|
#ifndef __GGML_EXTEND_HPP__ |
|
#define __GGML_EXTEND_HPP__ |
|
|
|
#include <assert.h> |
|
#include <inttypes.h> |
|
#include <stdarg.h> |
|
#include <algorithm> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <functional> |
|
#include <iostream> |
|
#include <iterator> |
|
#include <map> |
|
#include <memory> |
|
#include <random> |
|
#include <regex> |
|
#include <set> |
|
#include <sstream> |
|
#include <string> |
|
#include <unordered_map> |
|
#include <vector> |
|
|
|
#include "ggml-alloc.h" |
|
#include "ggml-backend.h" |
|
#include "ggml-cpu.h" |
|
#include "ggml.h" |
|
|
|
#include "model.h" |
|
|
|
#ifdef SD_USE_CUBLAS |
|
#include "ggml-cuda.h" |
|
#endif |
|
|
|
#ifdef SD_USE_METAL |
|
#include "ggml-metal.h" |
|
#endif |
|
|
|
#ifdef SD_USE_VULKAN |
|
#include "ggml-vulkan.h" |
|
#endif |
|
|
|
#ifdef SD_USE_SYCL |
|
#include "ggml-sycl.h" |
|
#endif |
|
|
|
#include "rng.hpp" |
|
#include "util.h" |
|
|
|
#define EPS 1e-05f |
|
|
|
#ifndef __STATIC_INLINE__ |
|
#define __STATIC_INLINE__ static inline |
|
#endif |
|
|
|
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) { |
|
(void)level; |
|
(void)user_data; |
|
fputs(text, stderr); |
|
fflush(stderr); |
|
} |
|
|
|
__STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr<RNG> rng) { |
|
uint32_t n = (uint32_t)ggml_nelements(tensor); |
|
std::vector<float> random_numbers = rng->randn(n); |
|
for (uint32_t i = 0; i < n; i++) { |
|
ggml_set_f32_1d(tensor, i, random_numbers[i]); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE__ void ggml_tensor_set_f32(struct ggml_tensor* tensor, float value, int l, int k = 0, int j = 0, int i = 0) { |
|
GGML_ASSERT(tensor->nb[0] == sizeof(float)); |
|
*(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]) = value; |
|
} |
|
|
|
__STATIC_INLINE__ float ggml_tensor_get_f32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) { |
|
if (tensor->buffer != NULL) { |
|
float value; |
|
ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(float)); |
|
return value; |
|
} |
|
GGML_ASSERT(tensor->nb[0] == sizeof(float)); |
|
return *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); |
|
} |
|
|
|
__STATIC_INLINE__ int ggml_tensor_get_i32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) { |
|
if (tensor->buffer != NULL) { |
|
float value; |
|
ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(int)); |
|
return value; |
|
} |
|
GGML_ASSERT(tensor->nb[0] == sizeof(int)); |
|
return *(int*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); |
|
} |
|
|
|
__STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) { |
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); |
|
return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false, const char* mark = "") { |
|
printf("%s (%s): shape(%zu, %zu, %zu, %zu)\n", mark, ggml_type_name(tensor->type), tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); |
|
fflush(stdout); |
|
if (shape_only) { |
|
return; |
|
} |
|
int range = 3; |
|
for (int i = 0; i < tensor->ne[3]; i++) { |
|
if (i >= range && i + range < tensor->ne[3]) { |
|
continue; |
|
} |
|
for (int j = 0; j < tensor->ne[2]; j++) { |
|
if (j >= range && j + range < tensor->ne[2]) { |
|
continue; |
|
} |
|
for (int k = 0; k < tensor->ne[1]; k++) { |
|
if (k >= range && k + range < tensor->ne[1]) { |
|
continue; |
|
} |
|
for (int l = 0; l < tensor->ne[0]; l++) { |
|
if (l >= range && l + range < tensor->ne[0]) { |
|
continue; |
|
} |
|
if (tensor->type == GGML_TYPE_F32) { |
|
printf(" [%d, %d, %d, %d] = %f\n", i, j, k, l, ggml_tensor_get_f32(tensor, l, k, j, i)); |
|
} else if (tensor->type == GGML_TYPE_F16) { |
|
printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_f16(tensor, l, k, j, i)); |
|
} else if (tensor->type == GGML_TYPE_I32) { |
|
printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_i32(tensor, l, k, j, i)); |
|
} |
|
fflush(stdout); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
__STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) { |
|
std::ifstream file(file_path, std::ios::binary); |
|
if (!file.is_open()) { |
|
LOG_ERROR("failed to open '%s'", file_path.c_str()); |
|
return NULL; |
|
} |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ttype; |
|
|
|
file.read(reinterpret_cast<char*>(&n_dims), sizeof(n_dims)); |
|
file.read(reinterpret_cast<char*>(&length), sizeof(length)); |
|
file.read(reinterpret_cast<char*>(&ttype), sizeof(ttype)); |
|
|
|
if (file.eof()) { |
|
LOG_ERROR("incomplete file '%s'", file_path.c_str()); |
|
return NULL; |
|
} |
|
|
|
int32_t nelements = 1; |
|
int32_t ne[4] = {1, 1, 1, 1}; |
|
for (int i = 0; i < n_dims; ++i) { |
|
file.read(reinterpret_cast<char*>(&ne[i]), sizeof(ne[i])); |
|
nelements *= ne[i]; |
|
} |
|
std::string name(length, 0); |
|
file.read(&name[0], length); |
|
ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]); |
|
const size_t bpe = ggml_type_size(ggml_type(ttype)); |
|
file.read(reinterpret_cast<char*>(tensor->data), ggml_nbytes(tensor)); |
|
return tensor; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE__ void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) { |
|
if (dst->type == src->type) { |
|
dst->nb[0] = src->nb[0]; |
|
dst->nb[1] = src->nb[1]; |
|
dst->nb[2] = src->nb[2]; |
|
dst->nb[3] = src->nb[3]; |
|
|
|
memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst)); |
|
return; |
|
} |
|
struct ggml_init_params params; |
|
params.mem_size = 10 * 1024 * 1024; |
|
params.mem_buffer = NULL; |
|
params.no_alloc = false; |
|
struct ggml_context* ctx = ggml_init(params); |
|
if (!ctx) { |
|
LOG_ERROR("ggml_init() failed"); |
|
return; |
|
} |
|
ggml_tensor* final = ggml_cpy(ctx, src, dst); |
|
|
|
struct ggml_cgraph* graph = ggml_new_graph(ctx); |
|
ggml_build_forward_expand(graph, final); |
|
ggml_graph_compute_with_ctx(ctx, graph, 1); |
|
ggml_free(ctx); |
|
} |
|
|
|
__STATIC_INLINE__ float sigmoid(float x) { |
|
return 1 / (1.0f + expf(-x)); |
|
} |
|
|
|
|
|
|
|
__STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input) { |
|
int64_t width = input->ne[0]; |
|
int64_t height = input->ne[1]; |
|
int64_t channels = input->ne[2]; |
|
GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32); |
|
uint8_t* image_data = (uint8_t*)malloc(width * height * channels); |
|
for (int iy = 0; iy < height; iy++) { |
|
for (int ix = 0; ix < width; ix++) { |
|
for (int k = 0; k < channels; k++) { |
|
float value = ggml_tensor_get_f32(input, ix, iy, k); |
|
*(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f); |
|
} |
|
} |
|
} |
|
return image_data; |
|
} |
|
|
|
__STATIC_INLINE__ uint8_t* sd_tensor_to_mul_image(struct ggml_tensor* input, int idx) { |
|
int64_t width = input->ne[0]; |
|
int64_t height = input->ne[1]; |
|
int64_t channels = input->ne[2]; |
|
GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32); |
|
uint8_t* image_data = (uint8_t*)malloc(width * height * channels); |
|
for (int iy = 0; iy < height; iy++) { |
|
for (int ix = 0; ix < width; ix++) { |
|
for (int k = 0; k < channels; k++) { |
|
float value = ggml_tensor_get_f32(input, ix, iy, k, idx); |
|
*(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f); |
|
} |
|
} |
|
} |
|
return image_data; |
|
} |
|
|
|
__STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data, |
|
struct ggml_tensor* output, |
|
bool scale = true) { |
|
int64_t width = output->ne[0]; |
|
int64_t height = output->ne[1]; |
|
int64_t channels = output->ne[2]; |
|
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32); |
|
for (int iy = 0; iy < height; iy++) { |
|
for (int ix = 0; ix < width; ix++) { |
|
for (int k = 0; k < channels; k++) { |
|
float value = *(image_data + iy * width * channels + ix * channels + k); |
|
if (scale) { |
|
value /= 255.f; |
|
} |
|
ggml_tensor_set_f32(output, value, ix, iy, k); |
|
} |
|
} |
|
} |
|
} |
|
|
|
__STATIC_INLINE__ void sd_mul_images_to_tensor(const uint8_t* image_data, |
|
struct ggml_tensor* output, |
|
int idx, |
|
float* mean = NULL, |
|
float* std = NULL) { |
|
int64_t width = output->ne[0]; |
|
int64_t height = output->ne[1]; |
|
int64_t channels = output->ne[2]; |
|
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32); |
|
for (int iy = 0; iy < height; iy++) { |
|
for (int ix = 0; ix < width; ix++) { |
|
for (int k = 0; k < channels; k++) { |
|
int value = *(image_data + iy * width * channels + ix * channels + k); |
|
float pixel_val = value / 255.0f; |
|
if (mean != NULL && std != NULL) |
|
pixel_val = (pixel_val - mean[k]) / std[k]; |
|
ggml_tensor_set_f32(output, pixel_val, ix, iy, k, idx); |
|
} |
|
} |
|
} |
|
} |
|
|
|
__STATIC_INLINE__ void sd_image_f32_to_tensor(const float* image_data, |
|
struct ggml_tensor* output, |
|
bool scale = true) { |
|
int64_t width = output->ne[0]; |
|
int64_t height = output->ne[1]; |
|
int64_t channels = output->ne[2]; |
|
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32); |
|
for (int iy = 0; iy < height; iy++) { |
|
for (int ix = 0; ix < width; ix++) { |
|
for (int k = 0; k < channels; k++) { |
|
int value = *(image_data + iy * width * channels + ix * channels + k); |
|
if (scale) { |
|
value /= 255.f; |
|
} |
|
ggml_tensor_set_f32(output, value, ix, iy, k); |
|
} |
|
} |
|
} |
|
} |
|
|
|
__STATIC_INLINE__ void ggml_split_tensor_2d(struct ggml_tensor* input, |
|
struct ggml_tensor* output, |
|
int x, |
|
int y) { |
|
int64_t width = output->ne[0]; |
|
int64_t height = output->ne[1]; |
|
int64_t channels = output->ne[2]; |
|
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); |
|
for (int iy = 0; iy < height; iy++) { |
|
for (int ix = 0; ix < width; ix++) { |
|
for (int k = 0; k < channels; k++) { |
|
float value = ggml_tensor_get_f32(input, ix + x, iy + y, k); |
|
ggml_tensor_set_f32(output, value, ix, iy, k); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
__STATIC_INLINE__ float ggml_smootherstep_f32(const float x) { |
|
GGML_ASSERT(x >= 0.f && x <= 1.f); |
|
return x * x * x * (x * (6.0f * x - 15.0f) + 10.0f); |
|
} |
|
|
|
__STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input, |
|
struct ggml_tensor* output, |
|
int x, |
|
int y, |
|
int overlap) { |
|
int64_t width = input->ne[0]; |
|
int64_t height = input->ne[1]; |
|
int64_t channels = input->ne[2]; |
|
|
|
int64_t img_width = output->ne[0]; |
|
int64_t img_height = output->ne[1]; |
|
|
|
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); |
|
for (int iy = 0; iy < height; iy++) { |
|
for (int ix = 0; ix < width; ix++) { |
|
for (int k = 0; k < channels; k++) { |
|
float new_value = ggml_tensor_get_f32(input, ix, iy, k); |
|
if (overlap > 0) { |
|
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k); |
|
|
|
const float x_f_0 = (x > 0) ? ix / float(overlap) : 1; |
|
const float x_f_1 = (x < (img_width - width)) ? (width - ix) / float(overlap) : 1; |
|
const float y_f_0 = (y > 0) ? iy / float(overlap) : 1; |
|
const float y_f_1 = (y < (img_height - height)) ? (height - iy) / float(overlap) : 1; |
|
|
|
const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f); |
|
const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f); |
|
|
|
ggml_tensor_set_f32( |
|
output, |
|
old_value + new_value * ggml_smootherstep_f32(y_f) * ggml_smootherstep_f32(x_f), |
|
x + ix, y + iy, k); |
|
} else { |
|
ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
__STATIC_INLINE__ float ggml_tensor_mean(struct ggml_tensor* src) { |
|
float mean = 0.0f; |
|
int64_t nelements = ggml_nelements(src); |
|
float* data = (float*)src->data; |
|
for (int i = 0; i < nelements; i++) { |
|
mean += data[i] / nelements * 1.0f; |
|
} |
|
return mean; |
|
} |
|
|
|
|
|
__STATIC_INLINE__ void ggml_tensor_add(struct ggml_tensor* a, struct ggml_tensor* b) { |
|
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); |
|
int64_t nelements = ggml_nelements(a); |
|
float* vec_a = (float*)a->data; |
|
float* vec_b = (float*)b->data; |
|
for (int i = 0; i < nelements; i++) { |
|
vec_a[i] = vec_a[i] + vec_b[i]; |
|
} |
|
} |
|
|
|
__STATIC_INLINE__ void ggml_tensor_scale(struct ggml_tensor* src, float scale) { |
|
int64_t nelements = ggml_nelements(src); |
|
float* data = (float*)src->data; |
|
for (int i = 0; i < nelements; i++) { |
|
data[i] = data[i] * scale; |
|
} |
|
} |
|
|
|
__STATIC_INLINE__ void ggml_tensor_clamp(struct ggml_tensor* src, float min, float max) { |
|
int64_t nelements = ggml_nelements(src); |
|
float* data = (float*)src->data; |
|
for (int i = 0; i < nelements; i++) { |
|
float val = data[i]; |
|
data[i] = val < min ? min : (val > max ? max : val); |
|
} |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_tensor_concat(struct ggml_context* ctx, |
|
struct ggml_tensor* a, |
|
struct ggml_tensor* b, |
|
int dim) { |
|
int64_t ne[GGML_MAX_DIMS]; |
|
for (int d = 0; d < GGML_MAX_DIMS; ++d) { |
|
if (d == dim) { |
|
ne[d] = a->ne[d] + b->ne[d]; |
|
continue; |
|
} |
|
GGML_ASSERT(a->ne[d] == b->ne[d]); |
|
ne[d] = a->ne[d]; |
|
} |
|
struct ggml_tensor* result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); |
|
int64_t o[4] = {0, 0, 0, 0}; |
|
o[dim] = a->ne[dim]; |
|
|
|
float v; |
|
for (int i3 = 0; i3 < result->ne[3]; i3++) { |
|
for (int i2 = 0; i2 < result->ne[2]; i2++) { |
|
for (int i1 = 0; i1 < result->ne[1]; i1++) { |
|
for (int i0 = 0; i0 < result->ne[0]; i0++) { |
|
if (i0 < a->ne[0] && i1 < a->ne[1] && i2 < a->ne[2] && i3 < a->ne[3]) { |
|
v = ggml_tensor_get_f32(a, i0, i1, i2, i3); |
|
} else { |
|
v = ggml_tensor_get_f32(b, i0 - o[0], i1 - o[1], i2 - o[2], i3 - o[3]); |
|
} |
|
|
|
ggml_tensor_set_f32(result, v, i0, i1, i2, i3); |
|
} |
|
} |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
__STATIC_INLINE__ void ggml_tensor_scale_input(struct ggml_tensor* src) { |
|
int64_t nelements = ggml_nelements(src); |
|
float* data = (float*)src->data; |
|
for (int i = 0; i < nelements; i++) { |
|
float val = data[i]; |
|
data[i] = val * 2.0f - 1.0f; |
|
} |
|
} |
|
|
|
|
|
__STATIC_INLINE__ void ggml_tensor_scale_output(struct ggml_tensor* src) { |
|
int64_t nelements = ggml_nelements(src); |
|
float* data = (float*)src->data; |
|
for (int i = 0; i < nelements; i++) { |
|
float val = data[i]; |
|
data[i] = (val + 1.0f) * 0.5f; |
|
} |
|
} |
|
|
|
typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process; |
|
|
|
|
|
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) { |
|
int input_width = (int)input->ne[0]; |
|
int input_height = (int)input->ne[1]; |
|
int output_width = (int)output->ne[0]; |
|
int output_height = (int)output->ne[1]; |
|
GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); |
|
|
|
int tile_overlap = (int32_t)(tile_size * tile_overlap_factor); |
|
int non_tile_overlap = tile_size - tile_overlap; |
|
|
|
struct ggml_init_params params = {}; |
|
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); |
|
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); |
|
params.mem_size += 3 * ggml_tensor_overhead(); |
|
params.mem_buffer = NULL; |
|
params.no_alloc = false; |
|
|
|
LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f); |
|
|
|
|
|
struct ggml_context* tiles_ctx = ggml_init(params); |
|
if (!tiles_ctx) { |
|
LOG_ERROR("ggml_init() failed"); |
|
return; |
|
} |
|
|
|
|
|
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1); |
|
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1); |
|
on_processing(input_tile, NULL, true); |
|
int num_tiles = ceil((float)input_width / non_tile_overlap) * ceil((float)input_height / non_tile_overlap); |
|
LOG_INFO("processing %i tiles", num_tiles); |
|
pretty_progress(1, num_tiles, 0.0f); |
|
int tile_count = 1; |
|
bool last_y = false, last_x = false; |
|
float last_time = 0.0f; |
|
for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) { |
|
if (y + tile_size >= input_height) { |
|
y = input_height - tile_size; |
|
last_y = true; |
|
} |
|
for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) { |
|
if (x + tile_size >= input_width) { |
|
x = input_width - tile_size; |
|
last_x = true; |
|
} |
|
int64_t t1 = ggml_time_ms(); |
|
ggml_split_tensor_2d(input, input_tile, x, y); |
|
on_processing(input_tile, output_tile, false); |
|
ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale); |
|
int64_t t2 = ggml_time_ms(); |
|
last_time = (t2 - t1) / 1000.0f; |
|
pretty_progress(tile_count, num_tiles, last_time); |
|
tile_count++; |
|
} |
|
last_x = false; |
|
} |
|
if (tile_count < num_tiles) { |
|
pretty_progress(num_tiles, num_tiles, last_time); |
|
} |
|
ggml_free(tiles_ctx); |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx, |
|
struct ggml_tensor* a) { |
|
const float eps = 1e-6f; |
|
return ggml_group_norm(ctx, a, 32, eps); |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* w, |
|
struct ggml_tensor* b) { |
|
x = ggml_mul_mat(ctx, w, x); |
|
if (b != NULL) { |
|
x = ggml_add(ctx, x, b); |
|
} |
|
return x; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* w, |
|
struct ggml_tensor* b, |
|
int s0 = 1, |
|
int s1 = 1, |
|
int p0 = 0, |
|
int p1 = 0, |
|
int d0 = 1, |
|
int d1 = 1) { |
|
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1); |
|
if (b != NULL) { |
|
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); |
|
|
|
x = ggml_add(ctx, x, b); |
|
} |
|
return x; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1_bak(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* w, |
|
struct ggml_tensor* b, |
|
int s2 = 1, |
|
int p2 = 1, |
|
int d2 = 1) { |
|
GGML_ASSERT(w->ne[0] == 1); |
|
|
|
|
|
|
|
|
|
int64_t T = x->ne[3]; |
|
int64_t B = x->ne[3] / T; |
|
int64_t C = x->ne[2]; |
|
int64_t H = x->ne[1]; |
|
int64_t W = x->ne[0]; |
|
|
|
x = ggml_reshape_4d(ctx, x, W * H, C, T, B); |
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); |
|
x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); |
|
if (b != NULL) { |
|
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); |
|
x = ggml_add(ctx, x, b); |
|
} |
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); |
|
x = ggml_reshape_4d(ctx, x, W, H, C, T * B); |
|
return x; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* w, |
|
struct ggml_tensor* b, |
|
int s2 = 1, |
|
int p2 = 1, |
|
int d2 = 1) { |
|
x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); |
|
if (b != NULL) { |
|
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); |
|
x = ggml_add(ctx, x, b); |
|
} |
|
return x; |
|
} |
|
|
|
|
|
|
|
__STATIC_INLINE__ std::vector<struct ggml_tensor*> split_qkv(struct ggml_context* ctx, |
|
struct ggml_tensor* qkv) { |
|
qkv = ggml_reshape_4d(ctx, qkv, qkv->ne[0] / 3, 3, qkv->ne[1], qkv->ne[2]); |
|
qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 0, 3, 1, 2)); |
|
|
|
int64_t offset = qkv->nb[2] * qkv->ne[2]; |
|
auto q = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 0); |
|
auto k = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 1); |
|
auto v = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 2); |
|
return {q, k, v}; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention(struct ggml_context* ctx, |
|
struct ggml_tensor* q, |
|
struct ggml_tensor* k, |
|
struct ggml_tensor* v, |
|
bool mask = false) { |
|
#if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUBLAS) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL) |
|
struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); |
|
#else |
|
float d_head = (float)q->ne[0]; |
|
struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); |
|
kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head)); |
|
if (mask) { |
|
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); |
|
} |
|
kq = ggml_soft_max_inplace(ctx, kq); |
|
struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); |
|
#endif |
|
return kqv; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context* ctx, |
|
struct ggml_tensor* q, |
|
struct ggml_tensor* k, |
|
struct ggml_tensor* v, |
|
int64_t n_head, |
|
struct ggml_tensor* mask = NULL, |
|
bool diag_mask_inf = false, |
|
bool skip_reshape = false, |
|
bool flash_attn = false) { |
|
int64_t L_q; |
|
int64_t L_k; |
|
int64_t C; |
|
int64_t N; |
|
int64_t d_head; |
|
if (!skip_reshape) { |
|
L_q = q->ne[1]; |
|
L_k = k->ne[1]; |
|
C = q->ne[0]; |
|
N = q->ne[2]; |
|
d_head = C / n_head; |
|
q = ggml_reshape_4d(ctx, q, d_head, n_head, L_q, N); |
|
q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); |
|
q = ggml_reshape_3d(ctx, q, d_head, L_q, n_head * N); |
|
|
|
k = ggml_reshape_4d(ctx, k, d_head, n_head, L_k, N); |
|
k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); |
|
k = ggml_reshape_3d(ctx, k, d_head, L_k, n_head * N); |
|
|
|
v = ggml_reshape_4d(ctx, v, d_head, n_head, L_k, N); |
|
} else { |
|
L_q = q->ne[1]; |
|
L_k = k->ne[1]; |
|
d_head = v->ne[0]; |
|
N = v->ne[3]; |
|
C = d_head * n_head; |
|
} |
|
|
|
float scale = (1.0f / sqrt((float)d_head)); |
|
|
|
|
|
|
|
|
|
|
|
GGML_ASSERT(((L_k % 256 == 0) && L_q == L_k) || !(L_k % 256 == 0)); |
|
|
|
bool can_use_flash_attn = true; |
|
can_use_flash_attn = can_use_flash_attn && L_k % 256 == 0; |
|
can_use_flash_attn = can_use_flash_attn && d_head % 64 == 0; |
|
|
|
|
|
can_use_flash_attn = can_use_flash_attn && d_head <= 256; |
|
|
|
if (mask != nullptr) { |
|
|
|
can_use_flash_attn = can_use_flash_attn && mask->ne[2] == 1; |
|
can_use_flash_attn = can_use_flash_attn && mask->ne[3] == 1; |
|
} |
|
|
|
|
|
|
|
ggml_tensor* kqv = nullptr; |
|
|
|
if (can_use_flash_attn && flash_attn) { |
|
|
|
k = ggml_cast(ctx, k, GGML_TYPE_F16); |
|
|
|
v = ggml_cont(ctx, ggml_permute(ctx, v, 0, 2, 1, 3)); |
|
v = ggml_reshape_3d(ctx, v, d_head, L_k, n_head * N); |
|
v = ggml_cast(ctx, v, GGML_TYPE_F16); |
|
|
|
kqv = ggml_flash_attn_ext(ctx, q, k, v, mask, scale, 0, 0); |
|
ggml_flash_attn_ext_set_prec(kqv, GGML_PREC_F32); |
|
|
|
|
|
kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_q, kqv->nb[1], kqv->nb[2], 0); |
|
} else { |
|
v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); |
|
v = ggml_reshape_3d(ctx, v, L_k, d_head, n_head * N); |
|
|
|
auto kq = ggml_mul_mat(ctx, k, q); |
|
kq = ggml_scale_inplace(ctx, kq, scale); |
|
if (mask) { |
|
kq = ggml_add(ctx, kq, mask); |
|
} |
|
if (diag_mask_inf) { |
|
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); |
|
} |
|
kq = ggml_soft_max_inplace(ctx, kq); |
|
|
|
kqv = ggml_mul_mat(ctx, v, kq); |
|
|
|
kqv = ggml_reshape_4d(ctx, kqv, d_head, L_q, n_head, N); |
|
kqv = ggml_permute(ctx, kqv, 0, 2, 1, 3); |
|
} |
|
|
|
kqv = ggml_cont(ctx, kqv); |
|
kqv = ggml_reshape_3d(ctx, kqv, d_head * n_head, L_q, N); |
|
|
|
return kqv; |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_layer_norm(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* w, |
|
struct ggml_tensor* b, |
|
float eps = EPS) { |
|
x = ggml_norm(ctx, x, eps); |
|
if (w != NULL) { |
|
x = ggml_mul(ctx, x, w); |
|
if (b != NULL) { |
|
x = ggml_add(ctx, x, b); |
|
} |
|
} |
|
return x; |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* w, |
|
struct ggml_tensor* b, |
|
int num_groups = 32) { |
|
if (ggml_n_dims(x) >= 3 && w != NULL && b != NULL) { |
|
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1); |
|
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); |
|
} |
|
|
|
const float eps = 1e-6f; |
|
x = ggml_group_norm(ctx, x, num_groups, eps); |
|
if (w != NULL && b != NULL) { |
|
x = ggml_mul(ctx, x, w); |
|
|
|
x = ggml_add(ctx, x, b); |
|
} |
|
return x; |
|
} |
|
|
|
__STATIC_INLINE__ void ggml_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor* tensor, void* data, size_t offset, size_t size) { |
|
#if defined(SD_USE_CUBLAS) || defined(SD_USE_SYCL) |
|
if (!ggml_backend_is_cpu(backend)) { |
|
ggml_backend_tensor_get_async(backend, tensor, data, offset, size); |
|
ggml_backend_synchronize(backend); |
|
} else { |
|
ggml_backend_tensor_get(tensor, data, offset, size); |
|
} |
|
#else |
|
ggml_backend_tensor_get(tensor, data, offset, size); |
|
#endif |
|
} |
|
|
|
__STATIC_INLINE__ float ggml_backend_tensor_get_f32(ggml_tensor* tensor) { |
|
GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16); |
|
float value; |
|
if (tensor->type == GGML_TYPE_F32) { |
|
ggml_backend_tensor_get(tensor, &value, 0, sizeof(value)); |
|
} else { |
|
ggml_fp16_t f16_value; |
|
ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value)); |
|
value = ggml_fp16_to_fp32(f16_value); |
|
} |
|
return value; |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor(struct ggml_context* ctx, |
|
const std::vector<float>& vec) { |
|
struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, vec.size()); |
|
memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t)); |
|
return t; |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor_i32(struct ggml_context* ctx, |
|
const std::vector<int>& vec) { |
|
struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vec.size()); |
|
memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t)); |
|
return t; |
|
} |
|
|
|
__STATIC_INLINE__ std::vector<float> arange(float start, float end, float step = 1.f) { |
|
std::vector<float> result; |
|
|
|
for (float value = start; value < end; value += step) { |
|
result.push_back(value); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
__STATIC_INLINE__ std::vector<float> timestep_embedding(std::vector<float> timesteps, |
|
int dim, |
|
int max_period = 10000) { |
|
|
|
|
|
size_t N = timesteps.size(); |
|
int acutual_dim = dim; |
|
if (dim % 2 != 0) { |
|
acutual_dim = dim + 1; |
|
} |
|
std::vector<float> embedding(N * acutual_dim, 0.f); |
|
int half = dim / 2; |
|
std::vector<float> freqs(half); |
|
for (int i = 0; i < half; ++i) { |
|
freqs[i] = (float)std::exp(-std::log(max_period) * i / half); |
|
} |
|
for (int i = 0; i < N; ++i) { |
|
for (int j = 0; j < half; ++j) { |
|
float arg = timesteps[i] * freqs[j]; |
|
embedding[i * acutual_dim + j] = std::cos(arg); |
|
embedding[i * acutual_dim + j + half] = std::sin(arg); |
|
} |
|
} |
|
return embedding; |
|
} |
|
|
|
__STATIC_INLINE__ void set_timestep_embedding(std::vector<float> timesteps, |
|
struct ggml_tensor* embedding, |
|
int dim, |
|
int max_period = 10000) { |
|
std::vector<float> embedding_vec = timestep_embedding(timesteps, dim, max_period); |
|
memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding)); |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx, |
|
std::vector<float> timesteps, |
|
int dim, |
|
int max_period = 10000) { |
|
|
|
|
|
std::vector<float> embedding_vec = timestep_embedding(timesteps, dim, max_period); |
|
int acutual_dim = dim; |
|
if (dim % 2 != 0) { |
|
acutual_dim = dim + 1; |
|
} |
|
struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps.size()); |
|
if (embedding->data != NULL) { |
|
memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding)); |
|
} else { |
|
ggml_backend_tensor_set(embedding, embedding_vec.data(), 0, ggml_nbytes(embedding)); |
|
} |
|
return embedding; |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_timestep_embedding( |
|
struct ggml_context* ctx, |
|
struct ggml_tensor* timesteps, |
|
int dim, |
|
int max_period = 10000, |
|
float time_factor = 1.0f) { |
|
timesteps = ggml_scale(ctx, timesteps, time_factor); |
|
return ggml_timestep_embedding(ctx, timesteps, dim, max_period); |
|
} |
|
|
|
__STATIC_INLINE__ size_t ggml_tensor_num(ggml_context* ctx) { |
|
size_t num = 0; |
|
for (ggml_tensor* t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { |
|
num++; |
|
} |
|
return num; |
|
} |
|
|
|
|
|
#define MAX_PARAMS_TENSOR_NUM 15360 |
|
#define MAX_GRAPH_SIZE 15360 |
|
|
|
struct GGMLRunner { |
|
protected: |
|
typedef std::function<struct ggml_cgraph*()> get_graph_cb_t; |
|
|
|
struct ggml_context* params_ctx = NULL; |
|
ggml_backend_buffer_t params_buffer = NULL; |
|
|
|
struct ggml_context* compute_ctx = NULL; |
|
struct ggml_gallocr* compute_allocr = NULL; |
|
|
|
std::map<struct ggml_tensor*, const void*> backend_tensor_data_map; |
|
|
|
ggml_backend_t backend = NULL; |
|
|
|
void alloc_params_ctx() { |
|
struct ggml_init_params params; |
|
params.mem_size = static_cast<size_t>(MAX_PARAMS_TENSOR_NUM * ggml_tensor_overhead()); |
|
params.mem_buffer = NULL; |
|
params.no_alloc = true; |
|
|
|
params_ctx = ggml_init(params); |
|
GGML_ASSERT(params_ctx != NULL); |
|
} |
|
|
|
void free_params_ctx() { |
|
if (params_ctx != NULL) { |
|
ggml_free(params_ctx); |
|
params_ctx = NULL; |
|
} |
|
} |
|
|
|
void alloc_compute_ctx() { |
|
struct ggml_init_params params; |
|
params.mem_size = static_cast<size_t>(ggml_tensor_overhead() * MAX_GRAPH_SIZE + ggml_graph_overhead()); |
|
params.mem_buffer = NULL; |
|
params.no_alloc = true; |
|
|
|
compute_ctx = ggml_init(params); |
|
GGML_ASSERT(compute_ctx != NULL); |
|
} |
|
|
|
void free_compute_ctx() { |
|
if (compute_ctx != NULL) { |
|
ggml_free(compute_ctx); |
|
compute_ctx = NULL; |
|
} |
|
} |
|
|
|
bool alloc_compute_buffer(get_graph_cb_t get_graph) { |
|
if (compute_allocr != NULL) { |
|
return true; |
|
} |
|
reset_compute_ctx(); |
|
struct ggml_cgraph* gf = get_graph(); |
|
backend_tensor_data_map.clear(); |
|
compute_allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); |
|
|
|
if (!ggml_gallocr_reserve(compute_allocr, gf)) { |
|
|
|
LOG_ERROR("%s: failed to allocate the compute buffer\n", get_desc().c_str()); |
|
free_compute_buffer(); |
|
return false; |
|
} |
|
|
|
|
|
size_t compute_buffer_size = ggml_gallocr_get_buffer_size(compute_allocr, 0); |
|
LOG_DEBUG("%s compute buffer size: %.2f MB(%s)", |
|
get_desc().c_str(), |
|
compute_buffer_size / 1024.0 / 1024.0, |
|
ggml_backend_is_cpu(backend) ? "RAM" : "VRAM"); |
|
return true; |
|
} |
|
|
|
void cpy_data_to_backend_tensor() { |
|
for (auto& kv : backend_tensor_data_map) { |
|
auto tensor = kv.first; |
|
auto data = kv.second; |
|
|
|
ggml_backend_tensor_set(tensor, data, 0, ggml_nbytes(tensor)); |
|
} |
|
|
|
backend_tensor_data_map.clear(); |
|
} |
|
|
|
public: |
|
virtual std::string get_desc() = 0; |
|
|
|
GGMLRunner(ggml_backend_t backend) |
|
: backend(backend) { |
|
alloc_params_ctx(); |
|
} |
|
|
|
virtual ~GGMLRunner() { |
|
free_params_buffer(); |
|
free_compute_buffer(); |
|
free_params_ctx(); |
|
free_compute_ctx(); |
|
} |
|
|
|
void reset_compute_ctx() { |
|
free_compute_ctx(); |
|
alloc_compute_ctx(); |
|
} |
|
|
|
bool alloc_params_buffer() { |
|
size_t num_tensors = ggml_tensor_num(params_ctx); |
|
params_buffer = ggml_backend_alloc_ctx_tensors(params_ctx, backend); |
|
if (params_buffer == NULL) { |
|
LOG_ERROR("%s alloc params backend buffer failed, num_tensors = %i", |
|
get_desc().c_str(), |
|
num_tensors); |
|
return false; |
|
} |
|
size_t params_buffer_size = ggml_backend_buffer_get_size(params_buffer); |
|
LOG_DEBUG("%s params backend buffer size = % 6.2f MB(%s) (%i tensors)", |
|
get_desc().c_str(), |
|
params_buffer_size / (1024.0 * 1024.0), |
|
ggml_backend_is_cpu(backend) ? "RAM" : "VRAM", |
|
num_tensors); |
|
|
|
|
|
|
|
|
|
|
|
return true; |
|
} |
|
|
|
void free_params_buffer() { |
|
if (params_buffer != NULL) { |
|
ggml_backend_buffer_free(params_buffer); |
|
params_buffer = NULL; |
|
} |
|
} |
|
|
|
size_t get_params_buffer_size() { |
|
if (params_buffer != NULL) { |
|
return ggml_backend_buffer_get_size(params_buffer); |
|
} |
|
return 0; |
|
} |
|
|
|
void free_compute_buffer() { |
|
if (compute_allocr != NULL) { |
|
ggml_gallocr_free(compute_allocr); |
|
compute_allocr = NULL; |
|
} |
|
} |
|
|
|
|
|
void set_backend_tensor_data(struct ggml_tensor* tensor, const void* data) { |
|
backend_tensor_data_map[tensor] = data; |
|
} |
|
|
|
struct ggml_tensor* to_backend(struct ggml_tensor* tensor) { |
|
GGML_ASSERT(compute_ctx != NULL); |
|
if (tensor == NULL) { |
|
return NULL; |
|
} |
|
|
|
if (!ggml_backend_is_cpu(backend) && (tensor->buffer == NULL || ggml_backend_buffer_is_host(tensor->buffer))) { |
|
|
|
auto backend_tensor = ggml_dup_tensor(compute_ctx, tensor); |
|
|
|
set_backend_tensor_data(backend_tensor, tensor->data); |
|
return backend_tensor; |
|
} else { |
|
return tensor; |
|
} |
|
} |
|
|
|
void compute(get_graph_cb_t get_graph, |
|
int n_threads, |
|
bool free_compute_buffer_immediately = true, |
|
struct ggml_tensor** output = NULL, |
|
struct ggml_context* output_ctx = NULL) { |
|
alloc_compute_buffer(get_graph); |
|
reset_compute_ctx(); |
|
struct ggml_cgraph* gf = get_graph(); |
|
GGML_ASSERT(ggml_gallocr_alloc_graph(compute_allocr, gf)); |
|
cpy_data_to_backend_tensor(); |
|
if (ggml_backend_is_cpu(backend)) { |
|
ggml_backend_cpu_set_n_threads(backend, n_threads); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml_backend_graph_compute(backend, gf); |
|
|
|
#ifdef GGML_PERF |
|
ggml_graph_print(gf); |
|
#endif |
|
if (output != NULL) { |
|
auto result = ggml_graph_node(gf, -1); |
|
if (*output == NULL && output_ctx != NULL) { |
|
*output = ggml_dup_tensor(output_ctx, result); |
|
} |
|
if (*output != NULL) { |
|
ggml_backend_tensor_get_and_sync(backend, result, (*output)->data, 0, ggml_nbytes(*output)); |
|
} |
|
} |
|
|
|
if (free_compute_buffer_immediately) { |
|
free_compute_buffer(); |
|
} |
|
} |
|
}; |
|
|
|
class GGMLBlock { |
|
protected: |
|
typedef std::unordered_map<std::string, struct ggml_tensor*> ParameterMap; |
|
typedef std::unordered_map<std::string, std::shared_ptr<GGMLBlock>> GGMLBlockMap; |
|
GGMLBlockMap blocks; |
|
ParameterMap params; |
|
|
|
void init_blocks(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
for (auto& pair : blocks) { |
|
auto& block = pair.second; |
|
block->init(ctx, tensor_types, prefix + pair.first); |
|
} |
|
} |
|
|
|
virtual void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {} |
|
|
|
public: |
|
void init(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") { |
|
if (prefix.size() > 0) { |
|
prefix = prefix + "."; |
|
} |
|
init_blocks(ctx, tensor_types, prefix); |
|
init_params(ctx, tensor_types, prefix); |
|
} |
|
|
|
size_t get_params_num() { |
|
size_t num_tensors = params.size(); |
|
for (auto& pair : blocks) { |
|
auto& block = pair.second; |
|
|
|
num_tensors += block->get_params_num(); |
|
} |
|
return num_tensors; |
|
}; |
|
|
|
size_t get_params_mem_size() { |
|
size_t mem_size = 0; |
|
for (auto& pair : blocks) { |
|
auto& block = pair.second; |
|
|
|
mem_size += block->get_params_mem_size(); |
|
} |
|
|
|
for (auto& pair : params) { |
|
mem_size += ggml_nbytes(pair.second); |
|
} |
|
|
|
return mem_size; |
|
} |
|
|
|
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, std::string prefix = "") { |
|
if (prefix.size() > 0) { |
|
prefix = prefix + "."; |
|
} |
|
for (auto& pair : blocks) { |
|
auto& block = pair.second; |
|
block->get_param_tensors(tensors, prefix + pair.first); |
|
} |
|
|
|
for (auto& pair : params) { |
|
struct ggml_tensor* param = pair.second; |
|
tensors[prefix + pair.first] = pair.second; |
|
} |
|
} |
|
}; |
|
|
|
class UnaryBlock : public GGMLBlock { |
|
public: |
|
virtual struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) = 0; |
|
}; |
|
|
|
class Linear : public UnaryBlock { |
|
protected: |
|
int64_t in_features; |
|
int64_t out_features; |
|
bool bias; |
|
bool force_f32; |
|
|
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32; |
|
if (in_features % ggml_blck_size(wtype) != 0 || force_f32) { |
|
wtype = GGML_TYPE_F32; |
|
} |
|
params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features); |
|
if (bias) { |
|
enum ggml_type wtype = GGML_TYPE_F32; |
|
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_features); |
|
} |
|
} |
|
|
|
public: |
|
Linear(int64_t in_features, |
|
int64_t out_features, |
|
bool bias = true, |
|
bool force_f32 = false) |
|
: in_features(in_features), |
|
out_features(out_features), |
|
bias(bias), |
|
force_f32(force_f32) {} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
struct ggml_tensor* w = params["weight"]; |
|
struct ggml_tensor* b = NULL; |
|
if (bias) { |
|
b = params["bias"]; |
|
} |
|
return ggml_nn_linear(ctx, x, w, b); |
|
} |
|
}; |
|
|
|
class Embedding : public UnaryBlock { |
|
protected: |
|
int64_t embedding_dim; |
|
int64_t num_embeddings; |
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32; |
|
params["weight"] = ggml_new_tensor_2d(ctx, wtype, embedding_dim, num_embeddings); |
|
} |
|
|
|
public: |
|
Embedding(int64_t num_embeddings, int64_t embedding_dim) |
|
: embedding_dim(embedding_dim), |
|
num_embeddings(num_embeddings) { |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* input_ids) { |
|
|
|
auto weight = params["weight"]; |
|
|
|
|
|
|
|
int64_t n = input_ids->ne[1]; |
|
input_ids = ggml_reshape_1d(ctx, input_ids, input_ids->ne[0] * input_ids->ne[1]); |
|
|
|
input_ids = ggml_reshape_3d(ctx, input_ids, input_ids->ne[0], 1, input_ids->ne[1]); |
|
auto embedding = ggml_get_rows(ctx, weight, input_ids); |
|
embedding = ggml_reshape_3d(ctx, embedding, embedding->ne[0], embedding->ne[1] / n, n); |
|
|
|
|
|
return embedding; |
|
} |
|
}; |
|
|
|
class Conv2d : public UnaryBlock { |
|
protected: |
|
int64_t in_channels; |
|
int64_t out_channels; |
|
std::pair<int, int> kernel_size; |
|
std::pair<int, int> stride; |
|
std::pair<int, int> padding; |
|
std::pair<int, int> dilation; |
|
bool bias; |
|
|
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
enum ggml_type wtype = GGML_TYPE_F16; |
|
params["weight"] = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels); |
|
if (bias) { |
|
enum ggml_type wtype = GGML_TYPE_F32; |
|
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels); |
|
} |
|
} |
|
|
|
public: |
|
Conv2d(int64_t in_channels, |
|
int64_t out_channels, |
|
std::pair<int, int> kernel_size, |
|
std::pair<int, int> stride = {1, 1}, |
|
std::pair<int, int> padding = {0, 0}, |
|
std::pair<int, int> dilation = {1, 1}, |
|
bool bias = true) |
|
: in_channels(in_channels), |
|
out_channels(out_channels), |
|
kernel_size(kernel_size), |
|
stride(stride), |
|
padding(padding), |
|
dilation(dilation), |
|
bias(bias) {} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
struct ggml_tensor* w = params["weight"]; |
|
struct ggml_tensor* b = NULL; |
|
if (bias) { |
|
b = params["bias"]; |
|
} |
|
return ggml_nn_conv_2d(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first); |
|
} |
|
}; |
|
|
|
class Conv3dnx1x1 : public UnaryBlock { |
|
protected: |
|
int64_t in_channels; |
|
int64_t out_channels; |
|
int64_t kernel_size; |
|
int64_t stride; |
|
int64_t padding; |
|
int64_t dilation; |
|
bool bias; |
|
|
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
enum ggml_type wtype = GGML_TYPE_F16; |
|
params["weight"] = ggml_new_tensor_4d(ctx, wtype, 1, kernel_size, in_channels, out_channels); |
|
if (bias) { |
|
enum ggml_type wtype = GGML_TYPE_F32; |
|
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels); |
|
} |
|
} |
|
|
|
public: |
|
Conv3dnx1x1(int64_t in_channels, |
|
int64_t out_channels, |
|
int64_t kernel_size, |
|
int64_t stride = 1, |
|
int64_t padding = 0, |
|
int64_t dilation = 1, |
|
bool bias = true) |
|
: in_channels(in_channels), |
|
out_channels(out_channels), |
|
kernel_size(kernel_size), |
|
stride(stride), |
|
padding(padding), |
|
dilation(dilation), |
|
bias(bias) {} |
|
|
|
|
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
struct ggml_tensor* w = params["weight"]; |
|
struct ggml_tensor* b = NULL; |
|
if (bias) { |
|
b = params["bias"]; |
|
} |
|
return ggml_nn_conv_3d_nx1x1(ctx, x, w, b, stride, padding, dilation); |
|
} |
|
}; |
|
|
|
class LayerNorm : public UnaryBlock { |
|
protected: |
|
int64_t normalized_shape; |
|
float eps; |
|
bool elementwise_affine; |
|
bool bias; |
|
|
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
if (elementwise_affine) { |
|
enum ggml_type wtype = GGML_TYPE_F32; |
|
params["weight"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape); |
|
if (bias) { |
|
enum ggml_type wtype = GGML_TYPE_F32; |
|
params["bias"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape); |
|
} |
|
} |
|
} |
|
|
|
public: |
|
LayerNorm(int64_t normalized_shape, |
|
float eps = 1e-05f, |
|
bool elementwise_affine = true, |
|
bool bias = true) |
|
: normalized_shape(normalized_shape), |
|
eps(eps), |
|
elementwise_affine(elementwise_affine), |
|
bias(bias) {} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
struct ggml_tensor* w = NULL; |
|
struct ggml_tensor* b = NULL; |
|
|
|
if (elementwise_affine) { |
|
w = params["weight"]; |
|
if (bias) { |
|
b = params["bias"]; |
|
} |
|
} |
|
return ggml_nn_layer_norm(ctx, x, w, b, eps); |
|
} |
|
}; |
|
|
|
class GroupNorm : public GGMLBlock { |
|
protected: |
|
int64_t num_groups; |
|
int64_t num_channels; |
|
float eps; |
|
bool affine; |
|
|
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
if (affine) { |
|
enum ggml_type wtype = GGML_TYPE_F32; |
|
enum ggml_type bias_wtype = GGML_TYPE_F32; |
|
params["weight"] = ggml_new_tensor_1d(ctx, wtype, num_channels); |
|
params["bias"] = ggml_new_tensor_1d(ctx, bias_wtype, num_channels); |
|
} |
|
} |
|
|
|
public: |
|
GroupNorm(int64_t num_groups, |
|
int64_t num_channels, |
|
float eps = 1e-05f, |
|
bool affine = true) |
|
: num_groups(num_groups), |
|
num_channels(num_channels), |
|
eps(eps), |
|
affine(affine) {} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
struct ggml_tensor* w = NULL; |
|
struct ggml_tensor* b = NULL; |
|
if (affine) { |
|
w = params["weight"]; |
|
b = params["bias"]; |
|
} |
|
return ggml_nn_group_norm(ctx, x, w, b, num_groups); |
|
} |
|
}; |
|
|
|
class GroupNorm32 : public GroupNorm { |
|
public: |
|
GroupNorm32(int64_t num_channels) |
|
: GroupNorm(32, num_channels, 1e-06f) {} |
|
}; |
|
|
|
class MultiheadAttention : public GGMLBlock { |
|
protected: |
|
int64_t embed_dim; |
|
int64_t n_head; |
|
std::string q_proj_name; |
|
std::string k_proj_name; |
|
std::string v_proj_name; |
|
std::string out_proj_name; |
|
|
|
public: |
|
MultiheadAttention(int64_t embed_dim, |
|
int64_t n_head, |
|
bool qkv_proj_bias = true, |
|
bool out_proj_bias = true, |
|
std::string q_proj_name = "q_proj", |
|
std::string k_proj_name = "k_proj", |
|
std::string v_proj_name = "v_proj", |
|
std::string out_proj_name = "out_proj") |
|
: embed_dim(embed_dim), |
|
n_head(n_head), |
|
q_proj_name(q_proj_name), |
|
k_proj_name(k_proj_name), |
|
v_proj_name(v_proj_name), |
|
out_proj_name(out_proj_name) { |
|
blocks[q_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias)); |
|
blocks[k_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias)); |
|
blocks[v_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias)); |
|
blocks[out_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, out_proj_bias)); |
|
} |
|
|
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, bool mask = false) { |
|
auto q_proj = std::dynamic_pointer_cast<Linear>(blocks[q_proj_name]); |
|
auto k_proj = std::dynamic_pointer_cast<Linear>(blocks[k_proj_name]); |
|
auto v_proj = std::dynamic_pointer_cast<Linear>(blocks[v_proj_name]); |
|
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks[out_proj_name]); |
|
|
|
struct ggml_tensor* q = q_proj->forward(ctx, x); |
|
struct ggml_tensor* k = k_proj->forward(ctx, x); |
|
struct ggml_tensor* v = v_proj->forward(ctx, x); |
|
|
|
x = ggml_nn_attention_ext(ctx, q, k, v, n_head, NULL, mask); |
|
|
|
x = out_proj->forward(ctx, x); |
|
return x; |
|
} |
|
}; |
|
|
|
#endif |
|
|