|
|
|
|
|
|
|
#include "otherarch.h" |
|
|
|
#include "rwkv_v2.h" |
|
#include "ggml_v2.h" |
|
|
|
#include <string> |
|
#include <vector> |
|
#include <thread> |
|
#include <cassert> |
|
#include <cinttypes> |
|
#include <cmath> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <iostream> |
|
#include <unordered_map> |
|
|
|
#include "rwkv_vocab.cpp" |
|
|
|
|
|
|
|
|
|
#define RWKV_V2_ASSERT_FALSE(x, ...) \ |
|
do { \ |
|
if (!(x)) { \ |
|
fprintf(stderr, __VA_ARGS__); \ |
|
fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ |
|
return false; \ |
|
} \ |
|
} while (0) |
|
|
|
|
|
#define RWKV_V2_ASSERT_NULL(x, ...) \ |
|
do { \ |
|
if (!(x)) { \ |
|
fprintf(stderr, __VA_ARGS__); \ |
|
fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ |
|
return NULL; \ |
|
} \ |
|
} while (0) |
|
|
|
|
|
bool rwkv_v2_read_int32(FILE * file, int32_t * dest) { |
|
RWKV_V2_ASSERT_FALSE(fread(dest, 4, 1, file) == 1, "Failed to read an int32 value from a file"); |
|
return true; |
|
} |
|
|
|
#define GGML_V2_TYPE_UNKNOWN GGML_V2_TYPE_COUNT |
|
|
|
#define RWKV_V2_FORMAT_TYPE_COUNT 10 |
|
|
|
static const ggml_v2_type FORMAT_TYPE_TO_GGML_V2_TYPE[RWKV_V2_FORMAT_TYPE_COUNT] = { |
|
GGML_V2_TYPE_F32, |
|
GGML_V2_TYPE_F16, |
|
GGML_V2_TYPE_Q4_0, |
|
GGML_V2_TYPE_Q4_1, |
|
GGML_V2_TYPE_UNKNOWN, |
|
GGML_V2_TYPE_Q4_2, |
|
GGML_V2_TYPE_UNKNOWN, |
|
GGML_V2_TYPE_Q5_0, |
|
GGML_V2_TYPE_Q5_1, |
|
GGML_V2_TYPE_Q8_0 |
|
}; |
|
|
|
static int32_t rwkv_v2_format_name_to_format_type(const char * format_name) { |
|
if (strcmp(format_name, "Q4_0") == 0) return 2; |
|
if (strcmp(format_name, "Q4_1") == 0) return 3; |
|
if (strcmp(format_name, "Q4_2") == 0) return 5; |
|
if (strcmp(format_name, "Q5_0") == 0) return 7; |
|
if (strcmp(format_name, "Q5_1") == 0) return 8; |
|
if (strcmp(format_name, "Q8_0") == 0) return 9; |
|
|
|
return -1; |
|
} |
|
|
|
|
|
|
|
struct rwkv_v2_layer { |
|
struct ggml_v2_tensor * ln1_weight; |
|
struct ggml_v2_tensor * ln1_bias; |
|
|
|
|
|
struct ggml_v2_tensor * att_time_mix_k; |
|
struct ggml_v2_tensor * att_time_mix_v; |
|
struct ggml_v2_tensor * att_time_mix_r; |
|
struct ggml_v2_tensor * att_time_first; |
|
struct ggml_v2_tensor * att_time_decay; |
|
struct ggml_v2_tensor * att_key; |
|
struct ggml_v2_tensor * att_value; |
|
struct ggml_v2_tensor * att_receptance; |
|
struct ggml_v2_tensor * att_output; |
|
|
|
struct ggml_v2_tensor * ln2_weight; |
|
struct ggml_v2_tensor * ln2_bias; |
|
|
|
|
|
struct ggml_v2_tensor * ffn_time_mix_k; |
|
struct ggml_v2_tensor * ffn_time_mix_r; |
|
struct ggml_v2_tensor * ffn_key; |
|
struct ggml_v2_tensor * ffn_value; |
|
struct ggml_v2_tensor * ffn_receptance; |
|
}; |
|
|
|
struct rwkv_v2_model { |
|
int32_t n_vocab; |
|
int32_t n_layer; |
|
int32_t n_embed; |
|
|
|
int32_t data_type; |
|
|
|
struct ggml_v2_tensor * emb; |
|
|
|
struct ggml_v2_tensor * ln0_weight; |
|
struct ggml_v2_tensor * ln0_bias; |
|
|
|
std::vector<rwkv_v2_layer> layers; |
|
|
|
struct ggml_v2_tensor * ln_out_weight; |
|
struct ggml_v2_tensor * ln_out_bias; |
|
|
|
struct ggml_v2_tensor * head; |
|
}; |
|
|
|
|
|
|
|
bool rwkv_v2_set_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, const char * key, struct ggml_v2_tensor ** dest) { |
|
struct ggml_v2_tensor * parameter = (*parameters)[key]; |
|
RWKV_V2_ASSERT_FALSE(parameter != NULL, "Parameter %s not found in model file", key); |
|
*dest = parameter; |
|
return true; |
|
} |
|
|
|
|
|
|
|
bool rwkv_v2_set_block_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, int32_t block_index, const char * key, struct ggml_v2_tensor ** dest) { |
|
char full_key[128]; |
|
sprintf(full_key, "blocks.%d.%s", block_index, key); |
|
return rwkv_v2_set_parameter(parameters, full_key, dest); |
|
} |
|
|
|
|
|
|
|
void rwkv_v2_exp_impl(const int n_cols, float * dest, const float * src) { |
|
for (int i = 0; i < n_cols; i++) { |
|
dest[i] = expf(src[i]); |
|
} |
|
} |
|
|
|
void rwkv_v2_1_minus_x_impl(const int n_cols, float * dest, const float * src) { |
|
for (int i = 0; i < n_cols; i++) { |
|
dest[i] = 1.0F - src[i]; |
|
} |
|
} |
|
|
|
void rwkv_v2_sigmoid_impl(const int n_cols, float * dest, const float * src) { |
|
for (int i = 0; i < n_cols; i++) { |
|
dest[i] = 1.0F / (1.0F + expf(-src[i])); |
|
} |
|
} |
|
|
|
void rwkv_v2_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) { |
|
for (int i = 0; i < n_cols; i++) { |
|
dest[i] = fmaxf(src0[i], src1[i]); |
|
} |
|
} |
|
|
|
struct ggml_v2_tensor * rwkv_v2_exp(ggml_v2_context * ctx, struct ggml_v2_tensor * x) { |
|
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_exp_impl); |
|
} |
|
|
|
struct ggml_v2_tensor * rwkv_v2_1_minus_x(ggml_v2_context * ctx, struct ggml_v2_tensor * x) { |
|
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_1_minus_x_impl); |
|
} |
|
|
|
struct ggml_v2_tensor * rwkv_v2_sigmoid(ggml_v2_context * ctx, struct ggml_v2_tensor * x) { |
|
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_sigmoid_impl); |
|
} |
|
|
|
struct ggml_v2_tensor * rwkv_v2_max(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * y) { |
|
return ggml_v2_map_binary_f32(ctx, x, y, rwkv_v2_max_impl); |
|
} |
|
|
|
struct ggml_v2_tensor * rwkv_v2_layer_norm(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * weight, struct ggml_v2_tensor * bias) { |
|
|
|
|
|
x = ggml_v2_norm(ctx, x); |
|
x = ggml_v2_mul(ctx, x, weight); |
|
x = ggml_v2_add(ctx, x, bias); |
|
return x; |
|
} |
|
|
|
|
|
|
|
struct rwkv_v2_context { |
|
struct rwkv_v2_model * model; |
|
struct ggml_v2_tensor * token_index; |
|
struct ggml_v2_tensor * state; |
|
struct ggml_v2_tensor ** state_parts; |
|
struct ggml_v2_tensor * logits; |
|
struct ggml_v2_context * ctx; |
|
struct ggml_v2_cgraph * graph; |
|
bool freed; |
|
float * state_in = 0; |
|
float * state_out = 0; |
|
float * logits_out = 0; |
|
}; |
|
|
|
struct rwkv_v2_context * rwkv_v2_init_from_file(const char * file_path, uint32_t n_threads) { |
|
FILE * file = fopen(file_path, "rb"); |
|
RWKV_V2_ASSERT_NULL(file != NULL, "Failed to open file %s", file_path); |
|
|
|
int32_t magic; |
|
rwkv_v2_read_int32(file, &magic); |
|
RWKV_V2_ASSERT_NULL(magic == RWKV_V2_FILE_MAGIC, "Unexpected magic value %d", magic); |
|
|
|
int32_t version; |
|
rwkv_v2_read_int32(file, &version); |
|
RWKV_V2_ASSERT_NULL(version == RWKV_V2_FILE_VERSION, "Unsupported file version %d", version); |
|
|
|
struct rwkv_v2_model * model = (struct rwkv_v2_model *) calloc(1, sizeof(struct rwkv_v2_model)); |
|
|
|
rwkv_v2_read_int32(file, &(model->n_vocab)); |
|
RWKV_V2_ASSERT_NULL(model->n_vocab > 0, "Non-positive n_vocab %d", model->n_vocab); |
|
|
|
rwkv_v2_read_int32(file, &(model->n_embed)); |
|
RWKV_V2_ASSERT_NULL(model->n_embed > 0, "Non-positive n_embed %d", model->n_embed); |
|
|
|
rwkv_v2_read_int32(file, &(model->n_layer)); |
|
RWKV_V2_ASSERT_NULL(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer); |
|
|
|
rwkv_v2_read_int32(file, &(model->data_type)); |
|
RWKV_V2_ASSERT_NULL(model->data_type >= 0 && model->data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Unsupported model data type %d", model->data_type); |
|
|
|
RWKV_V2_ASSERT_NULL( |
|
model->data_type != 4, |
|
"Models in Q4_1_O format cannot be loaded anymore because the format was removed. You need to quantize the model into another format" |
|
); |
|
|
|
RWKV_V2_ASSERT_NULL( |
|
model->data_type != 6, |
|
"Models in Q4_3 format cannot be loaded anymore because the format was removed. You need to quantize the model into another format" |
|
); |
|
|
|
|
|
size_t file_size; |
|
|
|
{ |
|
auto fin = std::ifstream(file_path, std::ios::binary); |
|
RWKV_V2_ASSERT_NULL(fin, "Failed to open file %s", file_path); |
|
fin.seekg(0, fin.end); |
|
file_size = fin.tellg(); |
|
fin.close(); |
|
} |
|
|
|
size_t memory_required = file_size + |
|
|
|
size_t(100) * model->n_embed * sizeof(float) + |
|
|
|
size_t(2) * 5 * model->n_layer * model->n_embed * sizeof(float) + |
|
|
|
size_t(model->n_vocab) * sizeof(float) + |
|
|
|
|
|
size_t(256) * 1024 * 1024; |
|
|
|
|
|
struct ggml_v2_init_params params; |
|
params.mem_size = memory_required; |
|
params.mem_buffer = NULL; |
|
params.no_alloc = false; |
|
struct ggml_v2_context * ctx = ggml_v2_init(params); |
|
|
|
std::unordered_map<std::string, struct ggml_v2_tensor *> parameters; |
|
|
|
while (true) { |
|
int32_t dim_count; |
|
size_t elements_read = fread(&dim_count, 4, 1, file); |
|
|
|
if (feof(file)) { |
|
break; |
|
} |
|
|
|
RWKV_V2_ASSERT_NULL(elements_read == 1, "Failed to read dimension count"); |
|
RWKV_V2_ASSERT_NULL(dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count); |
|
|
|
int32_t key_length; |
|
rwkv_v2_read_int32(file, &key_length); |
|
RWKV_V2_ASSERT_NULL(key_length > 0, "Non-positive key length %d", key_length); |
|
|
|
int32_t data_type; |
|
rwkv_v2_read_int32(file, &data_type); |
|
RWKV_V2_ASSERT_NULL(data_type >= 0 && data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Unsupported parameter data type %d", data_type); |
|
|
|
ggml_v2_type ggml_v2_data_type = FORMAT_TYPE_TO_GGML_V2_TYPE[data_type]; |
|
|
|
RWKV_V2_ASSERT_NULL(ggml_v2_data_type != GGML_V2_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type); |
|
|
|
struct ggml_v2_tensor * tensor; |
|
|
|
int32_t x = -1; |
|
int32_t y = -1; |
|
|
|
if (dim_count == 1) { |
|
rwkv_v2_read_int32(file, &x); |
|
tensor = ggml_v2_new_tensor_1d(ctx, ggml_v2_data_type, x); |
|
} else if (dim_count == 2) { |
|
rwkv_v2_read_int32(file, &x); |
|
rwkv_v2_read_int32(file, &y); |
|
tensor = ggml_v2_new_tensor_2d(ctx, ggml_v2_data_type, x, y); |
|
} else { |
|
abort(); |
|
} |
|
|
|
std::string key(key_length, 0); |
|
RWKV_V2_ASSERT_NULL(fread(&key[0], 1, key_length, file) == uint32_t(key_length), "Failed to read parameter key"); |
|
|
|
RWKV_V2_ASSERT_NULL(fread(tensor->data, 1, ggml_v2_nbytes(tensor), file) == ggml_v2_nbytes(tensor), "Failed to read parameter data"); |
|
|
|
parameters[key] = tensor; |
|
} |
|
|
|
fclose(file); |
|
|
|
model->layers.resize(model->n_layer); |
|
|
|
rwkv_v2_set_parameter(¶meters, "emb.weight", &(model->emb)); |
|
|
|
rwkv_v2_set_parameter(¶meters, "blocks.0.ln0.weight", &(model->ln0_weight)); |
|
rwkv_v2_set_parameter(¶meters, "blocks.0.ln0.bias", &(model->ln0_bias)); |
|
|
|
for (int i = 0; i < model->n_layer; i++) { |
|
rwkv_v2_layer layer = model->layers[i]; |
|
|
|
rwkv_v2_set_block_parameter(¶meters, i, "ln1.weight", &(layer.ln1_weight)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "ln1.bias", &(layer.ln1_bias)); |
|
|
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_k", &(layer.att_time_mix_k)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_v", &(layer.att_time_mix_v)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_r", &(layer.att_time_mix_r)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_first", &(layer.att_time_first)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_decay", &(layer.att_time_decay)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "att.key.weight", &(layer.att_key)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "att.value.weight", &(layer.att_value)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "att.receptance.weight", &(layer.att_receptance)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "att.output.weight", &(layer.att_output)); |
|
|
|
rwkv_v2_set_block_parameter(¶meters, i, "ln2.weight", &(layer.ln2_weight)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "ln2.bias", &(layer.ln2_bias)); |
|
|
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.time_mix_k", &(layer.ffn_time_mix_k)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.time_mix_r", &(layer.ffn_time_mix_r)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.key.weight", &(layer.ffn_key)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.value.weight", &(layer.ffn_value)); |
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.receptance.weight", &(layer.ffn_receptance)); |
|
|
|
model->layers[i] = layer; |
|
} |
|
|
|
rwkv_v2_set_parameter(¶meters, "ln_out.weight", &(model->ln_out_weight)); |
|
rwkv_v2_set_parameter(¶meters, "ln_out.bias", &(model->ln_out_bias)); |
|
|
|
rwkv_v2_set_parameter(¶meters, "head.weight", &(model->head)); |
|
|
|
|
|
struct ggml_v2_tensor * emb = model->emb; |
|
RWKV_V2_ASSERT_NULL(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims); |
|
RWKV_V2_ASSERT_NULL(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %ld", emb->ne[0]); |
|
RWKV_V2_ASSERT_NULL(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %ld", emb->ne[1]); |
|
|
|
int32_t n_embed = model->n_embed; |
|
int32_t n_layer = model->n_layer; |
|
|
|
|
|
struct ggml_v2_tensor * state = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_F32, n_layer * 5 * n_embed); |
|
|
|
|
|
struct ggml_v2_tensor * token_index = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_I32, 1); |
|
struct ggml_v2_tensor * x = ggml_v2_get_rows(ctx, model->emb, token_index); |
|
|
|
|
|
x = rwkv_v2_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias); |
|
|
|
|
|
struct ggml_v2_tensor ** state_parts = new ggml_v2_tensor * [n_layer * 5]; |
|
|
|
for (int i = 0; i < n_layer; i++) { |
|
auto layer = model->layers[i]; |
|
|
|
|
|
{ |
|
|
|
struct ggml_v2_tensor * x0 = rwkv_v2_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias); |
|
|
|
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * sizeof(float)); |
|
|
|
|
|
|
|
struct ggml_v2_tensor * xk = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, x0, layer.att_time_mix_k), |
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_k)) |
|
); |
|
struct ggml_v2_tensor * xv = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, x0, layer.att_time_mix_v), |
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_v)) |
|
); |
|
struct ggml_v2_tensor * xr = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, x0, layer.att_time_mix_r), |
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_r)) |
|
); |
|
|
|
state_parts[5 * i + 1] = x0; |
|
|
|
|
|
struct ggml_v2_tensor * r = rwkv_v2_sigmoid( |
|
ctx, |
|
ggml_v2_mul_mat(ctx, layer.att_receptance, xr) |
|
); |
|
|
|
struct ggml_v2_tensor * k = ggml_v2_mul_mat(ctx, layer.att_key, xk); |
|
|
|
struct ggml_v2_tensor * v = ggml_v2_mul_mat(ctx, layer.att_value, xv); |
|
|
|
|
|
|
|
|
|
struct ggml_v2_tensor * aa = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * sizeof(float)); |
|
struct ggml_v2_tensor * bb = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * sizeof(float)); |
|
struct ggml_v2_tensor * pp = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * sizeof(float)); |
|
|
|
|
|
struct ggml_v2_tensor * ww = ggml_v2_add(ctx, layer.att_time_first, k); |
|
|
|
struct ggml_v2_tensor * qq = rwkv_v2_max(ctx, pp, ww); |
|
|
|
struct ggml_v2_tensor * e1 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, pp, qq)); |
|
|
|
struct ggml_v2_tensor * e2 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, ww, qq)); |
|
|
|
struct ggml_v2_tensor * a = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, e1, aa), |
|
ggml_v2_mul(ctx, e2, v) |
|
); |
|
|
|
struct ggml_v2_tensor * b = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, e1, bb), |
|
e2 |
|
); |
|
|
|
struct ggml_v2_tensor * wkv = ggml_v2_div(ctx, a, b); |
|
|
|
ww = ggml_v2_add(ctx, pp, layer.att_time_decay); |
|
|
|
qq = rwkv_v2_max(ctx, ww, k); |
|
|
|
e1 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, ww, qq)); |
|
|
|
e2 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, k, qq)); |
|
|
|
state_parts[5 * i + 2] = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, e1, aa), |
|
ggml_v2_mul(ctx, e2, v) |
|
); |
|
|
|
state_parts[5 * i + 3] = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, e1, bb), |
|
e2 |
|
); |
|
|
|
state_parts[5 * i + 4] = qq; |
|
|
|
x = ggml_v2_add( |
|
ctx, |
|
x, |
|
ggml_v2_mul_mat( |
|
ctx, |
|
layer.att_output, |
|
ggml_v2_mul(ctx, r, wkv) |
|
) |
|
); |
|
} |
|
|
|
|
|
{ |
|
|
|
struct ggml_v2_tensor * x0 = rwkv_v2_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias); |
|
|
|
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * sizeof(float)); |
|
|
|
|
|
struct ggml_v2_tensor * xk = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_k), |
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.ffn_time_mix_k)) |
|
); |
|
struct ggml_v2_tensor * xr = ggml_v2_add( |
|
ctx, |
|
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_r), |
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.ffn_time_mix_r)) |
|
); |
|
|
|
state_parts[5 * i + 0] = x0; |
|
|
|
|
|
struct ggml_v2_tensor * r = rwkv_v2_sigmoid( |
|
ctx, |
|
ggml_v2_mul_mat(ctx, layer.ffn_receptance, xr) |
|
); |
|
|
|
struct ggml_v2_tensor * k = ggml_v2_sqr(ctx, ggml_v2_relu( |
|
ctx, |
|
ggml_v2_mul_mat(ctx, layer.ffn_key, xk) |
|
)); |
|
|
|
x = ggml_v2_add( |
|
ctx, |
|
x, |
|
ggml_v2_mul( |
|
ctx, |
|
r, |
|
ggml_v2_mul_mat(ctx, layer.ffn_value, k) |
|
) |
|
); |
|
} |
|
} |
|
|
|
|
|
x = rwkv_v2_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias); |
|
|
|
|
|
struct ggml_v2_tensor * logits = ggml_v2_mul_mat(ctx, model->head, x); |
|
|
|
struct ggml_v2_cgraph * graph = (struct ggml_v2_cgraph *) calloc(1, sizeof(struct ggml_v2_cgraph)); |
|
|
|
*graph = ggml_v2_build_forward(logits); |
|
|
|
for (int i = 0; i < n_layer * 5; i++) { |
|
ggml_v2_build_forward_expand(graph, state_parts[i]); |
|
} |
|
|
|
graph->n_threads = n_threads; |
|
|
|
struct rwkv_v2_context * rwkv_ctx = (struct rwkv_v2_context *) calloc(1, sizeof(struct rwkv_v2_context)); |
|
rwkv_ctx->model = model; |
|
rwkv_ctx->token_index = token_index; |
|
rwkv_ctx->state = state; |
|
rwkv_ctx->state_parts = state_parts; |
|
rwkv_ctx->logits = logits; |
|
rwkv_ctx->ctx = ctx; |
|
rwkv_ctx->graph = graph; |
|
return rwkv_ctx; |
|
} |
|
|
|
uint32_t rwkv_v2_get_state_buffer_element_count(struct rwkv_v2_context * ctx) { |
|
return ctx->model->n_layer * 5 * ctx->model->n_embed; |
|
} |
|
|
|
uint32_t rwkv_v2_get_logits_buffer_element_count(struct rwkv_v2_context * ctx) { |
|
return ctx->model->n_vocab; |
|
} |
|
|
|
bool rwkv_v2_eval(struct rwkv_v2_context * ctx, int32_t token, float * state_in, float * state_out, float * logits_out) { |
|
RWKV_V2_ASSERT_FALSE(state_out != NULL, "state_out is NULL"); |
|
RWKV_V2_ASSERT_FALSE(logits_out != NULL, "logits_out is NULL"); |
|
|
|
int32_t n_layer = ctx->model->n_layer; |
|
int32_t n_embed = ctx->model->n_embed; |
|
int32_t n_vocab = ctx->model->n_vocab; |
|
|
|
RWKV_V2_ASSERT_FALSE(token >= 0 && token < n_vocab, "Token is out of range 0..%d", n_vocab - 1); |
|
|
|
ggml_v2_set_i32_1d(ctx->token_index, 0, token); |
|
|
|
if (state_in == NULL) { |
|
ggml_v2_set_f32(ctx->state, 0.0F); |
|
|
|
for (int i = 0; i < n_layer; i++) { |
|
|
|
ggml_v2_set_f32( |
|
ggml_v2_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * sizeof(float)), |
|
-1e30F |
|
); |
|
} |
|
} else { |
|
memcpy(ctx->state->data, state_in, ctx->state->ne[0] * sizeof(float)); |
|
} |
|
|
|
ggml_v2_graph_compute(ctx->ctx, ctx->graph); |
|
|
|
for (size_t i = 0; i < size_t(n_layer * 5); i++) { |
|
struct ggml_v2_tensor * part = ctx->state_parts[i]; |
|
|
|
memcpy(state_out + i * n_embed, part->data, part->ne[0] * sizeof(float)); |
|
} |
|
|
|
memcpy(logits_out, ctx->logits->data, ctx->logits->ne[0] * sizeof(float)); |
|
|
|
return true; |
|
} |
|
|
|
void rwkv_v2_free(struct rwkv_v2_context * ctx) { |
|
ctx->model->layers.~vector(); |
|
free(ctx->model); |
|
delete[] ctx->state_parts; |
|
ggml_v2_free(ctx->ctx); |
|
free(ctx->graph); |
|
free(ctx); |
|
} |
|
|
|
bool rwkv_v2_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name) { |
|
int32_t format_type = rwkv_v2_format_name_to_format_type(format_name); |
|
|
|
RWKV_V2_ASSERT_FALSE(format_type != -1, "Unsupported format \"%s\"", format_name); |
|
|
|
ggml_v2_type type = FORMAT_TYPE_TO_GGML_V2_TYPE[format_type]; |
|
|
|
RWKV_V2_ASSERT_FALSE(type != GGML_V2_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name); |
|
|
|
|
|
{ |
|
struct ggml_v2_init_params params = { 0, NULL, false }; |
|
struct ggml_v2_context * ctx = ggml_v2_init(params); |
|
ggml_v2_free(ctx); |
|
} |
|
|
|
printf("Loading model from '%s'\n", model_file_path_in); |
|
|
|
auto finp = std::ifstream(model_file_path_in, std::ios::binary); |
|
RWKV_V2_ASSERT_FALSE(finp, "Failed to open %s for reading", model_file_path_in); |
|
|
|
auto fout = std::ofstream(model_file_path_out, std::ios::binary); |
|
RWKV_V2_ASSERT_FALSE(fout, "Failed to open %s for writing", model_file_path_out); |
|
|
|
|
|
{ |
|
uint32_t magic; |
|
finp.read((char *) &magic, sizeof(magic)); |
|
RWKV_V2_ASSERT_FALSE(magic == RWKV_V2_FILE_MAGIC, "Unexpected magic value %d", magic); |
|
fout.write((char *) &magic, sizeof(magic)); |
|
|
|
uint32_t format_version; |
|
finp.read((char *) &format_version, sizeof(format_version)); |
|
RWKV_V2_ASSERT_FALSE(format_version == RWKV_V2_FILE_VERSION, "Unsupported file version %d", format_version); |
|
fout.write((char *) &format_version, sizeof(format_version)); |
|
|
|
int32_t n_vocab; |
|
int32_t n_embed; |
|
int32_t n_layer; |
|
int32_t data_type; |
|
|
|
finp.read((char *) &n_vocab, sizeof(n_vocab)); |
|
finp.read((char *) &n_embed, sizeof(n_embed)); |
|
finp.read((char *) &n_layer, sizeof(n_layer)); |
|
finp.read((char *) &data_type, sizeof(data_type)); |
|
|
|
RWKV_V2_ASSERT_FALSE(data_type == 0 || data_type == 1, "Unsupported data type %d, only FP32 and FP16 can be quantized", data_type); |
|
|
|
data_type = format_type; |
|
|
|
fout.write((char *) &n_vocab, sizeof(n_vocab)); |
|
fout.write((char *) &n_embed, sizeof(n_embed)); |
|
fout.write((char *) &n_layer, sizeof(n_layer)); |
|
fout.write((char *) &data_type, sizeof(data_type)); |
|
} |
|
|
|
|
|
{ |
|
size_t total_size_orig = 0; |
|
size_t total_size_new = 0; |
|
|
|
std::vector<float> work; |
|
|
|
std::vector<uint8_t> data_u8; |
|
std::vector<ggml_v2_fp16_t> data_f16; |
|
std::vector<float> data_f32; |
|
|
|
std::vector<int64_t> hist_all(1 << 4, 0); |
|
|
|
while (true) { |
|
int32_t n_dims; |
|
int32_t key_length; |
|
int32_t parameter_data_type; |
|
|
|
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
finp.read(reinterpret_cast<char *>(&key_length), sizeof(key_length)); |
|
finp.read(reinterpret_cast<char *>(¶meter_data_type), sizeof(parameter_data_type)); |
|
|
|
if (finp.eof()) { |
|
break; |
|
} |
|
|
|
RWKV_V2_ASSERT_FALSE(parameter_data_type >= 0 && parameter_data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Invalid parameter data type %d", parameter_data_type); |
|
|
|
ggml_v2_type parameter_ggml_v2_type = FORMAT_TYPE_TO_GGML_V2_TYPE[parameter_data_type]; |
|
|
|
RWKV_V2_ASSERT_FALSE(parameter_ggml_v2_type != GGML_V2_TYPE_UNKNOWN, "Invalid parameter data type %d", parameter_data_type); |
|
|
|
int32_t nelements = 1; |
|
int32_t ne[2] = { 1, 1 }; |
|
for (int i = 0; i < n_dims; ++i) { |
|
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
nelements *= ne[i]; |
|
} |
|
|
|
std::string name(key_length, 0); |
|
finp.read(&name[0], key_length); |
|
|
|
{ |
|
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ggml_v2_type_name(parameter_ggml_v2_type)); |
|
|
|
total_size_orig += (size_t) (nelements * ggml_v2_type_sizef(parameter_ggml_v2_type)); |
|
} |
|
|
|
|
|
|
|
|
|
bool quantize = n_dims == 2 && |
|
name != std::string("emb.weight") && |
|
name != std::string("head.weight"); |
|
|
|
if (quantize) { |
|
RWKV_V2_ASSERT_FALSE( |
|
parameter_data_type == 0 || parameter_data_type == 1, |
|
"Unsupported parameter data type %d, only FP32 and FP16 can be quantized", |
|
parameter_data_type |
|
); |
|
|
|
if (parameter_data_type == 1) { |
|
data_f16.resize(nelements); |
|
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_v2_fp16_t)); |
|
data_f32.resize(nelements); |
|
for (int i = 0; i < nelements; ++i) { |
|
data_f32[i] = ggml_v2_fp16_to_fp32(data_f16[i]); |
|
} |
|
} else { |
|
data_f32.resize(nelements); |
|
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float)); |
|
} |
|
|
|
parameter_data_type = format_type; |
|
} else { |
|
const int bytes_per_element = (parameter_data_type == 0) ? sizeof(float) : sizeof(uint16_t); |
|
data_u8.resize(nelements * bytes_per_element); |
|
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bytes_per_element); |
|
} |
|
|
|
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fout.write(reinterpret_cast<char *>(&key_length), sizeof(key_length)); |
|
fout.write(reinterpret_cast<char *>(¶meter_data_type), sizeof(parameter_data_type)); |
|
|
|
for (int i = 0; i < n_dims; ++i) { |
|
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
} |
|
|
|
fout.write(&name[0], key_length); |
|
|
|
if (quantize) { |
|
printf("quantizing... "); |
|
work.resize(nelements); |
|
|
|
size_t cur_size = 0; |
|
|
|
std::vector<int64_t> hist_cur(1 << 4, 0); |
|
|
|
switch (type) { |
|
case GGML_V2_TYPE_Q4_0: |
|
cur_size = ggml_v2_quantize_q4_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); |
|
break; |
|
case GGML_V2_TYPE_Q4_1: |
|
cur_size = ggml_v2_quantize_q4_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); |
|
break; |
|
case GGML_V2_TYPE_Q4_2: |
|
cur_size = ggml_v2_quantize_q4_2_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); |
|
break; |
|
case GGML_V2_TYPE_Q5_0: |
|
cur_size = ggml_v2_quantize_q5_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); |
|
break; |
|
case GGML_V2_TYPE_Q5_1: |
|
cur_size = ggml_v2_quantize_q5_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); |
|
break; |
|
case GGML_V2_TYPE_Q8_0: |
|
cur_size = ggml_v2_quantize_q8_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); |
|
break; |
|
default: { |
|
fprintf(stderr, "unsupported quantization type %d\n", type); |
|
return false; |
|
} |
|
} |
|
|
|
fout.write(reinterpret_cast<char *>(work.data()), cur_size); |
|
total_size_new += cur_size; |
|
|
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float) / 1024.0 / 1024.0, cur_size / 1024.0 / 1024.0); |
|
|
|
for (int i = 0; i < (int) hist_cur.size(); ++i) { |
|
hist_all[i] += hist_cur[i]; |
|
} |
|
|
|
for (int i = 0; i < (int) hist_cur.size(); ++i) { |
|
printf("%5.3f ", hist_cur[i] / float(nelements)); |
|
} |
|
|
|
printf("\n"); |
|
} else { |
|
printf("size = %8.3f MB\n", data_u8.size() / 1024.0 / 1024.0); |
|
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size()); |
|
total_size_new += data_u8.size(); |
|
} |
|
} |
|
|
|
printf("original size = %8.2f MB\n", total_size_orig / 1024.0 / 1024.0); |
|
printf("quantized size = %8.2f MB\n", total_size_new / 1024.0 / 1024.0); |
|
printf("compression ratio = %8.2f\n", 1.0 * total_size_orig / total_size_new); |
|
|
|
{ |
|
int64_t sum_all = 0; |
|
|
|
for (int i = 0; i < (int) hist_all.size(); ++i) { |
|
sum_all += hist_all[i]; |
|
} |
|
|
|
printf("hist: "); |
|
|
|
for (int i = 0; i < (int) hist_all.size(); ++i) { |
|
printf("%5.3f ", hist_all[i] / float(sum_all)); |
|
} |
|
|
|
printf("\n"); |
|
} |
|
} |
|
|
|
finp.close(); |
|
fout.close(); |
|
|
|
return true; |
|
} |
|
|
|
const char * rwkv_v2_get_system_info_string(void) { |
|
static std::string s; |
|
|
|
s = ""; |
|
s += "AVX = " + std::to_string(ggml_v2_cpu_has_avx()) + " | "; |
|
s += "AVX2 = " + std::to_string(ggml_v2_cpu_has_avx2()) + " | "; |
|
s += "AVX512 = " + std::to_string(ggml_v2_cpu_has_avx512()) + " | "; |
|
s += "FMA = " + std::to_string(ggml_v2_cpu_has_fma()) + " | "; |
|
s += "NEON = " + std::to_string(ggml_v2_cpu_has_neon()) + " | "; |
|
s += "ARM_FMA = " + std::to_string(ggml_v2_cpu_has_arm_fma()) + " | "; |
|
s += "F16C = " + std::to_string(ggml_v2_cpu_has_f16c()) + " | "; |
|
s += "FP16_VA = " + std::to_string(ggml_v2_cpu_has_fp16_va()) + " | "; |
|
s += "WASM_SIMD = " + std::to_string(ggml_v2_cpu_has_wasm_simd()) + " | "; |
|
s += "BLAS = " + std::to_string(ggml_v2_cpu_has_blas()) + " | "; |
|
s += "SSE3 = " + std::to_string(ggml_v2_cpu_has_sse3()) + " | "; |
|
s += "VSX = " + std::to_string(ggml_v2_cpu_has_vsx()) + " | "; |
|
|
|
return s.c_str(); |
|
} |