|
import argparse |
|
import os |
|
import json |
|
import re |
|
|
|
import torch |
|
import numpy as np |
|
from gguf import * |
|
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel, SiglipVisionModel |
|
|
|
TEXT = "clip.text" |
|
VISION = "clip.vision" |
|
|
|
|
|
def k(raw_key: str, arch: str) -> str: |
|
return raw_key.format(arch=arch) |
|
|
|
|
|
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool: |
|
if name in ( |
|
"logit_scale", |
|
"text_model.embeddings.position_ids", |
|
"vision_model.embeddings.position_ids", |
|
): |
|
return True |
|
|
|
if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]: |
|
return True |
|
|
|
if name.startswith("v") and not has_vision: |
|
return True |
|
|
|
if name.startswith("t") and not has_text: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def get_tensor_name(name: str) -> str: |
|
|
|
|
|
if name == "image_newline": |
|
return "model.image_newline" |
|
if name.startswith("multi_modal_projector"): |
|
name = name.replace("multi_modal_projector", "mm") |
|
if "linear_1" in name: |
|
name = name.replace("linear_1", "0") |
|
if "linear_2" in name: |
|
name = name.replace("linear_2", "2") |
|
return name |
|
|
|
if "projection" in name: |
|
return name |
|
if "mm_projector" in name: |
|
name = name.replace("model.mm_projector", "mm") |
|
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) |
|
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) |
|
return name |
|
|
|
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") |
|
|
|
|
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a significant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = ( |
|
list(range(ord("!"), ord("~") + 1)) |
|
+ list(range(ord("¡"), ord("¬") + 1)) |
|
+ list(range(ord("®"), ord("ÿ") + 1)) |
|
) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
ap = argparse.ArgumentParser() |
|
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) |
|
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") |
|
ap.add_argument('--bigendian', action="store_true", default=False, help="Model is executed on big-endian machine") |
|
ap.add_argument("--text-only", action="store_true", required=False, |
|
help="Save a text-only model. It can't be used to encode images") |
|
ap.add_argument("--vision-only", action="store_true", required=False, |
|
help="Save a vision-only model. It can't be used to encode texts") |
|
ap.add_argument("--clip-model-is-vision", action="store_true", required=False, |
|
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") |
|
|
|
|
|
encoder_group = ap.add_mutually_exclusive_group() |
|
encoder_group.add_argument("--clip-model-is-openclip", action="store_true", required=False, |
|
help="The clip model is from openclip (for ViT-SO400M type))") |
|
encoder_group.add_argument("--clip-model-is-siglip", action="store_true", required=False, |
|
help="the visual encoder is Siglip.") |
|
|
|
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") |
|
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") |
|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) |
|
|
|
|
|
default_image_mean = [0.48145466, 0.4578275, 0.40821073] |
|
default_image_std = [0.26862954, 0.26130258, 0.27577711] |
|
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) |
|
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) |
|
|
|
|
|
args = ap.parse_args() |
|
|
|
|
|
if args.text_only and args.vision_only: |
|
print("--text-only and --image-only arguments cannot be specified at the same time.") |
|
exit(1) |
|
|
|
if args.use_f32: |
|
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") |
|
|
|
|
|
dir_model = args.model_dir |
|
|
|
if ( |
|
args.clip_model_is_vision or |
|
not os.path.exists(dir_model + "/vocab.json") or |
|
args.clip_model_is_openclip or |
|
args.clip_model_is_siglip |
|
): |
|
vocab = None |
|
tokens = None |
|
else: |
|
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: |
|
vocab = json.load(f) |
|
tokens = [key for key in vocab] |
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: |
|
config = json.load(f) |
|
if args.clip_model_is_vision: |
|
v_hparams = config |
|
t_hparams = None |
|
else: |
|
v_hparams = config["vision_config"] |
|
t_hparams = config["text_config"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
ftype_str = ["f32", "f16"] |
|
|
|
ftype = 1 |
|
if args.use_f32: |
|
ftype = 0 |
|
|
|
if args.clip_model_is_siglip: |
|
model = SiglipVisionModel.from_pretrained(dir_model) |
|
processor = None |
|
elif args.clip_model_is_vision or args.clip_model_is_openclip: |
|
model = CLIPVisionModel.from_pretrained(dir_model) |
|
processor = None |
|
else: |
|
model = CLIPModel.from_pretrained(dir_model) |
|
processor = CLIPProcessor.from_pretrained(dir_model) |
|
|
|
fname_middle = None |
|
has_text_encoder = True |
|
has_vision_encoder = True |
|
has_llava_projector = False |
|
if args.text_only: |
|
fname_middle = "text-" |
|
has_vision_encoder = False |
|
elif args.llava_projector is not None: |
|
fname_middle = "mmproj-" |
|
has_text_encoder = False |
|
has_llava_projector = True |
|
elif args.vision_only: |
|
fname_middle = "vision-" |
|
has_text_encoder = False |
|
else: |
|
fname_middle = "" |
|
|
|
output_dir = args.output_dir if args.output_dir is not None else dir_model |
|
os.makedirs(output_dir, exist_ok=True) |
|
output_prefix = os.path.basename(output_dir).replace("ggml_", "") |
|
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") |
|
fout = GGUFWriter(path=fname_out, arch="clip", endianess=GGUFEndian.LITTLE if not args.bigendian else GGUFEndian.BIG) |
|
|
|
fout.add_bool("clip.has_text_encoder", has_text_encoder) |
|
fout.add_bool("clip.has_vision_encoder", has_vision_encoder) |
|
fout.add_bool("clip.has_llava_projector", has_llava_projector) |
|
fout.add_file_type(ftype) |
|
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model) |
|
fout.add_name(model_name) |
|
if args.text_only: |
|
fout.add_description("text-only CLIP model") |
|
elif args.vision_only and not has_llava_projector: |
|
fout.add_description("vision-only CLIP model") |
|
elif has_llava_projector: |
|
fout.add_description("image encoder for LLaVA") |
|
|
|
fout.add_string("clip.projector_type", args.projector_type) |
|
else: |
|
fout.add_description("two-tower CLIP model") |
|
|
|
if has_text_encoder: |
|
assert t_hparams is not None |
|
assert tokens is not None |
|
if args.clip_model_is_siglip: |
|
text_projection_dim = 0 |
|
else: |
|
text_projection_dim = t_hparams.get("projection_dim", config["projection_dim"]) |
|
|
|
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"]) |
|
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"]) |
|
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"]) |
|
fout.add_uint32("clip.text.projection_dim", text_projection_dim) |
|
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"]) |
|
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"]) |
|
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"]) |
|
fout.add_token_list(tokens) |
|
|
|
|
|
|
|
def get_non_negative_vision_feature_layers(v_hparams): |
|
""" |
|
Determine the vision feature layer(s) for the llava model, which are indices into the |
|
hidden states of the visual encoder. Note that the hidden states array generally takes the |
|
form: |
|
|
|
[<emb input>, <output of enc block 0>, ... <output of enc block num_hidden_layers>] |
|
|
|
so feature indices should be offset as n+1 to get the output of encoder block n. |
|
We convert all vision feature layers to non-negative so that -1 can be used in |
|
the model as an unset value. If no vision feature layer is found, we leave it unset. |
|
""" |
|
num_hidden_layers = v_hparams["num_hidden_layers"] |
|
to_non_negative = lambda layer_idx: layer_idx if layer_idx >= 0 else num_hidden_layers + layer_idx + 1 |
|
feature_layers_key = None |
|
|
|
if "vision_feature_layer" in config: |
|
feature_layers_key = "vision_feature_layer" |
|
|
|
elif "mm_vision_select_layer" in config: |
|
feature_layers_key = "mm_vision_select_layer" |
|
if feature_layers_key is not None: |
|
feature_layers = config[feature_layers_key] |
|
if isinstance(feature_layers, int): |
|
feature_layers = [feature_layers] |
|
return [to_non_negative(feature_layer) for feature_layer in feature_layers] |
|
|
|
|
|
feature_layers = get_non_negative_vision_feature_layers(v_hparams) |
|
|
|
if has_vision_encoder: |
|
|
|
if args.clip_model_is_siglip: |
|
visual_projection_dim = 0 |
|
else: |
|
visual_projection_dim = v_hparams.get("projection_dim", config["projection_dim"]) |
|
|
|
|
|
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"]) |
|
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"]) |
|
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"]) |
|
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"]) |
|
fout.add_uint32("clip.vision.projection_dim", visual_projection_dim) |
|
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"]) |
|
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"]) |
|
if feature_layers: |
|
block_count = max(feature_layers) |
|
else: |
|
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"] |
|
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "image_grid_pinpoints" in v_hparams: |
|
|
|
image_grid_pinpoints = [] |
|
for pinpoint in v_hparams["image_grid_pinpoints"]: |
|
for p in pinpoint: |
|
image_grid_pinpoints.append(p) |
|
fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints) |
|
if "image_crop_resolution" in v_hparams: |
|
fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"]) |
|
if "image_aspect_ratio" in v_hparams: |
|
fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"]) |
|
if "image_split_resolution" in v_hparams: |
|
fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"]) |
|
if "mm_patch_merge_type" in v_hparams: |
|
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"]) |
|
if "mm_projector_type" in v_hparams: |
|
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"]) |
|
if feature_layers: |
|
fout.add_array("clip.vision.feature_layer", feature_layers) |
|
|
|
if processor is not None: |
|
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean |
|
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std |
|
else: |
|
image_mean = args.image_mean if args.image_mean is not None else default_image_mean |
|
image_std = args.image_std if args.image_std is not None else default_image_std |
|
fout.add_array("clip.vision.image_mean", image_mean) |
|
fout.add_array("clip.vision.image_std", image_std) |
|
|
|
use_gelu = v_hparams["hidden_act"] == "gelu" |
|
fout.add_bool("clip.use_gelu", use_gelu) |
|
|
|
|
|
if has_llava_projector: |
|
|
|
|
|
if feature_layers is None: |
|
model.vision_model.encoder.layers.pop(-1) |
|
else: |
|
model.vision_model.encoder.layers = model.vision_model.encoder.layers[:max(feature_layers)] |
|
|
|
projector = torch.load(args.llava_projector) |
|
for name, data in projector.items(): |
|
name = get_tensor_name(name) |
|
|
|
if data.ndim == 2 or data.ndim == 4: |
|
data = data.squeeze().numpy().astype(np.float16) |
|
else: |
|
data = data.squeeze().numpy().astype(np.float32) |
|
|
|
fout.add_tensor(name, data) |
|
|
|
print("Projector tensors added\n") |
|
|
|
state_dict = model.state_dict() |
|
for name, data in state_dict.items(): |
|
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector): |
|
|
|
print(f"skipping parameter: {name}") |
|
continue |
|
|
|
name = get_tensor_name(name) |
|
data = data.squeeze().numpy() |
|
|
|
n_dims = len(data.shape) |
|
|
|
|
|
ftype_cur = 0 |
|
if n_dims == 4: |
|
print(f"tensor {name} is always saved in f16") |
|
data = data.astype(np.float16) |
|
ftype_cur = 1 |
|
elif ftype == 1: |
|
if name[-7:] == ".weight" and n_dims == 2: |
|
print(" Converting to float16") |
|
data = data.astype(np.float16) |
|
ftype_cur = 1 |
|
else: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
else: |
|
if data.dtype != np.float32: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
|
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") |
|
fout.add_tensor(name, data) |
|
|
|
|
|
fout.write_header_to_file() |
|
fout.write_kv_data_to_file() |
|
fout.write_tensors_to_file() |
|
fout.close() |
|
|
|
print("Done. Output file: " + fname_out) |
|
|