc_graph(lctx.alloc, gf); |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
n_threads = N >= 32 && ggml_v3_cpu_has_blas() && !ggml_v3_cpu_has_gpublas() ? 1 : n_threads; |
|
|
|
struct ggml_v3_tensor * res = gf->nodes[gf->n_nodes - 1]; |
|
struct ggml_v3_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; |
|
|
|
LLAMA_V3_ASSERT(strcmp(res->name, "result_output") == 0); |
|
LLAMA_V3_ASSERT(strcmp(embeddings->name, "result_norm") == 0); |
|
|
|
|
|
llv3_graph_compute_helper(lctx.work_buffer, gf, n_threads); |
|
|
|
|
|
|
|
lctx.kv_self.n = n_past + N; |
|
|
|
if (cgraph_fname) { |
|
ggml_v3_graph_export(gf, cgraph_fname); |
|
} |
|
|
|
#ifdef GGML_V3_PERF |
|
|
|
|
|
ggml_v3_graph_print(gf); |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ |
|
auto & logits_out = lctx.logits; |
|
|
|
if (lctx.logits_all) { |
|
logits_out.resize(n_vocab * N); |
|
memcpy(logits_out.data(), (float *) ggml_v3_get_data(res), sizeof(float)*n_vocab*N); |
|
} else { |
|
|
|
logits_out.resize(n_vocab); |
|
memcpy(logits_out.data(), (float *) ggml_v3_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab); |
|
} |
|
} |
|
|
|
|
|
if (!lctx.embedding.empty()) { |
|
auto & embedding_out = lctx.embedding; |
|
|
|
embedding_out.resize(n_embd); |
|
memcpy(embedding_out.data(), (float *) ggml_v3_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); |
|
} |
|
|
|
|
|
if (N == 1) { |
|
lctx.t_eval_us += ggml_v3_time_us() - t_start_us; |
|
lctx.n_eval++; |
|
} |
|
else if (N > 1) { |
|
lctx.t_p_eval_us += ggml_v3_time_us() - t_start_us; |
|
lctx.n_p_eval += N; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static size_t utf8_len3(char src) { |
|
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; |
|
uint8_t highbits = static_cast<uint8_t>(src) >> 4; |
|
return lookup[highbits]; |
|
} |
|
|
|
struct llama_v3_sp_symbol { |
|
using index = int; |
|
index prev; |
|
index next; |
|
const char * text; |
|
size_t n; |
|
}; |
|
|
|
static_assert(std::is_trivially_copyable<llama_v3_sp_symbol>::value, "llama_v3_sp_symbol is not trivially copyable"); |
|
|
|
struct llama_v3_sp_bigram { |
|
struct comparator { |
|
bool operator()(llama_v3_sp_bigram & l, llama_v3_sp_bigram & r) { |
|
return (l.score < r.score) || (l.score == r.score && l.left > r.left); |
|
} |
|
}; |
|
using queue_storage = std::vector<llama_v3_sp_bigram>; |
|
using queue = std::priority_queue<llama_v3_sp_bigram, queue_storage, comparator>; |
|
llama_v3_sp_symbol::index left; |
|
llama_v3_sp_symbol::index right; |
|
float score; |
|
size_t size; |
|
}; |
|
|
|
|
|
|
|
struct llama_v3_tokenizer { |
|
llama_v3_tokenizer(const llama_v3_vocab & vocab): vocab_(vocab) {} |
|
|
|
void tokenize(const std::string & text, std::vector<llama_v3_vocab::id> & output) { |
|
|
|
int index = 0; |
|
size_t offs = 0; |
|
while (offs < text.size()) { |
|
llama_v3_sp_symbol sym; |
|
size_t char_len = std::min(text.size() - offs, utf8_len3(text[offs])); |
|
sym.text = text.c_str() + offs; |
|
sym.n = char_len; |
|
offs += char_len; |
|
sym.prev = index - 1; |
|
sym.next = offs == text.size() ? -1 : index + 1; |
|
index++; |
|
symbols_.emplace_back(sym); |
|
} |
|
|
|
|
|
for (size_t i = 1; i < symbols_.size(); ++i) { |
|
try_add_bigram(i - 1, i); |
|
} |
|
|
|
|
|
while (!work_queue_.empty()) { |
|
auto bigram = work_queue_.top(); |
|
work_queue_.pop(); |
|
|
|
auto & left_sym = symbols_[bigram.left]; |
|
auto & right_sym = symbols_[bigram.right]; |
|
|
|
|
|
if (left_sym.n == 0 || right_sym.n == 0 || |
|
left_sym.n + right_sym.n != bigram.size) { |
|
continue; |
|
} |
|
|
|
|
|
left_sym.n += right_sym.n; |
|
right_sym.n = 0; |
|
|
|
|
|
|
|
|
|
left_sym.next = right_sym.next; |
|
if (right_sym.next >= 0) { |
|
symbols_[right_sym.next].prev = bigram.left; |
|
} |
|
|
|
|
|
try_add_bigram(left_sym.prev, bigram.left); |
|
try_add_bigram(bigram.left, left_sym.next); |
|
} |
|
|
|
for (int i = 0; i != -1; i = symbols_[i].next) { |
|
auto & symbol = symbols_[i]; |
|
auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n)); |
|
|
|
if (token == vocab_.token_to_id.end()) { |
|
|
|
for (int j = 0; j < (int) symbol.n; ++j) { |
|
|
|
|
|
llama_v3_vocab::id token_id = vocab_.token_to_id.at(std::string(1, symbol.text[j])); |
|
output.push_back(token_id); |
|
} |
|
} else { |
|
output.push_back((*token).second); |
|
} |
|
} |
|
} |
|
|
|
private: |
|
void try_add_bigram(int left, int right) { |
|
if (left == -1 || right == -1) { |
|
return; |
|
} |
|
|
|
const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n); |
|
auto token = vocab_.token_to_id.find(text); |
|
|
|
if (token == vocab_.token_to_id.end()) { |
|
return; |
|
} |
|
|
|
if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) { |
|
return; |
|
} |
|
|
|
const auto &tok_score = vocab_.id_to_token[(*token).second]; |
|
|
|
llama_v3_sp_bigram bigram; |
|
bigram.left = left; |
|
bigram.right = right; |
|
bigram.score = tok_score.score; |
|
bigram.size = text.size(); |
|
work_queue_.push(bigram); |
|
} |
|
|
|
const llama_v3_vocab & vocab_; |
|
std::vector<llama_v3_sp_symbol> symbols_; |
|
llama_v3_sp_bigram::queue work_queue_; |
|
}; |
|
|
|
std::vector<llama_token> llama_v3_tokenize( |
|
struct llama_v3_context * ctx, |
|
const std::string & text, |
|
bool add_bos) { |
|
|
|
int n_tokens = text.length() + add_bos; |
|
std::vector<llama_token> result(n_tokens); |
|
n_tokens = llama_v3_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos); |
|
if (n_tokens < 0) { |
|
result.resize(-n_tokens); |
|
int check = llama_v3_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos); |
|
GGML_V3_ASSERT(check == -n_tokens); |
|
} else { |
|
result.resize(n_tokens); |
|
} |
|
return result; |
|
} |
|
|
|
static std::vector<llama_v3_vocab::id> llama_v3_tokenize(const llama_v3_vocab & vocab, const std::string & text, bool bos) { |
|
llama_v3_tokenizer tokenizer(vocab); |
|
std::vector<llama_v3_vocab::id> output; |
|
|
|
if (text.empty()) { |
|
return output; |
|
} |
|
|
|
if (bos) { |
|
output.push_back(llama_v3_token_bos()); |
|
} |
|
|
|
tokenizer.tokenize(text, output); |
|
return output; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
struct llama_v3_partial_utf8 { |
|
uint32_t value; |
|
int n_remain; |
|
}; |
|
|
|
struct llama_v3_grammar { |
|
const std::vector<std::vector<llama_v3_grammar_element>> rules; |
|
std::vector<std::vector<const llama_v3_grammar_element *>> stacks; |
|
|
|
|
|
llama_v3_partial_utf8 partial_utf8; |
|
}; |
|
|
|
struct llama_v3_grammar_candidate { |
|
size_t index; |
|
const uint32_t * code_points; |
|
llama_v3_partial_utf8 partial_utf8; |
|
}; |
|
|
|
|
|
|
|
std::pair<std::vector<uint32_t>, llama_v3_partial_utf8> decode_utf8( |
|
const char * src, |
|
llama_v3_partial_utf8 partial_start) { |
|
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; |
|
const char * pos = src; |
|
std::vector<uint32_t> code_points; |
|
uint32_t value = partial_start.value; |
|
int n_remain = partial_start.n_remain; |
|
|
|
|
|
while (*pos != 0 && n_remain > 0) { |
|
uint8_t next_byte = static_cast<uint8_t>(*pos); |
|
if ((next_byte >> 6) != 2) { |
|
|
|
code_points.push_back(0); |
|
return std::make_pair(std::move(code_points), llama_v3_partial_utf8{ 0, -1 }); |
|
} |
|
value = (value << 6) + (next_byte & 0x3F); |
|
++pos; |
|
--n_remain; |
|
} |
|
|
|
if (partial_start.n_remain > 0 && n_remain == 0) { |
|
code_points.push_back(value); |
|
} |
|
|
|
|
|
while (*pos != 0) { |
|
uint8_t first_byte = static_cast<uint8_t>(*pos); |
|
uint8_t highbits = first_byte >> 4; |
|
n_remain = lookup[highbits] - 1; |
|
|
|
if (n_remain < 0) { |
|
|
|
code_points.clear(); |
|
code_points.push_back(0); |
|
return std::make_pair(std::move(code_points), llama_v3_partial_utf8{ 0, n_remain }); |
|
} |
|
|
|
uint8_t mask = (1 << (7 - n_remain)) - 1; |
|
value = first_byte & mask; |
|
++pos; |
|
while (*pos != 0 && n_remain > 0) { |
|
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F); |
|
++pos; |
|
--n_remain; |
|
} |
|
if (n_remain == 0) { |
|
code_points.push_back(value); |
|
} |
|
} |
|
code_points.push_back(0); |
|
|
|
return std::make_pair(std::move(code_points), llama_v3_partial_utf8{ value, n_remain }); |
|
} |
|
|
|
|
|
static bool llama_v3_grammar_is_end_of_sequence(const llama_v3_grammar_element * pos) { |
|
switch (pos->type) { |
|
case LLAMA_V3_GRETYPE_END: return true; |
|
case LLAMA_V3_GRETYPE_ALT: return true; |
|
default: return false; |
|
} |
|
} |
|
|
|
|
|
|
|
static std::pair<bool, const llama_v3_grammar_element *> llama_v3_grammar_match_char( |
|
const llama_v3_grammar_element * pos, |
|
const uint32_t chr) { |
|
|
|
bool found = false; |
|
bool is_positive_char = pos->type == LLAMA_V3_GRETYPE_CHAR; |
|
LLAMA_V3_ASSERT(is_positive_char || pos->type == LLAMA_V3_GRETYPE_CHAR_NOT); |
|
|
|
do { |
|
if (pos[1].type == LLAMA_V3_GRETYPE_CHAR_RNG_UPPER) { |
|
|
|
found = found || (pos->value <= chr && chr <= pos[1].value); |
|
pos += 2; |
|
} else { |
|
|
|
found = found || pos->value == chr; |
|
pos += 1; |
|
} |
|
} while (pos->type == LLAMA_V3_GRETYPE_CHAR_ALT); |
|
|
|
return std::make_pair(found == is_positive_char, pos); |
|
} |
|
|
|
|
|
|
|
|
|
static bool llama_v3_grammar_match_partial_char( |
|
const llama_v3_grammar_element * pos, |
|
const llama_v3_partial_utf8 partial_utf8) { |
|
|
|
bool is_positive_char = pos->type == LLAMA_V3_GRETYPE_CHAR; |
|
LLAMA_V3_ASSERT(is_positive_char || pos->type == LLAMA_V3_GRETYPE_CHAR_NOT); |
|
|
|
uint32_t partial_value = partial_utf8.value; |
|
int n_remain = partial_utf8.n_remain; |
|
|
|
|
|
if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { |
|
return false; |
|
} |
|
|
|
|
|
uint32_t low = partial_value << (n_remain * 6); |
|
uint32_t high = low | ((1 << (n_remain * 6)) - 1); |
|
|
|
if (low == 0) { |
|
if (n_remain == 2) { |
|
low = 1 << 11; |
|
} else if (n_remain == 3) { |
|
low = 1 << 16; |
|
} |
|
} |
|
|
|
do { |
|
if (pos[1].type == LLAMA_V3_GRETYPE_CHAR_RNG_UPPER) { |
|
|
|
if (pos->value <= high && low <= pos[1].value) { |
|
return is_positive_char; |
|
} |
|
pos += 2; |
|
} else { |
|
|
|
if (low <= pos->value && pos->value <= high) { |
|
return is_positive_char; |
|
} |
|
pos += 1; |
|
} |
|
} while (pos->type == LLAMA_V3_GRETYPE_CHAR_ALT); |
|
|
|
return !is_positive_char; |
|
} |
|
|
|
|
|
|
|
|
|
static void llama_v3_grammar_advance_stack( |
|
const std::vector<std::vector<llama_v3_grammar_element>> & rules, |
|
const std::vector<const llama_v3_grammar_element *> & stack, |
|
std::vector<std::vector<const llama_v3_grammar_element *>> & new_stacks) { |
|
|
|
if (stack.empty()) { |
|
new_stacks.push_back(stack); |
|
return; |
|
} |
|
|
|
const llama_v3_grammar_element * pos = stack.back(); |
|
|
|
switch (pos->type) { |
|
case LLAMA_V3_GRETYPE_RULE_REF: { |
|
const size_t rule_id = static_cast<size_t>(pos->value); |
|
const llama_v3_grammar_element * subpos = rules[rule_id].data(); |
|
do { |
|
|
|
std::vector<const llama_v3_grammar_element *> new_stack(stack.begin(), stack.end() - 1); |
|
if (!llama_v3_grammar_is_end_of_sequence(pos + 1)) { |
|
|
|
new_stack.push_back(pos + 1); |
|
} |
|
if (!llama_v3_grammar_is_end_of_sequence(subpos)) { |
|
|
|
new_stack.push_back(subpos); |
|
} |
|
llama_v3_grammar_advance_stack(rules, new_stack, new_stacks); |
|
while (!llama_v3_grammar_is_end_of_sequence(subpos)) { |
|
|
|
subpos++; |
|
} |
|
if (subpos->type == LLAMA_V3_GRETYPE_ALT) { |
|
|
|
subpos++; |
|
} else { |
|
break; |
|
} |
|
} while (true); |
|
break; |
|
} |
|
case LLAMA_V3_GRETYPE_CHAR: |
|
case LLAMA_V3_GRETYPE_CHAR_NOT: |
|
new_stacks.push_back(stack); |
|
break; |
|
default: |
|
|
|
|
|
|
|
LLAMA_V3_ASSERT(false); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static std::vector<std::vector<const llama_v3_grammar_element *>> llama_v3_grammar_accept( |
|
const std::vector<std::vector<llama_v3_grammar_element>> & rules, |
|
const std::vector<std::vector<const llama_v3_grammar_element *>> & stacks, |
|
const uint32_t chr) { |
|
|
|
std::vector<std::vector<const llama_v3_grammar_element *>> new_stacks; |
|
|
|
for (const auto & stack : stacks) { |
|
if (stack.empty()) { |
|
continue; |
|
} |
|
|
|
auto match = llama_v3_grammar_match_char(stack.back(), chr); |
|
if (match.first) { |
|
const llama_v3_grammar_element * pos = match.second; |
|
|
|
|
|
std::vector<const llama_v3_grammar_element *> new_stack(stack.begin(), stack.end() - 1); |
|
if (!llama_v3_grammar_is_end_of_sequence(pos)) { |
|
new_stack.push_back(pos); |
|
} |
|
llama_v3_grammar_advance_stack(rules, new_stack, new_stacks); |
|
} |
|
} |
|
|
|
return new_stacks; |
|
} |
|
|
|
static std::vector<llama_v3_grammar_candidate> llama_v3_grammar_reject_candidates( |
|
const std::vector<std::vector<llama_v3_grammar_element>> & rules, |
|
const std::vector<std::vector<const llama_v3_grammar_element *>> & stacks, |
|
const std::vector<llama_v3_grammar_candidate> & candidates); |
|
|
|
static std::vector<llama_v3_grammar_candidate> llama_v3_grammar_reject_candidates_for_stack( |
|
const std::vector<std::vector<llama_v3_grammar_element>> & rules, |
|
const std::vector<const llama_v3_grammar_element *> & stack, |
|
const std::vector<llama_v3_grammar_candidate> & candidates) { |
|
|
|
std::vector<llama_v3_grammar_candidate> rejects; |
|
|
|
if (stack.empty()) { |
|
for (auto tok : candidates) { |
|
if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { |
|
rejects.push_back(tok); |
|
} |
|
} |
|
return rejects; |
|
} |
|
|
|
const llama_v3_grammar_element * stack_pos = stack.back(); |
|
|
|
std::vector<llama_v3_grammar_candidate> next_candidates; |
|
for (auto tok : candidates) { |
|
if (*tok.code_points == 0) { |
|
|
|
|
|
if (tok.partial_utf8.n_remain != 0 && |
|
!llama_v3_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { |
|
rejects.push_back(tok); |
|
} |
|
} else if (llama_v3_grammar_match_char(stack_pos, *tok.code_points).first) { |
|
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); |
|
} else { |
|
rejects.push_back(tok); |
|
} |
|
} |
|
|
|
auto stack_pos_after = llama_v3_grammar_match_char(stack_pos, 0).second; |
|
|
|
|
|
std::vector<const llama_v3_grammar_element *> stack_after(stack.begin(), stack.end() - 1); |
|
if (!llama_v3_grammar_is_end_of_sequence(stack_pos_after)) { |
|
stack_after.push_back(stack_pos_after); |
|
} |
|
std::vector<std::vector<const llama_v3_grammar_element *>> next_stacks; |
|
llama_v3_grammar_advance_stack(rules, stack_after, next_stacks); |
|
|
|
auto next_rejects = llama_v3_grammar_reject_candidates(rules, next_stacks, next_candidates); |
|
for (auto tok : next_rejects) { |
|
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); |
|
} |
|
|
|
return rejects; |
|
} |
|
|
|
static std::vector<llama_v3_grammar_candidate> llama_v3_grammar_reject_candidates( |
|
const std::vector<std::vector<llama_v3_grammar_element>> & rules, |
|
const std::vector<std::vector<const llama_v3_grammar_element *>> & stacks, |
|
const std::vector<llama_v3_grammar_candidate> & candidates) { |
|
LLAMA_V3_ASSERT(!stacks.empty()); |
|
|
|
if (candidates.empty()) { |
|
return std::vector<llama_v3_grammar_candidate>(); |
|
} |
|
|
|
auto rejects = llama_v3_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); |
|
|
|
for (size_t i = 1, size = stacks.size(); i < size; ++i) { |
|
rejects = llama_v3_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); |
|
} |
|
return rejects; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
struct llama_v3_grammar * llama_v3_grammar_init( |
|
const llama_v3_grammar_element ** rules, |
|
size_t n_rules, |
|
size_t start_rule_index) { |
|
const llama_v3_grammar_element * pos; |
|
|
|
|
|
std::vector<std::vector<llama_v3_grammar_element>> vec_rules(n_rules); |
|
for (size_t i = 0; i < n_rules; i++) { |
|
for (pos = rules[i]; pos->type != LLAMA_V3_GRETYPE_END; pos++) { |
|
vec_rules[i].push_back(*pos); |
|
} |
|
vec_rules[i].push_back({LLAMA_V3_GRETYPE_END, 0}); |
|
} |
|
|
|
|
|
std::vector<std::vector<const llama_v3_grammar_element *>> stacks; |
|
pos = rules[start_rule_index]; |
|
do { |
|
std::vector<const llama_v3_grammar_element *> stack; |
|
if (!llama_v3_grammar_is_end_of_sequence(pos)) { |
|
|
|
stack.push_back(pos); |
|
} |
|
llama_v3_grammar_advance_stack(vec_rules, stack, stacks); |
|
while (!llama_v3_grammar_is_end_of_sequence(pos)) { |
|
|
|
pos++; |
|
} |
|
if (pos->type == LLAMA_V3_GRETYPE_ALT) { |
|
|
|
pos++; |
|
} else { |
|
break; |
|
} |
|
} while (true); |
|
|
|
return new llama_v3_grammar{ std::move(vec_rules), std::move(stacks), {} }; |
|
} |
|
|
|
void llama_v3_grammar_free(struct llama_v3_grammar * grammar) { |
|
delete grammar; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
void llama_v3_sample_softmax(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates) { |
|
assert(candidates->size > 0); |
|
|
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
|
|
if (!candidates->sorted) { |
|
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_v3_token_data & a, const llama_v3_token_data & b) { |
|
return a.logit > b.logit; |
|
}); |
|
candidates->sorted = true; |
|
} |
|
|
|
float max_l = candidates->data[0].logit; |
|
float cum_sum = 0.0f; |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
float p = expf(candidates->data[i].logit - max_l); |
|
candidates->data[i].p = p; |
|
cum_sum += p; |
|
} |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
candidates->data[i].p /= cum_sum; |
|
} |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v3_sample_top_k(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, int k, size_t min_keep) { |
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
k = std::max(k, (int) min_keep); |
|
k = std::min(k, (int) candidates->size); |
|
|
|
|
|
if (!candidates->sorted) { |
|
auto comp = [](const llama_v3_token_data & a, const llama_v3_token_data & b) { |
|
return a.logit > b.logit; |
|
}; |
|
if (k == (int) candidates->size) { |
|
std::sort(candidates->data, candidates->data + candidates->size, comp); |
|
} else { |
|
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); |
|
} |
|
candidates->sorted = true; |
|
} |
|
candidates->size = k; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v3_sample_top_p(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float p, size_t min_keep) { |
|
if (p >= 1.0f) { |
|
return; |
|
} |
|
|
|
llama_v3_sample_softmax(ctx, candidates); |
|
|
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
|
|
float cum_sum = 0.0f; |
|
size_t last_idx = candidates->size; |
|
|
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
cum_sum += candidates->data[i].p; |
|
|
|
|
|
|
|
if (cum_sum >= p && i + 1 >= min_keep) { |
|
last_idx = i + 1; |
|
break; |
|
} |
|
} |
|
|
|
|
|
candidates->size = last_idx; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v3_sample_tail_free(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float z, size_t min_keep) { |
|
if (z >= 1.0f || candidates->size <= 2) { |
|
return; |
|
} |
|
|
|
llama_v3_sample_softmax(nullptr, candidates); |
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
|
|
std::vector<float> first_derivatives(candidates->size - 1); |
|
std::vector<float> second_derivatives(candidates->size - 2); |
|
|
|
for (size_t i = 0; i < first_derivatives.size(); ++i) { |
|
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; |
|
} |
|
for (size_t i = 0; i < second_derivatives.size(); ++i) { |
|
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; |
|
} |
|
|
|
|
|
for (size_t i = 0; i < second_derivatives.size(); ++i) { |
|
second_derivatives[i] = abs(second_derivatives[i]); |
|
} |
|
|
|
|
|
{ |
|
const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); |
|
|
|
if (second_derivatives_sum > 1e-6f) { |
|
for (float & value : second_derivatives) { |
|
value /= second_derivatives_sum; |
|
} |
|
} else { |
|
for (float & value : second_derivatives) { |
|
value = 1.0f / second_derivatives.size(); |
|
} |
|
} |
|
} |
|
|
|
float cum_sum = 0.0f; |
|
size_t last_idx = candidates->size; |
|
for (size_t i = 0; i < second_derivatives.size(); ++i) { |
|
cum_sum += second_derivatives[i]; |
|
|
|
|
|
if (cum_sum > z && i >= min_keep) { |
|
last_idx = i; |
|
break; |
|
} |
|
} |
|
|
|
|
|
candidates->size = last_idx; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
|
|
void llama_v3_sample_typical(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float p, size_t min_keep) { |
|
|
|
|
|
if (p >= 1.0f) { |
|
return; |
|
} |
|
|
|
|
|
llama_v3_sample_softmax(nullptr, candidates); |
|
|
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
float entropy = 0.0f; |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
if(candidates->data[i].p>0) |
|
{ |
|
entropy += -candidates->data[i].p * logf(candidates->data[i].p); |
|
} |
|
} |
|
|
|
|
|
std::vector<float> shifted_scores; |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); |
|
shifted_scores.push_back(shifted_score); |
|
} |
|
|
|
|
|
std::vector<size_t> indices(candidates->size); |
|
std::iota(indices.begin(), indices.end(), 0); |
|
|
|
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { |
|
return shifted_scores[a] < shifted_scores[b]; |
|
}); |
|
|
|
|
|
float cum_sum = 0.0f; |
|
size_t last_idx = indices.size(); |
|
|
|
for (size_t i = 0; i < indices.size(); ++i) { |
|
size_t idx = indices[i]; |
|
cum_sum += candidates->data[idx].p; |
|
|
|
|
|
if (cum_sum > p && i >= min_keep - 1) { |
|
last_idx = i + 1; |
|
break; |
|
} |
|
} |
|
|
|
|
|
std::vector<llama_v3_token_data> new_candidates; |
|
for (size_t i = 0; i < last_idx; ++i) { |
|
size_t idx = indices[i]; |
|
new_candidates.push_back(candidates->data[idx]); |
|
} |
|
|
|
|
|
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); |
|
candidates->size = new_candidates.size(); |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v3_sample_temperature(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates_p, float temp) { |
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
for (size_t i = 0; i < candidates_p->size; ++i) { |
|
candidates_p->data[i].logit /= temp; |
|
} |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v3_sample_repetition_penalty(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const llama_v3_token * last_tokens, size_t last_tokens_size, float penalty) { |
|
if (last_tokens_size == 0 || penalty == 1.0f) { |
|
return; |
|
} |
|
|
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id); |
|
if (token_iter == last_tokens + last_tokens_size) { |
|
continue; |
|
} |
|
|
|
|
|
|
|
if (candidates->data[i].logit <= 0) { |
|
candidates->data[i].logit *= penalty; |
|
} else { |
|
candidates->data[i].logit /= penalty; |
|
} |
|
} |
|
|
|
candidates->sorted = false; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v3_sample_frequency_and_presence_penalties(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const llama_v3_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) { |
|
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) { |
|
return; |
|
} |
|
|
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
|
|
std::unordered_map<llama_v3_token, int> token_count; |
|
for (size_t i = 0; i < last_tokens_size; ++i) { |
|
token_count[last_tokens_p[i]]++; |
|
} |
|
|
|
|
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
auto token_iter = token_count.find(candidates->data[i].id); |
|
if (token_iter == token_count.end()) { |
|
continue; |
|
} |
|
|
|
int count = token_iter->second; |
|
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence; |
|
} |
|
|
|
candidates->sorted = false; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
void llama_v3_sample_grammar(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const struct llama_v3_grammar * grammar) { |
|
assert(ctx); |
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
bool allow_eos = false; |
|
for (const auto & stack : grammar->stacks) { |
|
if (stack.empty()) { |
|
allow_eos = true; |
|
break; |
|
} |
|
} |
|
|
|
const llama_v3_token eos = llama_v3_token_eos(); |
|
|
|
std::vector<std::pair<std::vector<uint32_t>, llama_v3_partial_utf8>> candidates_decoded; |
|
std::vector<llama_v3_grammar_candidate> candidates_grammar; |
|
|
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
const llama_v3_token id = candidates->data[i].id; |
|
const char * str = llama_v3_token_to_str(ctx, id); |
|
if (id == eos) { |
|
if (!allow_eos) { |
|
candidates->data[i].logit = -INFINITY; |
|
} |
|
} else if (*str == 0) { |
|
candidates->data[i].logit = -INFINITY; |
|
} else { |
|
candidates_decoded.push_back(decode_utf8(str, grammar->partial_utf8)); |
|
candidates_grammar.push_back({ |
|
i, candidates_decoded.back().first.data(), candidates_decoded.back().second |
|
}); |
|
} |
|
} |
|
|
|
const auto rejects = |
|
llama_v3_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); |
|
for (auto & reject : rejects) { |
|
candidates->data[reject.index].logit = -INFINITY; |
|
} |
|
|
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
|
|
static void llama_v3_log_softmax(float * array, size_t size) { |
|
float max_l = *std::max_element(array, array + size); |
|
float sum = 0.f; |
|
for (size_t i = 0; i < size; ++i) { |
|
float p = expf(array[i] - max_l); |
|
sum += p; |
|
array[i] = p; |
|
} |
|
|
|
for (size_t i = 0; i < size; ++i) { |
|
array[i] = logf(array[i] / sum); |
|
} |
|
} |
|
|
|
void llama_v3_sample_classifier_free_guidance( |
|
struct llama_v3_context * ctx, |
|
llama_v3_token_data_array * candidates, |
|
struct llama_v3_context * guidance_ctx, |
|
float scale) { |
|
int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
assert(ctx); |
|
auto n_vocab = llama_v3_n_vocab(ctx); |
|
assert(n_vocab == (int)candidates->size); |
|
assert(!candidates->sorted); |
|
|
|
std::vector<float> logits_base; |
|
logits_base.reserve(candidates->size); |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
logits_base.push_back(candidates->data[i].logit); |
|
} |
|
llama_v3_log_softmax(logits_base.data(), candidates->size); |
|
|
|
float* logits_guidance = llama_v3_get_logits(guidance_ctx); |
|
llama_v3_log_softmax(logits_guidance, n_vocab); |
|
|
|
for (int i = 0; i < n_vocab; ++i) { |
|
float logit_guidance = logits_guidance[i]; |
|
float logit_base = logits_base[i]; |
|
candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance; |
|
} |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
} |
|
|
|
llama_v3_token llama_v3_sample_token_mirostat(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float tau, float eta, int m, float * mu) { |
|
assert(ctx); |
|
auto N = float(llama_v3_n_vocab(ctx)); |
|
int64_t t_start_sample_us; |
|
t_start_sample_us = ggml_v3_time_us(); |
|
|
|
llama_v3_sample_softmax(nullptr, candidates); |
|
|
|
|
|
float s_hat = 0.0; |
|
float sum_ti_bi = 0.0; |
|
float sum_ti_sq = 0.0; |
|
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { |
|
float t_i = logf(float(i + 2) / float(i + 1)); |
|
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); |
|
sum_ti_bi += t_i * b_i; |
|
sum_ti_sq += t_i * t_i; |
|
} |
|
s_hat = sum_ti_bi / sum_ti_sq; |
|
|
|
|
|
float epsilon_hat = s_hat - 1; |
|
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); |
|
|
|
|
|
llama_v3_sample_top_k(nullptr, candidates, int(k), 1); |
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
llama_v3_token X = llama_v3_sample_token(ctx, candidates); |
|
t_start_sample_us = ggml_v3_time_us(); |
|
|
|
|
|
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v3_token_data & candidate) { |
|
return candidate.id == X; |
|
})); |
|
float observed_surprise = -log2f(candidates->data[X_idx].p); |
|
float e = observed_surprise - tau; |
|
|
|
|
|
*mu = *mu - eta * e; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
return X; |
|
} |
|
|
|
llama_v3_token llama_v3_sample_token_mirostat_v2(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float tau, float eta, float * mu) { |
|
int64_t t_start_sample_us; |
|
t_start_sample_us = ggml_v3_time_us(); |
|
|
|
llama_v3_sample_softmax(ctx, candidates); |
|
|
|
|
|
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v3_token_data & candidate) { |
|
return -log2f(candidate.p) > *mu; |
|
})); |
|
|
|
if (candidates->size == 0) { |
|
candidates->size = 1; |
|
} |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
|
|
|
|
llama_v3_sample_softmax(ctx, candidates); |
|
|
|
|
|
llama_v3_token X = llama_v3_sample_token(ctx, candidates); |
|
t_start_sample_us = ggml_v3_time_us(); |
|
|
|
|
|
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v3_token_data & candidate) { |
|
return candidate.id == X; |
|
})); |
|
float observed_surprise = -log2f(candidates->data[X_idx].p); |
|
float e = observed_surprise - tau; |
|
|
|
|
|
*mu = *mu - eta * e; |
|
|
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
return X; |
|
} |
|
|
|
llama_v3_token llama_v3_sample_token_greedy(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates) { |
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
|
|
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_v3_token_data & a, const llama_v3_token_data & b) { |
|
return a.logit < b.logit; |
|
}); |
|
|
|
llama_v3_token result = max_iter->id; |
|
if (ctx) { |
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
ctx->n_sample++; |
|
} |
|
return result; |
|
} |
|
|
|
llama_v3_token llama_v3_sample_token(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates) { |
|
assert(ctx); |
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
llama_v3_sample_softmax(nullptr, candidates); |
|
|
|
std::vector<float> probs; |
|
probs.reserve(candidates->size); |
|
for (size_t i = 0; i < candidates->size; ++i) { |
|
probs.push_back(candidates->data[i].p); |
|
} |
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end()); |
|
auto & rng = ctx->rng; |
|
int idx = dist(rng); |
|
|
|
llama_v3_token result = candidates->data[idx].id; |
|
|
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
ctx->n_sample++; |
|
return result; |
|
} |
|
|
|
void llama_v3_grammar_accept_token(struct llama_v3_context * ctx, struct llama_v3_grammar * grammar, llama_v3_token token) { |
|
const int64_t t_start_sample_us = ggml_v3_time_us(); |
|
|
|
if (token == llama_v3_token_eos()) { |
|
for (const auto & stack : grammar->stacks) { |
|
if (stack.empty()) { |
|
return; |
|
} |
|
} |
|
LLAMA_V3_ASSERT(false); |
|
} |
|
|
|
const char * str = llama_v3_token_to_str(ctx, token); |
|
|
|
|
|
const auto decoded = decode_utf8(str, grammar->partial_utf8); |
|
const auto & code_points = decoded.first; |
|
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { |
|
grammar->stacks = llama_v3_grammar_accept(grammar->rules, grammar->stacks, *it); |
|
} |
|
grammar->partial_utf8 = decoded.second; |
|
LLAMA_V3_ASSERT(!grammar->stacks.empty()); |
|
|
|
ctx->t_sample_us += ggml_v3_time_us() - t_start_sample_us; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void llama_v3_convert_tensor_internal(const llama_v3_load_tensor & tensor, llama_v3_buffer & output, const int nelements, const int nthread) { |
|
if (output.size < nelements * sizeof(float)) { |
|
output.resize(nelements * sizeof(float)); |
|
} |
|
float * f32_output = (float *) output.addr; |
|
|
|
ggml_v3_type_traits_t qtype; |
|
if (ggml_v3_is_quantized(tensor.type)) { |
|
qtype = ggml_v3_internal_get_type_traits(tensor.type); |
|
if (qtype.to_float == NULL) { |
|
throw std::runtime_error(format_old("type %s unsupported for integer quantization: no dequantization available", ggml_v3_type_name(tensor.type))); |
|
} |
|
} else if (tensor.type != GGML_V3_TYPE_F16) { |
|
throw std::runtime_error(format_old("cannot dequantize/convert tensor type %s", ggml_v3_type_name(tensor.type))); |
|
} |
|
|
|
if (nthread < 2) { |
|
if (tensor.type == GGML_V3_TYPE_F16) { |
|
ggml_v3_fp16_to_fp32_row((ggml_v3_fp16_t *)tensor.data, f32_output, nelements); |
|
} else if (ggml_v3_is_quantized(tensor.type)) { |
|
qtype.to_float(tensor.data, f32_output, nelements); |
|
} else { |
|
LLAMA_V3_ASSERT(false); |
|
} |
|
return; |
|
} |
|
|
|
auto block_size = tensor.type == GGML_V3_TYPE_F16 ? 1 : (size_t)ggml_v3_blck_size(tensor.type); |
|
auto block_size_bytes = ggml_v3_type_size(tensor.type); |
|
|
|
LLAMA_V3_ASSERT(nelements % block_size == 0); |
|
auto nblocks = nelements / block_size; |
|
auto blocks_per_thread = nblocks / nthread; |
|
auto spare_blocks = nblocks - (blocks_per_thread * nthread); |
|
|
|
std::vector<std::thread> workers; |
|
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) { |
|
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); |
|
auto thr_elems = thr_blocks * block_size; |
|
auto thr_block_bytes = thr_blocks * block_size_bytes; |
|
|
|
auto compute = [qtype] (ggml_v3_type typ, uint8_t * inbuf, float * outbuf, int nels) { |
|
if (typ == GGML_V3_TYPE_F16) { |
|
ggml_v3_fp16_to_fp32_row((ggml_v3_fp16_t *)inbuf, outbuf, nels); |
|
} else { |
|
qtype.to_float(inbuf, outbuf, nels); |
|
} |
|
}; |
|
workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems)); |
|
in_buff_offs += thr_block_bytes; |
|
out_buff_offs += thr_elems; |
|
} |
|
for (auto & worker : workers) { |
|
worker.join(); |
|
} |
|
|
|
} |
|
|
|
static void llama_v3_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_v3_model_quantize_params * params) { |
|
ggml_v3_type quantized_type; |
|
llama_v3_ftype ftype = params->ftype; |
|
int nthread = params->nthread; |
|
|
|
switch (params->ftype) { |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_V3_TYPE_Q4_0; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_V3_TYPE_Q4_1; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_V3_TYPE_Q5_0; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_V3_TYPE_Q5_1; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_V3_TYPE_Q8_0; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_F16: quantized_type = GGML_V3_TYPE_F16; break; |
|
case LLAMA_V3_FTYPE_ALL_F32: quantized_type = GGML_V3_TYPE_F32; break; |
|
|
|
#ifdef GGML_USE_K_QUANTS |
|
|
|
case LLAMA_V3_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_V3_TYPE_Q2_K; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q3_K_S: |
|
case LLAMA_V3_FTYPE_MOSTLY_Q3_K_M: |
|
case LLAMA_V3_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_V3_TYPE_Q3_K; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_K_S: |
|
case LLAMA_V3_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_V3_TYPE_Q4_K; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q5_K_S: |
|
case LLAMA_V3_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_V3_TYPE_Q5_K; break; |
|
case LLAMA_V3_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_V3_TYPE_Q6_K; break; |
|
#endif |
|
default: throw std::runtime_error(format_old("invalid output file type %d\n", ftype)); |
|
} |
|
|
|
if (nthread <= 0) { |
|
nthread = std::thread::hardware_concurrency(); |
|
} |
|
|
|
std::unique_ptr<llama_v3_model_loader> model_loader(new llama_v3_model_loader(fname_inp, false)); |
|
llama_v3_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype); |
|
|
|
#ifdef GGML_USE_K_QUANTS |
|
int n_attention_wv = 0; |
|
int n_feed_forward_w2 = 0; |
|
for (auto& tensor : model_loader->tensors_map.tensors) { |
|
if (tensor.name.find("attention.wv.weight") != std::string::npos) { |
|
++n_attention_wv; |
|
} |
|
else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { |
|
++n_feed_forward_w2; |
|
} |
|
} |
|
|
|
int i_attention_wv = 0; |
|
int i_feed_forward_w2 = 0; |
|
#endif |
|
|
|
size_t total_size_org = 0; |
|
size_t total_size_new = 0; |
|
std::vector<int64_t> hist_all(1 << 4, 0); |
|
|
|
std::vector<std::thread> workers; |
|
std::mutex mutex; |
|
|
|
auto use_more_bits = [] (int i_layer, int num_layers) -> bool { |
|
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; |
|
}; |
|
|
|
size_t idx = 0; |
|
for (llama_v3_load_tensor & tensor : model_loader->tensors_map.tensors) { |
|
llama_v3_buffer read_data; |
|
read_data.resize(tensor.size); |
|
tensor.data = read_data.addr; |
|
model_loader->load_data_for(tensor); |
|
|
|
LLAMA_V3_LOG_INFO("[%4zu/%4zu] %36s - %16s, type = %6s, ", |
|
++idx, model_loader->tensors_map.tensors.size(), |
|
tensor.name.c_str(), llama_v3_format_tensor_shape(tensor.ne).c_str(), |
|
ggml_v3_type_name(tensor.type)); |
|
|
|
|
|
bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; |
|
|
|
|
|
quantize &= (tensor.ne.size() == 2); |
|
quantize &= params->quantize_output_tensor || tensor.name != "output.weight"; |
|
quantize &= quantized_type != tensor.type; |
|
|
|
enum ggml_v3_type new_type; |
|
void * new_data; |
|
size_t new_size; |
|
llama_v3_buffer work; |
|
|
|
if (!quantize) { |
|
new_type = tensor.type; |
|
new_data = tensor.data; |
|
new_size = tensor.size; |
|
LLAMA_V3_LOG_INFO("size = %8.3f MB\n", tensor.size/1024.0/1024.0); |
|
} else { |
|
new_type = quantized_type; |
|
#ifdef GGML_USE_K_QUANTS |
|
if (tensor.name == "output.weight") { |
|
int nx = tensor.ne.at(0); |
|
int ny = tensor.ne.at(1); |
|
if (nx % QK_K == 0 && ny % QK_K == 0) { |
|
new_type = GGML_V3_TYPE_Q6_K; |
|
} |
|
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) { |
|
if (ftype == LLAMA_V3_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_V3_FTYPE_MOSTLY_Q2_K) new_type = GGML_V3_TYPE_Q4_K; |
|
else if (ftype == LLAMA_V3_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_V3_TYPE_Q5_K; |
|
else if ((ftype == LLAMA_V3_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_V3_FTYPE_MOSTLY_Q5_K_M) && |
|
use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_V3_TYPE_Q6_K; |
|
else if (QK_K == 64 && (ftype == LLAMA_V3_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_V3_FTYPE_MOSTLY_Q3_K_S) && |
|
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_V3_TYPE_Q6_K; |
|
++i_attention_wv; |
|
} else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { |
|
if (ftype == LLAMA_V3_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_V3_FTYPE_MOSTLY_Q2_K) new_type = GGML_V3_TYPE_Q4_K; |
|
else if (ftype == LLAMA_V3_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_V3_TYPE_Q5_K; |
|
else if ((ftype == LLAMA_V3_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_V3_FTYPE_MOSTLY_Q5_K_M) && |
|
use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_V3_TYPE_Q6_K; |
|
|
|
++i_feed_forward_w2; |
|
} else if (tensor.name.find("attention.wo.weight") != std::string::npos) { |
|
if (ftype == LLAMA_V3_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_V3_FTYPE_MOSTLY_Q2_K) new_type = GGML_V3_TYPE_Q4_K; |
|
else if (ftype == LLAMA_V3_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_V3_TYPE_Q5_K; |
|
} |
|
bool convert_incompatible_tensor = false; |
|
if (new_type == GGML_V3_TYPE_Q2_K || new_type == GGML_V3_TYPE_Q3_K || new_type == GGML_V3_TYPE_Q4_K || |
|
new_type == GGML_V3_TYPE_Q5_K || new_type == GGML_V3_TYPE_Q6_K) { |
|
int nx = tensor.ne.at(0); |
|
int ny = tensor.ne.at(1); |
|
if (nx % QK_K != 0 || ny % QK_K != 0) { |
|
LLAMA_V3_LOG_INFO("\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K); |
|
convert_incompatible_tensor = true; |
|
} |
|
} |
|
if (convert_incompatible_tensor) { |
|
if (tensor.name == "output.weight") { |
|
new_type = GGML_V3_TYPE_F16; |
|
LLAMA_V3_LOG_WARN("F16 will be used for this tensor instead.\n"); |
|
} else if (tensor.name == "tok_embeddings.weight") { |
|
new_type = GGML_V3_TYPE_Q4_0; |
|
LLAMA_V3_LOG_WARN("Q4_0 will be used for this tensor instead.\n"); |
|
} else { |
|
throw std::runtime_error("Unsupported tensor size encountered\n"); |
|
} |
|
} |
|
#endif |
|
|
|
float * f32_data; |
|
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); |
|
llama_v3_buffer f32_conv_buf; |
|
|
|
if (tensor.type == GGML_V3_TYPE_F32) { |
|
f32_data = (float *) tensor.data; |
|
} else if (ggml_v3_is_quantized(tensor.type) && !params->allow_requantize) { |
|
throw std::runtime_error(format_old("requantizing from type %s is disabled", ggml_v3_type_name(tensor.type))); |
|
} else { |
|
llama_v3_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread); |
|
f32_data = (float *) f32_conv_buf.addr; |
|
} |
|
|
|
LLAMA_V3_LOG_INFO("quantizing to %s .. ", ggml_v3_type_name(new_type)); |
|
fflush(stdout); |
|
|
|
work.resize(nelements * 4); |
|
new_data = work.addr; |
|
std::vector<int64_t> hist_cur(1 << 4, 0); |
|
|
|
int chunk_size = 32 * 512; |
|
const int nchunk = (nelements + chunk_size - 1)/chunk_size; |
|
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; |
|
if (nthread_use < 2) { |
|
new_size = ggml_v3_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); |
|
} else { |
|
size_t counter = 0; |
|
new_size = 0; |
|
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () { |
|
std::vector<int64_t> local_hist; |
|
size_t local_size = 0; |
|
while (true) { |
|
std::unique_lock<std::mutex> lock(mutex); |
|
size_t first = counter; counter += chunk_size; |
|
if (first >= nelements) { |
|
if (!local_hist.empty()) { |
|
for (int j=0; j<int(local_hist.size()); ++j) { |
|
hist_cur[j] += local_hist[j]; |
|
} |
|
new_size += local_size; |
|
} |
|
break; |
|
} |
|
lock.unlock(); |
|
size_t last = std::min(nelements, first + chunk_size); |
|
if (local_hist.empty()) { |
|
local_hist.resize(hist_cur.size(), 0); |
|
} |
|
local_size += ggml_v3_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data()); |
|
} |
|
}; |
|
if ((int) workers.size() < nthread_use - 1) { |
|
workers.resize(nthread_use - 1); |
|
} |
|
for (int it = 0; it < nthread_use - 1; ++it) { |
|
workers[it] = std::thread(compute); |
|
} |
|
compute(); |
|
for (int it = 0; it < nthread_use - 1; ++it) { |
|
workers[it].join(); |
|
} |
|
} |
|
|
|
LLAMA_V3_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); |
|
int64_t tot_count = 0; |
|
for (size_t i = 0; i < hist_cur.size(); i++) { |
|
hist_all[i] += hist_cur[i]; |
|
tot_count += hist_cur[i]; |
|
} |
|
|
|
if (tot_count > 0) { |
|
for (size_t i = 0; i < hist_cur.size(); i++) { |
|
LLAMA_V3_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements)); |
|
} |
|
} |
|
LLAMA_V3_LOG_INFO("\n"); |
|
} |
|
total_size_org += tensor.size; |
|
total_size_new += new_size; |
|
file_saver.write_tensor(tensor, new_type, new_data, new_size); |
|
} |
|
|
|
LLAMA_V3_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); |
|
LLAMA_V3_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); |
|
|
|
{ |
|
int64_t sum_all = 0; |
|
for (size_t i = 0; i < hist_all.size(); i++) { |
|
sum_all += hist_all[i]; |
|
} |
|
|
|
if (sum_all > 0) { |
|
LLAMA_V3_LOG_INFO("%s: hist: ", __func__); |
|
for (size_t i = 0; i < hist_all.size(); i++) { |
|
LLAMA_V3_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all)); |
|
} |
|
LLAMA_V3_LOG_INFO("\n"); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct llama_v3_model * llama_v3_load_model_from_file( |
|
const char * path_model, |
|
struct llama_v3_context_params params) { |
|
ggml_v3_time_init(); |
|
|
|
llama_v3_model * model = new llama_v3_model; |
|
|
|
ggml_v3_type memory_type = params.f16_kv ? GGML_V3_TYPE_F16 : GGML_V3_TYPE_F32; |
|
|
|
if (!llama_v3_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.rms_norm_eps, params.n_gpu_layers, |
|
params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,params.low_vram, |
|
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, |
|
params.progress_callback_user_data)) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to load model\n", __func__); |
|
delete model; |
|
return nullptr; |
|
} |
|
|
|
return model; |
|
} |
|
|
|
void llama_v3_free_model(struct llama_v3_model * model) { |
|
delete model; |
|
} |
|
|
|
struct llama_v3_context * llama_v3_new_context_with_model( |
|
struct llama_v3_model * model, |
|
struct llama_v3_context_params params) { |
|
|
|
if (!model) { |
|
return nullptr; |
|
} |
|
|
|
llama_v3_context * ctx = new llama_v3_context(*model); |
|
|
|
if (params.seed == LLAMA_V3_DEFAULT_SEED) { |
|
params.seed = time(NULL); |
|
} |
|
|
|
size_t blasbatchmul = get_blas_batch_mul3(params.n_batch); |
|
|
|
unsigned cur_percentage = 0; |
|
if (params.progress_callback == NULL) { |
|
params.progress_callback_user_data = &cur_percentage; |
|
params.progress_callback = [](float progress, void * ctx) { |
|
unsigned * cur_percentage_p = (unsigned *) ctx; |
|
unsigned percentage = (unsigned) (100 * progress); |
|
while (percentage > *cur_percentage_p) { |
|
*cur_percentage_p = percentage; |
|
LLAMA_V3_LOG_INFO("."); |
|
if (percentage >= 100) { |
|
LLAMA_V3_LOG_INFO("\n"); |
|
} |
|
} |
|
}; |
|
} |
|
|
|
ctx->rng = std::mt19937(params.seed); |
|
ctx->logits_all = params.logits_all; |
|
|
|
ggml_v3_type memory_type = params.f16_kv ? GGML_V3_TYPE_F16 : GGML_V3_TYPE_F32; |
|
|
|
|
|
if (!params.vocab_only) { |
|
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { |
|
LLAMA_V3_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__); |
|
llama_v3_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
{ |
|
const size_t memory_size = ggml_v3_nbytes(ctx->kv_self.k) + ggml_v3_nbytes(ctx->kv_self.v); |
|
LLAMA_V3_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); |
|
} |
|
|
|
const auto & hparams = ctx->model.hparams; |
|
|
|
|
|
if (params.logits_all) { |
|
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); |
|
} else { |
|
ctx->logits.reserve(hparams.n_vocab); |
|
} |
|
|
|
if (params.embedding){ |
|
ctx->embedding.resize(hparams.n_embd); |
|
} |
|
|
|
#ifdef LLAMA_V3_USE_ALLOCATOR |
|
{ |
|
static const size_t tensor_alignment = 32; |
|
|
|
ctx->buf_compute.resize(ggml_v3_tensor_overhead()*GGML_V3_MAX_NODES + ggml_v3_graph_overhead()); |
|
|
|
|
|
ctx->alloc = ggml_v3_allocr_new_measure(tensor_alignment); |
|
|
|
|
|
int n_tokens = std::min((int)hparams.n_ctx, params.n_batch); |
|
int n_past = hparams.n_ctx - n_tokens; |
|
llama_v3_token token = llama_v3_token_bos(); |
|
ggml_v3_cgraph * gf = llama_v3_build_graph(*ctx, &token, NULL, n_tokens, n_past); |
|
|
|
|
|
size_t alloc_size = ggml_v3_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment; |
|
|
|
LLAMA_V3_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml_v3_allocr_free(ctx->alloc); |
|
|
|
ctx->buf_alloc.resize(alloc_size); |
|
ctx->alloc = ggml_v3_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment); |
|
|
|
} |
|
#else |
|
ctx->buf_compute.resize(blasbatchmul*MEM_REQ_EVAL_3().at(ctx->model.type) + ggml_v3_graph_overhead()); |
|
#endif |
|
|
|
#ifdef LLAMA_V3_USE_SCRATCH |
|
ctx->buf_scratch[0].resize(blasbatchmul*MEM_REQ_SCRATCH0_3(hparams.n_ctx).at(ctx->model.type)); |
|
ctx->buf_scratch[1].resize(blasbatchmul*MEM_REQ_SCRATCH1_3().at(ctx->model.type)); |
|
#endif |
|
} |
|
|
|
return ctx; |
|
} |
|
|
|
struct llama_v3_context * llama_v3_init_from_file( |
|
const char * path_model, |
|
struct llama_v3_context_params params) { |
|
|
|
struct llama_v3_model * model = llama_v3_load_model_from_file(path_model, params); |
|
if (!model) { |
|
return nullptr; |
|
} |
|
struct llama_v3_context * ctx = llama_v3_new_context_with_model(model, params); |
|
ctx->model_owner = true; |
|
return ctx; |
|
} |
|
|
|
void llama_v3_free(struct llama_v3_context * ctx) { |
|
delete ctx; |
|
} |
|
|
|
int llama_v3_model_quantize( |
|
const char * fname_inp, |
|
const char * fname_out, |
|
const llama_v3_model_quantize_params *params) { |
|
try { |
|
llama_v3_model_quantize_internal(fname_inp, fname_out, params); |
|
return 0; |
|
} catch (const std::exception & err) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); |
|
return 1; |
|
} |
|
} |
|
|
|
int llama_v3_apply_lora_from_file_internal(const struct llama_v3_model & model, const char * path_lora, const char * path_base_model, int n_threads) { |
|
LLAMA_V3_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); |
|
|
|
const int64_t t_start_lora_us = ggml_v3_time_us(); |
|
|
|
auto fin = std::ifstream(path_lora, std::ios::binary); |
|
if (!fin) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora); |
|
return 1; |
|
} |
|
|
|
|
|
{ |
|
uint32_t magic; |
|
fin.read((char *) &magic, sizeof(magic)); |
|
if (magic != LLAMA_V3_FILE_MAGIC_GGLA) { |
|
LLAMA_V3_LOG_ERROR("%s: bad file magic\n", __func__); |
|
return 1; |
|
} |
|
uint32_t format_version; |
|
fin.read((char *) &format_version, sizeof(format_version)); |
|
|
|
if (format_version != 1) { |
|
LLAMA_V3_LOG_ERROR("%s: unsupported file version\n", __func__ ); |
|
return 1; |
|
} |
|
} |
|
|
|
int32_t lora_r; |
|
int32_t lora_alpha; |
|
fin.read((char *) &lora_r, sizeof(lora_r)); |
|
fin.read((char *) &lora_alpha, sizeof(lora_alpha)); |
|
float scaling = (float)lora_alpha / (float)lora_r; |
|
|
|
LLAMA_V3_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); |
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull); |
|
struct ggml_v3_init_params params; |
|
params.mem_size = lora_buf.size(); |
|
params.mem_buffer = lora_buf.data(); |
|
params.no_alloc = false; |
|
|
|
ggml_v3_context * lora_ctx = ggml_v3_init(params); |
|
std::unordered_map<std::string, struct ggml_v3_tensor *> lora_tensors; |
|
|
|
|
|
std::unordered_map<std::string, struct ggml_v3_tensor*> model_tensors; |
|
for (const auto & kv: model.tensors_by_name) { |
|
model_tensors.insert(kv); |
|
} |
|
|
|
|
|
|
|
std::unique_ptr<llama_v3_model_loader> model_loader; |
|
ggml_v3_context * base_ctx = NULL; |
|
llama_v3_buffer base_buf; |
|
if (path_base_model) { |
|
LLAMA_V3_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); |
|
model_loader.reset(new llama_v3_model_loader(path_base_model, true)); |
|
|
|
size_t ctx_size; |
|
size_t mmapped_size; |
|
model_loader->calc_sizes(&ctx_size, &mmapped_size); |
|
base_buf.resize(ctx_size); |
|
|
|
ggml_v3_init_params base_params; |
|
base_params.mem_size = base_buf.size; |
|
base_params.mem_buffer = base_buf.addr; |
|
base_params.no_alloc = model_loader->use_mmap; |
|
|
|
base_ctx = ggml_v3_init(base_params); |
|
|
|
model_loader->ggml_v3_ctx = base_ctx; |
|
|
|
|
|
if (model_loader->use_mmap) { |
|
model_loader->mapping.reset(new llama_v3_mmap(&model_loader->file_loader->file, 0, ggml_v3_is_numa())); |
|
} |
|
} |
|
|
|
|
|
bool warned = false; |
|
int n_tensors = 0; |
|
|
|
std::vector<uint8_t> work_buffer; |
|
|
|
while (true) { |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ftype; |
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); |
|
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype)); |
|
if (fin.eof()) { |
|
break; |
|
} |
|
|
|
int32_t ne[2] = { 1, 1 }; |
|
for (int i = 0; i < n_dims; ++i) { |
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
} |
|
|
|
std::string name; |
|
{ |
|
char buf[1024]; |
|
fin.read(buf, length); |
|
name = std::string(buf, length); |
|
} |
|
|
|
|
|
const std::string lora_suffix = ".lora"; |
|
size_t pos = name.rfind(lora_suffix); |
|
if (pos == std::string::npos) { |
|
LLAMA_V3_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); |
|
return 1; |
|
} |
|
|
|
std::string lora_type = name.substr(pos + lora_suffix.length()); |
|
std::string base_name = name; |
|
base_name.erase(pos); |
|
|
|
|
|
if (model_tensors.find(base_name) == model_tensors.end()) { |
|
LLAMA_V3_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); |
|
return 1; |
|
} |
|
|
|
|
|
ggml_v3_type wtype; |
|
switch (ftype) { |
|
case 0: wtype = GGML_V3_TYPE_F32; break; |
|
case 1: wtype = GGML_V3_TYPE_F16; break; |
|
default: |
|
{ |
|
LLAMA_V3_LOG_ERROR("%s: invalid tensor data type '%d'\n", |
|
__func__, ftype); |
|
return false; |
|
} |
|
} |
|
ggml_v3_tensor * lora_tensor; |
|
if (n_dims == 2) { |
|
lora_tensor = ggml_v3_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); |
|
} |
|
else { |
|
LLAMA_V3_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims); |
|
return 1; |
|
} |
|
ggml_v3_set_name(lora_tensor, "lora_tensor"); |
|
|
|
|
|
size_t offset = fin.tellg(); |
|
size_t tensor_data_size = ggml_v3_nbytes(lora_tensor); |
|
offset = (offset + 31) & -32; |
|
fin.seekg(offset); |
|
fin.read((char*)lora_tensor->data, tensor_data_size); |
|
|
|
lora_tensors[name] = lora_tensor; |
|
|
|
|
|
if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() && |
|
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) { |
|
|
|
ggml_v3_tensor * dest_t = model_tensors[base_name]; |
|
|
|
offload_func_v3_t offload_func = llama_v3_nop; |
|
offload_func_v3_t offload_func_force_inplace = llama_v3_nop; |
|
|
|
#if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) |
|
if (dest_t->backend == GGML_V3_BACKEND_GPU || dest_t->backend == GGML_V3_BACKEND_GPU_SPLIT) { |
|
if (dest_t->type != GGML_V3_TYPE_F16) { |
|
printf("\nError: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models\n"); |
|
throw std::runtime_error(format_old( |
|
"%s: error: lora failed", __func__)); |
|
} |
|
#if defined(GGML_USE_CUDA) |
|
offload_func = ggml_v3_cuda_assign_buffers; |
|
offload_func_force_inplace = ggml_v3_cuda_assign_buffers_force_inplace; |
|
#endif |
|
} |
|
#endif |
|
|
|
ggml_v3_tensor * base_t; |
|
if (model_loader) { |
|
|
|
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) { |
|
LLAMA_V3_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); |
|
return 1; |
|
} |
|
size_t idx = model_loader->tensors_map.name_to_idx[base_name]; |
|
llama_v3_load_tensor & lt = model_loader->tensors_map.tensors[idx]; |
|
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_V3_BACKEND_CPU); |
|
lt.data = (uint8_t *) lt.ggml_v3_tensor->data; |
|
model_loader->load_data_for(lt); |
|
lt.ggml_v3_tensor->data = lt.data; |
|
} |
|
else { |
|
base_t = dest_t; |
|
} |
|
|
|
if (ggml_v3_is_quantized(base_t->type)) { |
|
if (!warned) { |
|
LLAMA_V3_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, " |
|
"use a f16 or f32 base model with --lora-base\n", __func__); |
|
warned = true; |
|
} |
|
} |
|
|
|
ggml_v3_tensor * loraA = lora_tensors[base_name + ".loraA"]; |
|
GGML_V3_ASSERT(loraA->type == GGML_V3_TYPE_F32); |
|
ggml_v3_set_name(loraA, "loraA"); |
|
|
|
ggml_v3_tensor * loraB = lora_tensors[base_name + ".loraB"]; |
|
GGML_V3_ASSERT(loraB->type == GGML_V3_TYPE_F32); |
|
ggml_v3_set_name(loraB, "loraB"); |
|
|
|
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { |
|
LLAMA_V3_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" |
|
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); |
|
return 1; |
|
} |
|
|
|
|
|
ggml_v3_tensor * BA = ggml_v3_mul_mat(lora_ctx, loraA, loraB); |
|
offload_func(BA); |
|
ggml_v3_set_name(BA, "BA"); |
|
|
|
if (scaling != 1.0f) { |
|
ggml_v3_tensor * scale_tensor = ggml_v3_new_f32(lora_ctx, scaling); |
|
ggml_v3_set_name(scale_tensor, "scale_tensor"); |
|
|
|
BA = ggml_v3_scale_inplace(lora_ctx, BA, scaling); |
|
offload_func(BA); |
|
ggml_v3_set_name(BA, "BA_scaled"); |
|
} |
|
|
|
ggml_v3_tensor * r; |
|
if (base_t == dest_t) { |
|
r = ggml_v3_add_inplace(lora_ctx, dest_t, BA); |
|
offload_func_force_inplace(r); |
|
ggml_v3_set_name(r, "r_add_inplace"); |
|
} |
|
else { |
|
r = ggml_v3_add(lora_ctx, base_t, BA); |
|
offload_func(r); |
|
ggml_v3_set_name(r, "r_add"); |
|
|
|
r = ggml_v3_cpy(lora_ctx, r, dest_t); |
|
offload_func(r); |
|
ggml_v3_set_name(r, "r_cpy"); |
|
} |
|
|
|
struct ggml_v3_cgraph * gf = ggml_v3_new_graph(lora_ctx); |
|
ggml_v3_build_forward_expand(gf, r); |
|
|
|
llv3_graph_compute_helper(work_buffer, gf, n_threads); |
|
|
|
|
|
ggml_v3_free(lora_ctx); |
|
lora_ctx = ggml_v3_init(params); |
|
lora_tensors.clear(); |
|
|
|
n_tensors++; |
|
if (n_tensors % 4 == 0) { |
|
LLAMA_V3_LOG_INFO("."); |
|
} |
|
} |
|
} |
|
|
|
|
|
ggml_v3_free(lora_ctx); |
|
if (base_ctx) { |
|
ggml_v3_free(base_ctx); |
|
} |
|
|
|
const int64_t t_lora_us = ggml_v3_time_us() - t_start_lora_us; |
|
LLAMA_V3_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0); |
|
|
|
return 0; |
|
} |
|
|
|
int llama_v3_apply_lora_from_file(struct llama_v3_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { |
|
try { |
|
return llama_v3_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads); |
|
} catch (const std::exception & err) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); |
|
return 1; |
|
} |
|
} |
|
|
|
int llama_v3_model_apply_lora_from_file(const struct llama_v3_model * model, const char * path_lora, const char * path_base_model, int n_threads) { |
|
try { |
|
return llama_v3_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads); |
|
} catch (const std::exception & err) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); |
|
return 1; |
|
} |
|
} |
|
|
|
int llama_v3_get_kv_cache_token_count(const struct llama_v3_context * ctx) { |
|
return ctx->kv_self.n; |
|
} |
|
|
|
#define LLAMA_V3_MAX_RNG_STATE (64*1024) |
|
|
|
void llama_v3_set_rng_seed(struct llama_v3_context * ctx, uint32_t seed) { |
|
if (seed == LLAMA_V3_DEFAULT_SEED) { |
|
seed = time(NULL); |
|
} |
|
ctx->rng.seed(seed); |
|
} |
|
|
|
|
|
size_t llama_v3_get_state_size(const struct llama_v3_context * ctx) { |
|
|
|
|
|
const size_t s_rng_size = sizeof(size_t); |
|
const size_t s_rng = LLAMA_V3_MAX_RNG_STATE; |
|
const size_t s_logits_capacity = sizeof(size_t); |
|
const size_t s_logits_size = sizeof(size_t); |
|
const size_t s_logits = ctx->logits.capacity() * sizeof(float); |
|
const size_t s_embedding_size = sizeof(size_t); |
|
const size_t s_embedding = ctx->embedding.size() * sizeof(float); |
|
const size_t s_kv_size = sizeof(size_t); |
|
const size_t s_kv_ntok = sizeof(int); |
|
const size_t s_kv = ctx->kv_self.buf.size; |
|
|
|
const size_t s_total = ( |
|
+ s_rng_size |
|
+ s_rng |
|
+ s_logits_capacity |
|
+ s_logits_size |
|
+ s_logits |
|
+ s_embedding_size |
|
+ s_embedding |
|
+ s_kv_size |
|
+ s_kv_ntok |
|
+ s_kv |
|
); |
|
|
|
return s_total; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void llama_v3_copy_state_data_internal(struct llama_v3_context * ctx, llama_v3_data_context * data_ctx) { |
|
|
|
{ |
|
std::stringstream rng_ss; |
|
rng_ss << ctx->rng; |
|
|
|
const size_t rng_size = rng_ss.str().size(); |
|
char rng_buf[LLAMA_V3_MAX_RNG_STATE]; |
|
|
|
memset(&rng_buf[0], 0, LLAMA_V3_MAX_RNG_STATE); |
|
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); |
|
|
|
data_ctx->write(&rng_size, sizeof(rng_size)); |
|
data_ctx->write(&rng_buf[0], LLAMA_V3_MAX_RNG_STATE); |
|
} |
|
|
|
|
|
{ |
|
const size_t logits_cap = ctx->logits.capacity(); |
|
const size_t logits_size = ctx->logits.size(); |
|
|
|
data_ctx->write(&logits_cap, sizeof(logits_cap)); |
|
data_ctx->write(&logits_size, sizeof(logits_size)); |
|
|
|
if (logits_size) { |
|
data_ctx->write(ctx->logits.data(), logits_size * sizeof(float)); |
|
} |
|
|
|
|
|
size_t padding_size = (logits_cap - logits_size) * sizeof(float); |
|
if (padding_size > 0) { |
|
std::vector<uint8_t> padding(padding_size, 0); |
|
data_ctx->write(padding.data(), padding_size); |
|
} |
|
} |
|
|
|
|
|
{ |
|
const size_t embedding_size = ctx->embedding.size(); |
|
|
|
data_ctx->write(&embedding_size, sizeof(embedding_size)); |
|
|
|
if (embedding_size) { |
|
data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float)); |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & kv_self = ctx->kv_self; |
|
const auto & hparams = ctx->model.hparams; |
|
const int n_layer = hparams.n_layer; |
|
const int n_embd = hparams.n_embd_gqa(); |
|
const int n_ctx = hparams.n_ctx; |
|
|
|
const size_t kv_size = kv_self.buf.size; |
|
const int kv_ntok = llama_v3_get_kv_cache_token_count(ctx); |
|
|
|
data_ctx->write(&kv_size, sizeof(kv_size)); |
|
data_ctx->write(&kv_ntok, sizeof(kv_ntok)); |
|
|
|
if (kv_size) { |
|
const size_t elt_size = ggml_v3_element_size(kv_self.k); |
|
|
|
ggml_v3_context * cpy_ctx = ggml_v3_init({ 4096, NULL, true }); |
|
ggml_v3_cgraph * gf = ggml_v3_new_graph(cpy_ctx); |
|
|
|
ggml_v3_tensor * kout3d = ggml_v3_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); |
|
std::vector<uint8_t> kout3d_data(ggml_v3_nbytes(kout3d), 0); |
|
kout3d->data = kout3d_data.data(); |
|
|
|
ggml_v3_tensor * vout3d = ggml_v3_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); |
|
std::vector<uint8_t> vout3d_data(ggml_v3_nbytes(vout3d), 0); |
|
vout3d->data = vout3d_data.data(); |
|
|
|
ggml_v3_tensor * k3d = ggml_v3_view_3d(cpy_ctx, kv_self.k, |
|
n_embd, kv_ntok, n_layer, |
|
elt_size*n_embd, elt_size*n_embd*n_ctx, 0); |
|
|
|
ggml_v3_tensor * v3d = ggml_v3_view_3d(cpy_ctx, kv_self.v, |
|
kv_ntok, n_embd, n_layer, |
|
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); |
|
|
|
ggml_v3_build_forward_expand(gf, ggml_v3_cpy(cpy_ctx, k3d, kout3d)); |
|
ggml_v3_build_forward_expand(gf, ggml_v3_cpy(cpy_ctx, v3d, vout3d)); |
|
llv3_graph_compute_helper(ctx->work_buffer, gf, 1); |
|
|
|
ggml_v3_free(cpy_ctx); |
|
|
|
|
|
|
|
data_ctx->write(kout3d_data.data(), kout3d_data.size()); |
|
data_ctx->write(vout3d_data.data(), vout3d_data.size()); |
|
} |
|
} |
|
} |
|
|
|
size_t llama_v3_copy_state_data(struct llama_v3_context * ctx, uint8_t * dst) { |
|
llama_v3_data_buffer_context data_ctx(dst); |
|
llama_v3_copy_state_data_internal(ctx, &data_ctx); |
|
|
|
return data_ctx.get_size_written(); |
|
} |
|
|
|
|
|
size_t llama_v3_set_state_data(struct llama_v3_context * ctx, uint8_t * src) { |
|
uint8_t * inp = src; |
|
|
|
|
|
{ |
|
size_t rng_size; |
|
char rng_buf[LLAMA_V3_MAX_RNG_STATE]; |
|
|
|
memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); |
|
memcpy(&rng_buf[0], inp, LLAMA_V3_MAX_RNG_STATE); inp += LLAMA_V3_MAX_RNG_STATE; |
|
|
|
std::stringstream rng_ss; |
|
rng_ss.str(std::string(&rng_buf[0], rng_size)); |
|
rng_ss >> ctx->rng; |
|
|
|
LLAMA_V3_ASSERT(rng_ss.fail() == false); |
|
} |
|
|
|
|
|
{ |
|
size_t logits_cap; |
|
size_t logits_size; |
|
|
|
memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap); |
|
memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); |
|
|
|
LLAMA_V3_ASSERT(ctx->logits.capacity() == logits_cap); |
|
|
|
if (logits_size) { |
|
ctx->logits.resize(logits_size); |
|
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float)); |
|
} |
|
|
|
inp += logits_cap * sizeof(float); |
|
} |
|
|
|
|
|
{ |
|
size_t embedding_size; |
|
|
|
memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size); |
|
|
|
LLAMA_V3_ASSERT(ctx->embedding.capacity() == embedding_size); |
|
|
|
if (embedding_size) { |
|
memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float)); |
|
inp += embedding_size * sizeof(float); |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & kv_self = ctx->kv_self; |
|
const auto & hparams = ctx->model.hparams; |
|
const int n_layer = hparams.n_layer; |
|
const int n_embd = hparams.n_embd_gqa(); |
|
const int n_ctx = hparams.n_ctx; |
|
|
|
size_t kv_size; |
|
int kv_ntok; |
|
|
|
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); |
|
memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok); |
|
|
|
if (kv_size) { |
|
LLAMA_V3_ASSERT(kv_self.buf.size == kv_size); |
|
|
|
const size_t elt_size = ggml_v3_element_size(kv_self.k); |
|
|
|
ggml_v3_context * cpy_ctx = ggml_v3_init({ 4096, NULL, true }); |
|
ggml_v3_cgraph * gf = ggml_v3_new_graph(cpy_ctx); |
|
|
|
ggml_v3_tensor * kin3d = ggml_v3_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); |
|
kin3d->data = (void *) inp; |
|
inp += ggml_v3_nbytes(kin3d); |
|
|
|
ggml_v3_tensor * vin3d = ggml_v3_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); |
|
vin3d->data = (void *) inp; |
|
inp += ggml_v3_nbytes(vin3d); |
|
|
|
ggml_v3_tensor * k3d = ggml_v3_view_3d(cpy_ctx, kv_self.k, |
|
n_embd, kv_ntok, n_layer, |
|
elt_size*n_embd, elt_size*n_embd*n_ctx, 0); |
|
|
|
ggml_v3_tensor * v3d = ggml_v3_view_3d(cpy_ctx, kv_self.v, |
|
kv_ntok, n_embd, n_layer, |
|
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); |
|
|
|
ggml_v3_build_forward_expand(gf, ggml_v3_cpy(cpy_ctx, kin3d, k3d)); |
|
ggml_v3_build_forward_expand(gf, ggml_v3_cpy(cpy_ctx, vin3d, v3d)); |
|
llv3_graph_compute_helper(ctx->work_buffer, gf, 1); |
|
|
|
ggml_v3_free(cpy_ctx); |
|
} |
|
|
|
ctx->kv_self.n = kv_ntok; |
|
} |
|
|
|
const size_t nread = inp - src; |
|
const size_t max_size = llama_v3_get_state_size(ctx); |
|
|
|
LLAMA_V3_ASSERT(nread <= max_size); |
|
|
|
return nread; |
|
} |
|
|
|
static bool llama_v3_load_session_file_internal(struct llama_v3_context * ctx, const char * path_session, llama_v3_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { |
|
llama_v3_file file(path_session, "rb"); |
|
|
|
|
|
{ |
|
const uint32_t magic = file.read_u32(); |
|
const uint32_t version = file.read_u32(); |
|
|
|
if (magic != LLAMA_V3_SESSION_MAGIC || version != LLAMA_V3_SESSION_VERSION) { |
|
LLAMA_V3_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); |
|
return false; |
|
} |
|
|
|
llama_v3_hparams session_hparams; |
|
file.read_raw(&session_hparams, sizeof(llama_v3_hparams)); |
|
|
|
if (session_hparams != ctx->model.hparams) { |
|
LLAMA_V3_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const uint32_t n_token_count = file.read_u32(); |
|
|
|
if (n_token_count > n_token_capacity) { |
|
LLAMA_V3_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); |
|
return false; |
|
} |
|
|
|
file.read_raw(tokens_out, sizeof(llama_v3_token) * n_token_count); |
|
*n_token_count_out = n_token_count; |
|
} |
|
|
|
|
|
{ |
|
const size_t n_state_size_cur = file.size - file.tell(); |
|
const size_t n_state_size_max = llama_v3_get_state_size(ctx); |
|
|
|
if (n_state_size_cur > n_state_size_max) { |
|
LLAMA_V3_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); |
|
return false; |
|
} |
|
|
|
std::vector<uint8_t> state_data(n_state_size_max); |
|
file.read_raw(state_data.data(), n_state_size_cur); |
|
|
|
llama_v3_set_state_data(ctx, state_data.data()); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool llama_v3_load_session_file(struct llama_v3_context * ctx, const char * path_session, llama_v3_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { |
|
try { |
|
return llama_v3_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); |
|
} catch (const std::exception & err) { |
|
LLAMA_V3_LOG_ERROR("error loading session file: %s\n", err.what()); |
|
return false; |
|
} |
|
} |
|
|
|
bool llama_v3_save_session_file(struct llama_v3_context * ctx, const char * path_session, const llama_v3_token * tokens, size_t n_token_count) { |
|
llama_v3_file file(path_session, "wb"); |
|
|
|
file.write_u32(LLAMA_V3_SESSION_MAGIC); |
|
file.write_u32(LLAMA_V3_SESSION_VERSION); |
|
|
|
file.write_raw(&ctx->model.hparams, sizeof(llama_v3_hparams)); |
|
|
|
|
|
file.write_u32((uint32_t) n_token_count); |
|
file.write_raw(tokens, sizeof(llama_v3_token) * n_token_count); |
|
|
|
|
|
llama_v3_data_file_context data_ctx(&file); |
|
llama_v3_copy_state_data_internal(ctx, &data_ctx); |
|
|
|
return true; |
|
} |
|
|
|
int llama_v3_eval( |
|
struct llama_v3_context * ctx, |
|
const llama_v3_token * tokens, |
|
int n_tokens, |
|
int n_past, |
|
int n_threads) { |
|
if (!llama_v3_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to eval\n", __func__); |
|
return 1; |
|
} |
|
|
|
|
|
|
|
if (!ctx->has_evaluated_once) { |
|
ctx->t_load_us = ggml_v3_time_us() - ctx->t_start_us; |
|
ctx->has_evaluated_once = true; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
int llama_v3_eval_embd( |
|
struct llama_v3_context * ctx, |
|
const float * embd, |
|
int n_tokens, |
|
int n_past, |
|
int n_threads) { |
|
if (!llama_v3_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to eval\n", __func__); |
|
return 1; |
|
} |
|
|
|
|
|
|
|
if (!ctx->has_evaluated_once) { |
|
ctx->t_load_us = ggml_v3_time_us() - ctx->t_start_us; |
|
ctx->has_evaluated_once = true; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int llama_v3_eval_export(struct llama_v3_context * ctx, const char * fname) { |
|
const int n_batch = 1; |
|
const int n_ctx = 512 - n_batch; |
|
|
|
const std::vector<llama_v3_token> tmp(n_batch, llama_v3_token_bos()); |
|
|
|
if (!llama_v3_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) { |
|
LLAMA_V3_LOG_ERROR("%s: failed to eval\n", __func__); |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int llama_v3_tokenize_with_model( |
|
const struct llama_v3_model * model, |
|
const char * text, |
|
llama_v3_token * tokens, |
|
int n_max_tokens, |
|
bool add_bos) { |
|
auto res = llama_v3_tokenize(model->vocab, text, add_bos); |
|
|
|
if (n_max_tokens < (int) res.size()) { |
|
LLAMA_V3_LOG_ERROR("%s: too many tokens\n", __func__); |
|
return -((int) res.size()); |
|
} |
|
|
|
for (size_t i = 0; i < res.size(); i++) { |
|
tokens[i] = res[i]; |
|
} |
|
|
|
return res.size(); |
|
} |
|
|
|
int llama_v3_tokenize( |
|
struct llama_v3_context * ctx, |
|
const char * text, |
|
llama_v3_token * tokens, |
|
int n_max_tokens, |
|
bool add_bos) { |
|
return llama_v3_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos); |
|
} |
|
|
|
int llama_v3_n_vocab_from_model(const struct llama_v3_model * model) { |
|
return model->vocab.id_to_token.size(); |
|
} |
|
|
|
int llama_v3_n_ctx_from_model(const struct llama_v3_model * model) { |
|
return model->hparams.n_ctx; |
|
} |
|
|
|
int llama_v3_n_embd_from_model(const struct llama_v3_model * model) { |
|
return model->hparams.n_embd; |
|
} |
|
|
|
int llama_v3_n_vocab(const struct llama_v3_context * ctx) { |
|
return ctx->model.vocab.id_to_token.size(); |
|
} |
|
|
|
int llama_v3_n_ctx(const struct llama_v3_context * ctx) { |
|
return ctx->model.hparams.n_ctx; |
|
} |
|
|
|
int llama_v3_n_embd(const struct llama_v3_context * ctx) { |
|
return ctx->model.hparams.n_embd; |
|
} |
|
|
|
int llama_v3_model_type(const struct llama_v3_model * model, char * buf, size_t buf_size) { |
|
return snprintf(buf, buf_size, "LLaMA %s %s", llama_v3_model_type_name(model->type), llama_v3_ftype_name(model->hparams.ftype)); |
|
} |
|
|
|
int llama_v3_get_vocab_from_model( |
|
const struct llama_v3_model * model, |
|
const char * * strings, |
|
float * scores, |
|
int capacity) { |
|
int n = std::min(capacity, (int) model->vocab.id_to_token.size()); |
|
for (int i = 0; i<n; ++i) { |
|
strings[i] = model->vocab.id_to_token[i].tok.c_str(); |
|
scores[i] = model->vocab.id_to_token[i].score; |
|
} |
|
return n; |
|
} |
|
|
|
int llama_v3_get_vocab( |
|
const struct llama_v3_context * ctx, |
|
const char * * strings, |
|
float * scores, |
|
int capacity) { |
|
return llama_v3_get_vocab_from_model(&ctx->model, strings, scores, capacity); |
|
} |
|
|
|
float * llama_v3_get_logits(struct llama_v3_context * ctx) { |
|
return ctx->logits.data(); |
|
} |
|
|
|
float * llama_v3_get_embeddings(struct llama_v3_context * ctx) { |
|
return ctx->embedding.data(); |
|
} |
|
|
|
const char * llama_v3_token_to_str_with_model(const struct llama_v3_model * model, llama_v3_token token) { |
|
if (token >= llama_v3_n_vocab_from_model(model)) { |
|
return nullptr; |
|
} |
|
|
|
return model->vocab.id_to_token[token].tok.c_str(); |
|
} |
|
|
|
const char * llama_v3_token_to_str(const struct llama_v3_context * ctx, llama_v3_token token) { |
|
return llama_v3_token_to_str_with_model(&ctx->model, token); |
|
} |
|
|
|
llama_v3_token llama_v3_token_bos() { |
|
return 1; |
|
} |
|
|
|
llama_v3_token llama_v3_token_eos() { |
|
return 2; |
|
} |
|
|
|
llama_v3_token llama_v3_token_nl() { |
|
return 13; |
|
} |
|
|
|
struct llama_v3_timings llama_v3_get_timings(struct llama_v3_context * ctx) { |
|
struct llama_v3_timings result = { |
|
1e-3 * ctx->t_start_us, |
|
1.00 * ggml_v3_time_ms(), |
|
1e-3 * ctx->t_load_us, |
|
1e-3 * ctx->t_sample_us, |
|
1e-3 * ctx->t_p_eval_us, |
|
1e-3 * ctx->t_eval_us, |
|
|
|
std::max(1, ctx->n_sample), |
|
std::max(1, ctx->n_p_eval), |
|
std::max(1, ctx->n_eval), |
|
}; |
|
|
|
return result; |
|
} |
|
|
|
void llama_v3_print_timings(struct llama_v3_context * ctx) { |
|
const llama_v3_timings timings = llama_v3_get_timings(ctx); |
|
|
|
LLAMA_V3_LOG_INFO("\n"); |
|
LLAMA_V3_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms); |
|
LLAMA_V3_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", |
|
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample); |
|
LLAMA_V3_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", |
|
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval); |
|
LLAMA_V3_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", |
|
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval); |
|
LLAMA_V3_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms)); |
|
} |
|
|
|
void llama_v3_reset_timings(struct llama_v3_context * ctx) { |
|
ctx->t_start_us = ggml_v3_time_us(); |
|
ctx->t_sample_us = ctx->n_sample = 0; |
|
ctx->t_eval_us = ctx->n_eval = 0; |
|
ctx->t_p_eval_us = ctx->n_p_eval = 0; |
|
} |
|
|
|
const char * llama_v3_print_system_info(void) { |
|
static std::string s; |
|
|
|
s = ""; |
|
s += "AVX = " + std::to_string(ggml_v3_cpu_has_avx()) + " | "; |
|
s += "AVX2 = " + std::to_string(ggml_v3_cpu_has_avx2()) + " | "; |
|
s += "AVX512 = " + std::to_string(ggml_v3_cpu_has_avx512()) + " | "; |
|
s += "AVX512_VBMI = " + std::to_string(ggml_v3_cpu_has_avx512_vbmi()) + " | "; |
|
s += "AVX512_VNNI = " + std::to_string(ggml_v3_cpu_has_avx512_vnni()) + " | "; |
|
s += "FMA = " + std::to_string(ggml_v3_cpu_has_fma()) + " | "; |
|
s += "NEON = " + std::to_string(ggml_v3_cpu_has_neon()) + " | "; |
|
s += "ARM_FMA = " + std::to_string(ggml_v3_cpu_has_arm_fma()) + " | "; |
|
s += "F16C = " + std::to_string(ggml_v3_cpu_has_f16c()) + " | "; |
|
s += "FP16_VA = " + std::to_string(ggml_v3_cpu_has_fp16_va()) + " | "; |
|
s += "WASM_SIMD = " + std::to_string(ggml_v3_cpu_has_wasm_simd()) + " | "; |
|
s += "BLAS = " + std::to_string(ggml_v3_cpu_has_blas()) + " | "; |
|
s += "SSE3 = " + std::to_string(ggml_v3_cpu_has_sse3()) + " | "; |
|
s += "VSX = " + std::to_string(ggml_v3_cpu_has_vsx()) + " | "; |
|
|
|
return s.c_str(); |
|
} |
|
|
|
|
|
const std::vector<std::pair<std::string, struct ggml_v3_tensor *>>& llama_v3_internal_get_tensor_map(struct llama_v3_context * ctx) { |
|
return ctx->model.tensors_by_name; |
|
} |
|
|
|
|
|
void llama_v3_log_set(llama_v3_log_callback log_callback, void * user_data) { |
|
llv3_g_state.log_callback = log_callback ? log_callback : llama_v3_log_callback_default; |
|
llv3_g_state.log_callback_user_data = user_data; |
|
} |
|
|
|
#if defined(_MSC_VER) && !defined(vsnprintf) |
|
#define vsnprintf _vsnprintf |
|
#endif |
|
|
|
static void llama_v3_log_internal_v(llama_v3_log_level level, const char * format, va_list args) { |
|
va_list args_copy; |
|
va_copy(args_copy, args); |
|
char buffer[128]; |
|
int len = vsnprintf(buffer, 128, format, args); |
|
if (len < 128) { |
|
llv3_g_state.log_callback(level, buffer, llv3_g_state.log_callback_user_data); |
|
} else { |
|
char* buffer2 = new char[len+1]; |
|
vsnprintf(buffer2, len+1, format, args_copy); |
|
buffer2[len] = 0; |
|
llv3_g_state.log_callback(level, buffer2, llv3_g_state.log_callback_user_data); |
|
delete[] buffer2; |
|
} |
|
va_end(args_copy); |
|
} |
|
|
|
static void llama_v3_log_internal(llama_v3_log_level level, const char * format, ...) { |
|
va_list args; |
|
va_start(args, format); |
|
llama_v3_log_internal_v(level, format, args); |
|
va_end(args); |
|
} |
|
|
|
static void llama_v3_log_callback_default(llama_v3_log_level level, const char * text, void * user_data) { |
|
(void) level; |
|
(void) user_data; |
|
fputs(text, stderr); |
|
fflush(stderr); |
|
} |
|
|
|
|
|
static std::vector<uint8_t> kcpp_compute_buf; |
|
void kcpp_graph_compute_helper(struct ggml_v3_cgraph *graph, int n_threads) |
|
{ |
|
struct ggml_v3_cplan plan = ggml_v3_graph_plan(graph, n_threads); |
|
if (plan.work_size > 0) |
|
{ |
|
kcpp_compute_buf.resize(plan.work_size); |
|
plan.work_data = kcpp_compute_buf.data(); |
|
} |
|
ggml_v3_graph_compute(graph, &plan); |
|
} |