|
#include "ggml_v3.h" |
|
#include "otherarch.h" |
|
|
|
#include "utils.h" |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <map> |
|
#include <string> |
|
#include <vector> |
|
#include <iostream> |
|
#include <algorithm> |
|
|
|
#include "model_adapter.h" |
|
|
|
#ifdef GGML_USE_CUDA |
|
#include "ggml_v3-cuda.h" |
|
#endif |
|
#if defined(GGML_USE_CLBLAST) |
|
#include "ggml_v3-opencl.h" |
|
#endif |
|
|
|
|
|
bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab, int gpulayers) { |
|
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); |
|
|
|
auto fin = std::ifstream(fname, std::ios::binary); |
|
if (!fin) { |
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
|
|
|
|
{ |
|
uint32_t magic; |
|
fin.read((char *)&magic, sizeof(magic)); |
|
if (magic != 0x67676d6c) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
auto & hparams = model.hparams; |
|
|
|
fin.read((char *) &hparams.d_model, sizeof(hparams.d_model)); |
|
fin.read((char *) &hparams.max_seq_len, sizeof(hparams.max_seq_len)); |
|
fin.read((char *) &hparams.n_heads, sizeof(hparams.n_heads)); |
|
fin.read((char *) &hparams.n_layers, sizeof(hparams.n_layers)); |
|
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); |
|
fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max)); |
|
fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv)); |
|
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); |
|
|
|
hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx); |
|
|
|
const int32_t qntvr = hparams.ftype / GGML_V3_QNT_VERSION_FACTOR; |
|
|
|
printf("%s: d_model = %d\n", __func__, hparams.d_model); |
|
printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len); |
|
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); |
|
printf("%s: n_heads = %d\n", __func__, hparams.n_heads); |
|
printf("%s: n_layers = %d\n", __func__, hparams.n_layers); |
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); |
|
printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max); |
|
printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv); |
|
printf("%s: ftype = %d\n", __func__, hparams.ftype); |
|
printf("%s: qntvr = %d\n", __func__, qntvr); |
|
|
|
hparams.ftype %= GGML_V3_QNT_VERSION_FACTOR; |
|
} |
|
|
|
|
|
{ |
|
const int32_t n_vocab = model.hparams.n_vocab; |
|
|
|
std::string word; |
|
std::vector<char> buf(128); |
|
|
|
for (int i = 0; i < n_vocab; i++) { |
|
uint32_t len; |
|
fin.read((char *) &len, sizeof(len)); |
|
|
|
buf.resize(len); |
|
fin.read((char *) buf.data(), len); |
|
word.assign(buf.data(), len); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vocab.token_to_id[word] = i; |
|
vocab.id_to_token[i] = word; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
ggml_v3_type wtype = ggml_v3_ftype_to_ggml_v3_type((ggml_v3_ftype)(model.hparams.ftype)); |
|
if (wtype == GGML_V3_TYPE_COUNT) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), |
|
model.hparams.ftype); |
|
return false; |
|
} |
|
|
|
auto & ctx = model.ctx; |
|
|
|
size_t ctx_size = 0; |
|
|
|
const auto & hparams = model.hparams; |
|
const size_t n_ctx = hparams.n_ctx; |
|
|
|
{ |
|
const size_t n_embd = hparams.d_model; |
|
const size_t n_layer = hparams.n_layers; |
|
const size_t n_vocab = hparams.n_vocab; |
|
|
|
ctx_size += n_embd * n_vocab * ggml_v3_type_sizef(wtype); |
|
ctx_size += n_embd * ggml_v3_type_sizef(GGML_V3_TYPE_F32); |
|
|
|
ctx_size += n_layer * (n_embd * ggml_v3_type_sizef(GGML_V3_TYPE_F32)); |
|
ctx_size += n_layer * (3 * n_embd * n_embd * ggml_v3_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * n_embd * ggml_v3_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * ggml_v3_type_sizef(GGML_V3_TYPE_F32)); |
|
ctx_size += n_layer * (4 * n_embd * n_embd * ggml_v3_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_v3_type_sizef(wtype)); |
|
|
|
ctx_size += n_ctx * n_layer * n_embd * ggml_v3_type_sizef(GGML_V3_TYPE_F16); |
|
ctx_size += n_ctx * n_layer * n_embd * ggml_v3_type_sizef(GGML_V3_TYPE_F16); |
|
|
|
ctx_size += (6 + 6 * n_layer) * 512; |
|
|
|
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0)); |
|
} |
|
|
|
|
|
{ |
|
struct ggml_v3_init_params params; |
|
params.mem_size = ctx_size; |
|
params.mem_buffer = NULL; |
|
params.no_alloc = false; |
|
|
|
model.ctx = ggml_v3_init(params); |
|
if (!model.ctx) { |
|
fprintf(stderr, "%s: ggml_v3_init() failed\n", __func__); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
|
|
const size_t n_embd = hparams.d_model; |
|
const size_t n_layer = hparams.n_layers; |
|
const size_t n_vocab = hparams.n_vocab; |
|
|
|
model.layers.resize(n_layer); |
|
|
|
model.wte_weight = ggml_v3_new_tensor_2d(ctx, wtype, n_embd, n_vocab); |
|
model.norm_f_weight = ggml_v3_new_tensor_1d(ctx, GGML_V3_TYPE_F32, n_embd); |
|
|
|
|
|
model.tensors["transformer.wte.weight"] = model.wte_weight; |
|
model.tensors["transformer.norm_f.weight"] = model.norm_f_weight; |
|
|
|
for (int i = 0; i < (int) n_layer; ++i) { |
|
auto & layer = model.layers[i]; |
|
|
|
layer.norm_1_weight = ggml_v3_new_tensor_1d(ctx, GGML_V3_TYPE_F32, n_embd); |
|
layer.c_attn_wqkv_weight = ggml_v3_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd); |
|
layer.c_attn_out_proj_weight = ggml_v3_new_tensor_2d(ctx, wtype, n_embd, n_embd); |
|
layer.norm_2_weight = ggml_v3_new_tensor_1d(ctx, GGML_V3_TYPE_F32, n_embd); |
|
layer.ffn_up_proj = ggml_v3_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd); |
|
layer.ffn_down_proj = ggml_v3_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd); |
|
|
|
|
|
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_out_proj_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
|
|
const size_t n_embd = hparams.d_model; |
|
const size_t n_layer = hparams.n_layers; |
|
|
|
const int64_t n_mem = n_layer * n_ctx; |
|
const int64_t n_elements = n_embd * n_mem; |
|
|
|
model.memory_k = ggml_v3_new_tensor_1d(ctx, GGML_V3_TYPE_F16, n_elements); |
|
model.memory_v = ggml_v3_new_tensor_1d(ctx, GGML_V3_TYPE_F16, n_elements); |
|
|
|
const size_t memory_size = ggml_v3_nbytes(model.memory_k) + ggml_v3_nbytes(model.memory_v); |
|
|
|
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem); |
|
} |
|
|
|
|
|
{ |
|
int n_tensors = 0; |
|
size_t total_size = 0; |
|
|
|
printf("%s: ", __func__); |
|
|
|
while (true) { |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ttype; |
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); |
|
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); |
|
|
|
if (fin.eof()) { |
|
break; |
|
} |
|
|
|
int32_t nelements = 1; |
|
int32_t ne[2] = {1, 1}; |
|
for (int i = 0; i < n_dims; ++i) { |
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
nelements *= ne[i]; |
|
} |
|
|
|
std::string name(length, 0); |
|
fin.read(&name[0], length); |
|
|
|
if (model.tensors.find(name.data()) == model.tensors.end()) { |
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); |
|
return false; |
|
} |
|
|
|
auto tensor = model.tensors[name.data()]; |
|
if (ggml_v3_nelements(tensor) != nelements) { |
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); |
|
return false; |
|
} |
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong shape in model file: got [%5d, " |
|
"%5d], expected [%5d, %5d]\n", |
|
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]); |
|
return false; |
|
} |
|
|
|
|
|
if (0) { |
|
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], |
|
ggml_v3_type_name(ggml_v3_type(ttype)), ggml_v3_nbytes(tensor) / 1024.0 / 1024.0, ggml_v3_nbytes(tensor)); |
|
} |
|
|
|
const size_t bpe = ggml_v3_type_size(ggml_v3_type(ttype)); |
|
|
|
if ((nelements * bpe) / ggml_v3_blck_size(tensor->type) != ggml_v3_nbytes(tensor)) { |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong size in model file: got %zu, " |
|
"expected %zu\n", |
|
__func__, name.data(), ggml_v3_nbytes(tensor), nelements * bpe); |
|
return false; |
|
} |
|
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_v3_nbytes(tensor)); |
|
|
|
total_size += ggml_v3_nbytes(tensor); |
|
if (++n_tensors % 8 == 0) { |
|
printf("."); |
|
fflush(stdout); |
|
} |
|
} |
|
|
|
printf(" done\n"); |
|
|
|
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors); |
|
} |
|
|
|
fin.close(); |
|
|
|
|
|
#if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUDA) |
|
if(gpulayers>0) |
|
{ |
|
const auto & hparams = model.hparams; |
|
size_t vram_total = 0; |
|
const int n_gpu = std::min(gpulayers, int(hparams.n_layers)); |
|
#if defined(GGML_USE_CLBLAST) |
|
fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu); |
|
#else |
|
fprintf(stderr, "%s: [CUDA] offloading %d layers to GPU\n", __func__, n_gpu); |
|
#endif |
|
for (int i = 0; i < n_gpu; ++i) { |
|
const auto & layer = model.layers[i]; |
|
layer.ffn_up_proj->backend = GGML_V3_BACKEND_GPU; |
|
layer.ffn_down_proj->backend = GGML_V3_BACKEND_GPU; |
|
layer.c_attn_wqkv_weight->backend = GGML_V3_BACKEND_GPU; |
|
layer.c_attn_out_proj_weight->backend = GGML_V3_BACKEND_GPU; |
|
#if defined(GGML_USE_CLBLAST) |
|
ggml_v3_cl_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_v3_nbytes(layer.ffn_up_proj); |
|
ggml_v3_cl_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_v3_nbytes(layer.ffn_down_proj); |
|
ggml_v3_cl_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_v3_nbytes(layer.c_attn_wqkv_weight); |
|
ggml_v3_cl_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_v3_nbytes(layer.c_attn_out_proj_weight); |
|
#else |
|
ggml_v3_cuda_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_v3_nbytes(layer.ffn_up_proj); |
|
ggml_v3_cuda_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_v3_nbytes(layer.ffn_down_proj); |
|
ggml_v3_cuda_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_v3_nbytes(layer.c_attn_wqkv_weight); |
|
ggml_v3_cuda_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_v3_nbytes(layer.c_attn_out_proj_weight); |
|
#endif |
|
} |
|
#if defined(GGML_USE_CLBLAST) |
|
fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); |
|
#else |
|
fprintf(stderr, "%s: [CUDA] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); |
|
#endif |
|
} |
|
#endif |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past, |
|
const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w, |
|
bool logits_all, size_t & mem_per_token, bool use_scratch) { |
|
const int N = embd_inp.size(); |
|
|
|
const auto & hparams = model.hparams; |
|
|
|
const int n_embd = hparams.d_model; |
|
const int n_layer = hparams.n_layers; |
|
const int n_head = hparams.n_heads; |
|
const int n_vocab = hparams.n_vocab; |
|
const int n_ctx = hparams.n_ctx; |
|
|
|
static size_t buf_size = 256u * 1024 * 1024; |
|
static void * buf = malloc(buf_size); |
|
|
|
|
|
|
|
|
|
static size_t scr0_size = (n_embd>=7168?2048u:1024u)*1024*1024*(hparams.n_ctx>8192?2:1); |
|
static size_t scr1_size = (n_embd>=7168?2048u:1024u)*1024*1024; |
|
|
|
static void * scr0 = malloc(scr0_size); |
|
static void * scr1 = malloc(scr1_size); |
|
|
|
if (mem_per_token > 0 && (mem_per_token*N*2 + 64u*1024*1024) > buf_size) { |
|
const size_t buf_size_new = 320u*1024*1024 + 1.2*(mem_per_token*N); |
|
|
|
|
|
|
|
if (buf_size_new > buf_size) |
|
{ |
|
buf_size = buf_size_new; |
|
buf = realloc(buf, buf_size); |
|
if (buf == nullptr) { |
|
fprintf(stderr, "%s: failed to allocate %zu bytes. Try reducing batch size.\n", __func__, buf_size); |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
struct ggml_v3_init_params params; |
|
params.mem_size = buf_size; |
|
params.mem_buffer = buf; |
|
params.no_alloc = false; |
|
|
|
struct ggml_v3_context * ctx0 = ggml_v3_init(params); |
|
struct ggml_v3_cgraph * gf = ggml_v3_new_graph_custom(ctx0, GGML_V3_MAX_NODES, false); |
|
|
|
struct ggml_v3_tensor * embd = ggml_v3_new_tensor_1d(ctx0, GGML_V3_TYPE_I32, N); |
|
memcpy(embd->data, embd_inp.data(), N * ggml_v3_element_size(embd)); |
|
|
|
struct ggml_v3_tensor * inpL = ggml_v3_get_rows(ctx0, model.wte_weight, embd); |
|
|
|
for (int il = 0; il < n_layer; ++il) { |
|
|
|
struct ggml_v3_tensor * cur; |
|
|
|
if(use_scratch){ |
|
ggml_v3_set_scratch(ctx0, { 0, scr0_size, scr0, }); |
|
} |
|
|
|
|
|
{ |
|
cur = ggml_v3_norm(ctx0, inpL, default_norm_eps); |
|
|
|
cur = ggml_v3_mul(ctx0, ggml_v3_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
{ |
|
|
|
cur = ggml_v3_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur); |
|
|
|
if (model.hparams.clip_qkv > 0.0f) { |
|
cur = ggml_v3_clamp(ctx0, cur, -model.hparams.clip_qkv, model.hparams.clip_qkv); |
|
} |
|
|
|
struct ggml_v3_tensor * Qcur = ggml_v3_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd); |
|
struct ggml_v3_tensor * Kcur = ggml_v3_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd); |
|
struct ggml_v3_tensor * Vcur = ggml_v3_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd); |
|
|
|
|
|
{ |
|
struct ggml_v3_tensor * k = |
|
ggml_v3_view_1d(ctx0, model.memory_k, N * n_embd, |
|
(ggml_v3_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past)); |
|
struct ggml_v3_tensor * v = |
|
ggml_v3_view_1d(ctx0, model.memory_v, N * n_embd, |
|
(ggml_v3_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past)); |
|
|
|
ggml_v3_build_forward_expand(gf, ggml_v3_cpy(ctx0, Kcur, k)); |
|
ggml_v3_build_forward_expand(gf, ggml_v3_cpy(ctx0, Vcur, v)); |
|
} |
|
|
|
|
|
|
|
struct ggml_v3_tensor * Q = ggml_v3_permute( |
|
ctx0, ggml_v3_cpy(ctx0, Qcur, ggml_v3_new_tensor_3d(ctx0, GGML_V3_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2, |
|
1, 3); |
|
|
|
|
|
|
|
struct ggml_v3_tensor * K = |
|
ggml_v3_permute(ctx0, |
|
ggml_v3_reshape_3d(ctx0, |
|
ggml_v3_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd, |
|
il * n_ctx * ggml_v3_element_size(model.memory_k) * n_embd), |
|
n_embd / n_head, n_head, n_past + N), |
|
0, 2, 1, 3); |
|
|
|
struct ggml_v3_tensor * KQ = ggml_v3_mul_mat(ctx0, K, Q); |
|
|
|
|
|
struct ggml_v3_tensor * KQ_scaled = |
|
ggml_v3_scale(ctx0, KQ, 1.0f / sqrt(float(n_embd) / n_head)); |
|
|
|
struct ggml_v3_tensor * KQ_scaled_alibi = |
|
ggml_v3_alibi(ctx0, KQ_scaled, n_past, n_head, model.hparams.alibi_bias_max); |
|
|
|
|
|
struct ggml_v3_tensor * KQ_masked = ggml_v3_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); |
|
|
|
|
|
struct ggml_v3_tensor * KQ_soft_max = ggml_v3_soft_max(ctx0, KQ_masked); |
|
|
|
|
|
|
|
struct ggml_v3_tensor * V_trans = ggml_v3_cpy( |
|
ctx0, |
|
ggml_v3_permute(ctx0, |
|
ggml_v3_reshape_3d(ctx0, |
|
ggml_v3_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, |
|
il * n_ctx * ggml_v3_element_size(model.memory_v) * n_embd), |
|
n_embd / n_head, n_head, n_past + N), |
|
1, 2, 0, 3), |
|
ggml_v3_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head)); |
|
|
|
|
|
struct ggml_v3_tensor * KQV = ggml_v3_mul_mat(ctx0, V_trans, KQ_soft_max); |
|
|
|
|
|
struct ggml_v3_tensor * KQV_merged = ggml_v3_permute(ctx0, KQV, 0, 2, 1, 3); |
|
|
|
|
|
cur = ggml_v3_cpy(ctx0, KQV_merged, ggml_v3_new_tensor_2d(ctx0, GGML_V3_TYPE_F32, n_embd, N)); |
|
|
|
|
|
{ cur = ggml_v3_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); } |
|
} |
|
|
|
inpL = ggml_v3_add(ctx0, inpL, cur); |
|
|
|
if(use_scratch){ |
|
ggml_v3_set_scratch(ctx0, { 0, scr1_size, scr1, }); |
|
} |
|
|
|
|
|
{ |
|
cur = ggml_v3_norm(ctx0, inpL, default_norm_eps); |
|
|
|
cur = ggml_v3_mul(ctx0, ggml_v3_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur); |
|
} |
|
|
|
|
|
{ |
|
|
|
cur = ggml_v3_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur); |
|
|
|
|
|
cur = ggml_v3_gelu(ctx0, cur); |
|
|
|
|
|
|
|
cur = ggml_v3_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur); |
|
} |
|
|
|
|
|
inpL = ggml_v3_add(ctx0, inpL, cur); |
|
} |
|
|
|
if(use_scratch){ |
|
ggml_v3_set_scratch(ctx0, { 0, scr0_size, scr0, }); |
|
} |
|
|
|
|
|
{ |
|
inpL = ggml_v3_norm(ctx0, inpL, default_norm_eps); |
|
|
|
inpL = ggml_v3_mul(ctx0, ggml_v3_repeat(ctx0, model.norm_f_weight, inpL), inpL); |
|
} |
|
|
|
if(use_scratch){ |
|
ggml_v3_set_scratch(ctx0, { 0, 0, nullptr, }); |
|
} |
|
|
|
|
|
inpL = ggml_v3_mul_mat(ctx0, model.wte_weight, inpL); |
|
|
|
|
|
|
|
|
|
|
|
ggml_v3_build_forward_expand(gf, inpL); |
|
kcpp_graph_compute_helper(gf, n_threads); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (logits_all) { |
|
|
|
embd_w.resize(n_vocab *N); |
|
memcpy(embd_w.data(), (float *)ggml_v3_get_data(inpL) , sizeof(float) * n_vocab * N); |
|
} else { |
|
|
|
embd_w.resize(n_vocab); |
|
memcpy(embd_w.data(), (float *)ggml_v3_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); |
|
} |
|
|
|
if (mem_per_token == 0) { |
|
mem_per_token = ggml_v3_used_mem(ctx0) / N; |
|
} |
|
|
|
|
|
ggml_v3_free(ctx0); |
|
|
|
return true; |
|
} |
|
|