|
import sys |
|
import struct |
|
import json |
|
import numpy as np |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
if len(sys.argv) < 3: |
|
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") |
|
print(" ftype == 0 -> float32") |
|
print(" ftype == 1 -> float16") |
|
sys.exit(1) |
|
|
|
|
|
dir_model = sys.argv[1] |
|
fname_out = sys.argv[1] + "/ggml-model.bin" |
|
|
|
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: |
|
encoder = json.load(f) |
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: |
|
hparams = json.load(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
ftype_str = ["f32", "f16"] |
|
|
|
ftype = 1 |
|
if len(sys.argv) > 2: |
|
ftype = int(sys.argv[2]) |
|
if ftype < 0 or ftype > 1: |
|
print("Invalid ftype: " + str(ftype)) |
|
sys.exit(1) |
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model) |
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True) |
|
|
|
|
|
|
|
|
|
list_vars = model.state_dict() |
|
for name in list_vars.keys(): |
|
print(name, list_vars[name].shape, list_vars[name].dtype) |
|
|
|
fout = open(fname_out, "wb") |
|
|
|
print(hparams) |
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) |
|
fout.write(struct.pack("i", hparams["vocab_size"])) |
|
fout.write(struct.pack("i", hparams["max_position_embeddings"])) |
|
fout.write(struct.pack("i", hparams["hidden_size"])) |
|
fout.write(struct.pack("i", hparams["num_attention_heads"])) |
|
fout.write(struct.pack("i", hparams["num_hidden_layers"])) |
|
fout.write(struct.pack("i", int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))) |
|
fout.write(struct.pack("i", hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)) |
|
fout.write(struct.pack("i", ftype)) |
|
|
|
|
|
dot_token = tokenizer.encode('.')[0] |
|
for i in range(hparams["vocab_size"]): |
|
text = tokenizer.decode([dot_token, i]).encode('utf-8') |
|
|
|
text = text[1:] |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
|
|
for name in list_vars.keys(): |
|
data = list_vars[name].squeeze().numpy() |
|
print("Processing variable: " + name + " with shape: ", data.shape) |
|
|
|
|
|
if name.endswith(".attention.masked_bias") or \ |
|
name.endswith(".attention.bias") or \ |
|
name.endswith(".attention.rotary_emb.inv_freq"): |
|
print(" Skipping variable: " + name) |
|
continue |
|
|
|
n_dims = len(data.shape); |
|
|
|
|
|
ftype_cur = 0; |
|
if ftype != 0: |
|
if name[-7:] == ".weight" and n_dims == 2: |
|
print(" Converting to float16") |
|
data = data.astype(np.float16) |
|
ftype_cur = 1 |
|
else: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
else: |
|
if data.dtype != np.float32: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
|
|
|
|
str = name.encode('utf-8') |
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) |
|
for i in range(n_dims): |
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) |
|
fout.write(str); |
|
|
|
|
|
data.tofile(fout) |
|
|
|
fout.close() |
|
|
|
print("Done. Output file: " + fname_out) |
|
print("") |