kcpp-compiled-cuda-linux / examples /llava /gemma3_convert_encoder_to_gguf.py
Darkknight535's picture
Upload folder using huggingface_hub
1d30d42 verified
import gguf
import argparse
import logging
import sys
import torch
import json
import os
import numpy as np
from typing import cast, ContextManager, Any, Iterator
from pathlib import Path
from torch import Tensor
logger = logging.getLogger("gemma3-mmproj")
# (copied from convert_hf_to_gguf.py)
# tree of lazy tensors
class LazyTorchTensor(gguf.LazyBase):
_tensor_type = torch.Tensor
# to keep the type-checker happy
dtype: torch.dtype
shape: torch.Size
# only used when converting a torch.Tensor to a np.ndarray
_dtype_map: dict[torch.dtype, type] = {
torch.float16: np.float16,
torch.float32: np.float32,
}
# used for safetensors slices
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
_dtype_str_map: dict[str, torch.dtype] = {
"F64": torch.float64,
"F32": torch.float32,
"BF16": torch.bfloat16,
"F16": torch.float16,
# "U64": torch.uint64,
"I64": torch.int64,
# "U32": torch.uint32,
"I32": torch.int32,
# "U16": torch.uint16,
"I16": torch.int16,
"U8": torch.uint8,
"I8": torch.int8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
def numpy(self) -> gguf.LazyNumpyTensor:
dtype = self._dtype_map[self.dtype]
return gguf.LazyNumpyTensor(
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
args=(self,),
func=(lambda s: s.numpy())
)
@classmethod
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
return torch.empty(size=shape, dtype=dtype, device="meta")
@classmethod
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
dtype = cls._dtype_str_map[st_slice.get_dtype()]
shape: tuple[int, ...] = tuple(st_slice.get_shape())
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
if kwargs is None:
kwargs = {}
if func is torch.Tensor.numpy:
return args[0].numpy()
return cls._wrap_fn(func)(*args, **kwargs)
class Gemma3VisionTower:
hparams: dict
gguf_writer: gguf.GGUFWriter
fname_out: Path
ftype: gguf.LlamaFileType
@staticmethod
def load_hparams(dir_model: Path):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
@staticmethod
def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
part_names: list[str] = []
for filename in os.listdir(dir_model):
if filename.startswith(prefix) and filename.endswith(suffix):
part_names.append(filename)
part_names.sort()
return part_names
def __init__(self,
dir_model: Path,
fname_out: Path,
ftype: gguf.LlamaFileType,
is_big_endian: bool,):
hparams = Gemma3VisionTower.load_hparams(dir_model)
self.hparams = hparams
self.fname_out = fname_out
self.ftype = ftype
endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.gguf_writer = gguf.GGUFWriter(path=None, arch="clip", endianess=endianess)
text_config = hparams["text_config"]
vision_config = hparams["vision_config"]
assert hparams["architectures"][0] == "Gemma3ForConditionalGeneration"
assert text_config is not None
assert vision_config is not None
self.gguf_writer.add_string ("clip.projector_type", "gemma3")
self.gguf_writer.add_bool ("clip.has_text_encoder", False)
self.gguf_writer.add_bool ("clip.has_vision_encoder", True)
self.gguf_writer.add_bool ("clip.has_llava_projector", False) # legacy
self.gguf_writer.add_uint32 ("clip.vision.image_size", vision_config["image_size"])
self.gguf_writer.add_uint32 ("clip.vision.patch_size", vision_config["patch_size"])
self.gguf_writer.add_uint32 ("clip.vision.embedding_length", vision_config["hidden_size"])
self.gguf_writer.add_uint32 ("clip.vision.feed_forward_length", vision_config["intermediate_size"])
self.gguf_writer.add_uint32 ("clip.vision.projection_dim", text_config["hidden_size"])
self.gguf_writer.add_uint32 ("clip.vision.block_count", vision_config["num_hidden_layers"])
self.gguf_writer.add_uint32 ("clip.vision.attention.head_count", vision_config["num_attention_heads"])
self.gguf_writer.add_float32("clip.vision.attention.layer_norm_epsilon", vision_config.get("layer_norm_eps", 1e-6))
# default values taken from HF tranformers code
self.gguf_writer.add_array ("clip.vision.image_mean", [0.5, 0.5, 0.5])
self.gguf_writer.add_array ("clip.vision.image_std", [0.5, 0.5, 0.5])
self.gguf_writer.add_bool ("clip.use_gelu", True)
# load tensors
for name, data_torch in self.get_tensors(dir_model):
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
self.add_tensor(name, data_torch)
def get_tensors(self, dir_model: Path) -> Iterator[tuple[str, Tensor]]:
part_names = Gemma3VisionTower.get_model_part_names(dir_model, "model", ".safetensors")
tensor_names_from_parts: set[str] = set()
for part_name in part_names:
logger.info(f"gguf: loading model part '{part_name}'")
from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(dir_model / part_name, framework="pt", device="cpu"))
with ctx as model_part:
tensor_names_from_parts.update(model_part.keys())
for name in model_part.keys():
data = model_part.get_slice(name)
data = LazyTorchTensor.from_safetensors_slice(data)
yield name, data
def add_tensor(self, name: str, data_torch: Tensor):
is_1d = len(data_torch.shape) == 1
is_embd = ".embeddings." in name
old_dtype = data_torch.dtype
can_quantize = not is_1d and not is_embd
data_qtype = gguf.GGMLQuantizationType.F32
# this is to support old checkpoint
# TODO: remove this when we have the final model
name = name.replace("vision_model.vision_model.", "vision_tower.vision_model.")
name = name.replace("multimodal_projector.", "multi_modal_projector.")
# filter only vision tensors
if not name.startswith("vision_tower.vision_model.") and not name.startswith("multi_modal_projector."):
return
# prefix
name = name.replace("vision_tower.vision_model.encoder.layers.", "v.blk.")
name = name.replace("vision_tower.vision_model.", "v.")
# projector and input embd
name = name.replace(".embeddings.patch_embedding.", ".patch_embd.")
name = name.replace(".embeddings.position_embedding.", ".position_embd.")
name = name.replace(
"multi_modal_projector.mm_input_projection_weight",
"mm.input_projection.weight"
)
name = name.replace(
"multi_modal_projector.mm_soft_emb_norm.weight",
"mm.soft_emb_norm.weight"
)
name = name.replace("post_layernorm.", "post_ln.")
# each block
name = name.replace(".self_attn.k_proj.", ".attn_k.")
name = name.replace(".self_attn.v_proj.", ".attn_v.")
name = name.replace(".self_attn.q_proj.", ".attn_q.")
name = name.replace(".self_attn.out_proj.", ".attn_out.")
name = name.replace(".layer_norm1.", ".ln1.")
name = name.replace(".layer_norm2.", ".ln2.")
name = name.replace(".mlp.fc1.", ".ffn_down.")
name = name.replace(".mlp.fc2.", ".ffn_up.")
if can_quantize:
if self.ftype == gguf.LlamaFileType.ALL_F32:
data_qtype = gguf.GGMLQuantizationType.F32
elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
data_qtype = gguf.GGMLQuantizationType.F16
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
data_qtype = gguf.GGMLQuantizationType.BF16
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
data_qtype = gguf.GGMLQuantizationType.Q8_0
else:
raise ValueError(f"Unsupported file type: {self.ftype}")
# corrent norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
# the other norm values are part of SigLIP model, and they are already correct
# ref code: Gemma3RMSNorm
if "soft_emb_norm.weight" in name:
logger.info(f"Correcting norm value for '{name}'")
data_torch = data_torch + 1
data = data_torch.numpy()
try:
data = gguf.quants.quantize(data, data_qtype)
except Exception as e:
logger.error(f"Error quantizing tensor '{name}': {e}, fallback to F16")
data_qtype = gguf.GGMLQuantizationType.F16
data = gguf.quants.quantize(data, data_qtype)
# reverse shape to make it similar to the internal ggml dimension order
shape_str = f"{{{', '.join(str(n) for n in reversed(data_torch.shape))}}}"
logger.info(f"{f'%-32s' % f'{name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
self.gguf_writer.add_tensor(name, data, raw_dtype=data_qtype)
def write(self):
self.gguf_writer.write_header_to_file(path=self.fname_out)
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.write_tensors_to_file(progress=True)
self.gguf_writer.close()
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert Gemma 3 vision tower safetensors to GGUF format",)
parser.add_argument(
"--outfile", type=Path, default="mmproj.gguf",
help="path to write to",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0"], default="f16",
help="output format",
)
parser.add_argument(
"--bigendian", action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file",
nargs="?",
)
parser.add_argument(
"--verbose", action="store_true",
help="increase output verbosity",
)
args = parser.parse_args()
if args.model is None:
parser.error("the following arguments are required: model")
return args
def main() -> None:
args = parse_args()
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
dir_model = args.model
if not dir_model.is_dir():
logger.error(f'Error: {args.model} is not a directory')
sys.exit(1)
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
}
logger.info(f"Loading model: {dir_model.name}")
with torch.inference_mode():
gemma3_vision_tower = Gemma3VisionTower(
dir_model=dir_model,
fname_out=args.outfile,
ftype=ftype_map[args.outtype],
is_big_endian=args.bigendian,
)
gemma3_vision_tower.write()
if __name__ == '__main__':
main()