|
import sys |
|
import struct |
|
import json |
|
import numpy as np |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import sentencepiece.sentencepiece_model_pb2 as model |
|
|
|
|
|
def bytes_to_unicode(): |
|
|
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a signficant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8+n) |
|
n += 1 |
|
|
|
cs = [chr(n) for n in cs] |
|
|
|
return dict(zip(bs, cs)) |
|
|
|
if len(sys.argv) < 3: |
|
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") |
|
print(" ftype == 0 -> float32") |
|
print(" ftype == 1 -> float16") |
|
sys.exit(1) |
|
|
|
|
|
|
|
dir_model = sys.argv[1] |
|
fname_out = sys.argv[1] + "/ggml-model.bin" |
|
|
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: |
|
hparams = json.load(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
ftype_str = ["f32", "f16"] |
|
|
|
ftype = 1 |
|
if len(sys.argv) > 2: |
|
ftype = int(sys.argv[2]) |
|
if ftype < 0 or ftype > 1: |
|
print("Invalid ftype: " + str(ftype)) |
|
sys.exit(1) |
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
dir_model, low_cpu_mem_usage=True, trust_remote_code=True |
|
) |
|
|
|
|
|
|
|
|
|
list_vars = model.state_dict() |
|
for name in list_vars.keys(): |
|
print(name, list_vars[name].shape, list_vars[name].dtype) |
|
|
|
fout = open(fname_out, "wb") |
|
|
|
print(hparams) |
|
|
|
fout.write(struct.pack("i", 0x67676D6C)) |
|
fout.write(struct.pack("i", hparams["d_model"])) |
|
fout.write(struct.pack("i", hparams["max_seq_len"])) |
|
fout.write(struct.pack("i", hparams["n_heads"])) |
|
fout.write(struct.pack("i", hparams["n_layers"])) |
|
fout.write(struct.pack("i", hparams["vocab_size"])) |
|
fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"])) |
|
fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0)) |
|
fout.write(struct.pack("i", ftype)) |
|
|
|
vocab_size = hparams["vocab_size"] |
|
|
|
encoder = tokenizer.vocab |
|
|
|
encoder.update(tokenizer.get_added_vocab()) |
|
|
|
byte_encoder = bytes_to_unicode() |
|
byte_decoder = {v:k for k, v in byte_encoder.items()} |
|
|
|
counter = 0 |
|
|
|
for key in sorted(encoder, key=encoder.get): |
|
|
|
text="" |
|
for c in key: |
|
if c not in byte_decoder: |
|
text += c |
|
else: |
|
text += chr(byte_decoder[c] ) |
|
text = bytearray( text, encoding="utf-8" ) |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
counter += 1 |
|
|
|
|
|
while counter < vocab_size: |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
counter += 1 |
|
|
|
|
|
|
|
for name in list_vars.keys(): |
|
data = list_vars[name].squeeze().numpy() |
|
print("Processing variable: " + name + " with shape: ", data.shape) |
|
|
|
n_dims = len(data.shape) |
|
|
|
|
|
ftype_cur = 0 |
|
if ftype != 0: |
|
if name[-7:] == ".weight" and n_dims == 2: |
|
print(" Converting to float16") |
|
data = data.astype(np.float16) |
|
ftype_cur = 1 |
|
else: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
else: |
|
if data.dtype != np.float32: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
|
|
|
|
str = name.encode("utf-8") |
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) |
|
for i in range(n_dims): |
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) |
|
fout.write(str) |
|
|
|
|
|
data.tofile(fout) |
|
|
|
fout.close() |
|
|
|
print("Done. Output file: " + fname_out) |
|
print("") |