|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import struct |
|
import json |
|
import torch |
|
import numpy as np |
|
import re |
|
|
|
from transformers import AutoModelForCausalLM |
|
|
|
|
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a signficant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8+n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
if len(sys.argv) < 2: |
|
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") |
|
sys.exit(1) |
|
|
|
|
|
dir_model = sys.argv[1] |
|
fname_out = sys.argv[1] + "/ggml-model-f16.bin" |
|
|
|
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: |
|
encoder = json.load(f) |
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: |
|
hparams = json.load(f) |
|
|
|
|
|
use_f16 = True |
|
if len(sys.argv) > 2: |
|
use_f16 = False |
|
fname_out = sys.argv[1] + "/ggml-model-f32.bin" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True) |
|
|
|
|
|
list_vars = model.state_dict() |
|
|
|
|
|
print(hparams) |
|
|
|
fout = open(fname_out, "wb") |
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) |
|
fout.write(struct.pack("i", hparams["vocab_size"])) |
|
fout.write(struct.pack("i", hparams["n_positions"])) |
|
fout.write(struct.pack("i", hparams["n_embd"])) |
|
fout.write(struct.pack("i", hparams["n_head"])) |
|
fout.write(struct.pack("i", hparams["n_layer"])) |
|
fout.write(struct.pack("i", use_f16)) |
|
|
|
byte_encoder = bytes_to_unicode() |
|
byte_decoder = {v:k for k, v in byte_encoder.items()} |
|
|
|
fout.write(struct.pack("i", len(encoder))) |
|
|
|
for key in encoder: |
|
text = bytearray([byte_decoder[c] for c in key]) |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
|
|
for name in list_vars.keys(): |
|
data = list_vars[name].squeeze().numpy() |
|
print("Processing variable: " + name + " with shape: ", data.shape) |
|
|
|
|
|
if name == "transformer.ln_f.weight": |
|
name = "model/ln_f/g" |
|
elif name == "transformer.ln_f.bias": |
|
name = "model/ln_f/b" |
|
elif name == "transformer.wte.weight": |
|
name = "model/wte" |
|
elif name == "transformer.wpe.weight": |
|
name = "model/wpe" |
|
elif name == "lm_head.weight": |
|
name = "model/lm_head" |
|
elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/ln_1/g" |
|
elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/ln_1/b" |
|
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/attn/c_attn/w" |
|
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/attn/c_attn/b" |
|
elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/attn/c_proj/w" |
|
elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/attn/c_proj/b" |
|
elif re.match(r"transformer.h.\d+.ln_2.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/ln_2/g" |
|
elif re.match(r"transformer.h.\d+.ln_2.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/ln_2/b" |
|
elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/mlp/c_fc/w" |
|
elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/mlp/c_fc/b" |
|
elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/mlp/c_proj/w" |
|
elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/mlp/c_proj/b" |
|
else: |
|
print("Unrecognized variable name. %s", name) |
|
|
|
|
|
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): |
|
print(" Skipping variable: " + name) |
|
continue |
|
|
|
n_dims = len(data.shape); |
|
|
|
|
|
ftype = 0; |
|
if use_f16: |
|
if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2: |
|
print(" Converting to float16") |
|
data = data.astype(np.float16) |
|
ftype = 1 |
|
else: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
if name[-14:] == "/attn/c_attn/w" or \ |
|
name[-14:] == "/attn/c_proj/w" or \ |
|
name[-11:] == "/mlp/c_fc/w" or \ |
|
name[-13:] == "/mlp/c_proj/w": |
|
print(" Transposing") |
|
data = data.transpose() |
|
|
|
|
|
str = name.encode('utf-8') |
|
fout.write(struct.pack("iii", n_dims, len(str), ftype)) |
|
for i in range(n_dims): |
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) |
|
fout.write(str); |
|
|
|
|
|
data.tofile(fout) |
|
|
|
fout.close() |
|
|
|
print("Done. Output file: " + fname_out) |
|
print("") |