|
#include "clip.h" |
|
#include "llava.h" |
|
|
|
#include "llama.h" |
|
|
|
#include <algorithm> |
|
#include <cerrno> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <limits> |
|
#include <vector> |
|
|
|
#if defined(LLAVA_LOG_OFF) |
|
# define LOG_INF(...) |
|
# define LOG_WRN(...) |
|
# define LOG_ERR(...) |
|
# define LOG_DBG(...) |
|
#else |
|
# define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0) |
|
# define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0) |
|
# define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0) |
|
# define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0) |
|
#endif |
|
|
|
|
|
struct clip_image_u8 { |
|
int nx; |
|
int ny; |
|
|
|
std::vector<uint8_t> buf; |
|
}; |
|
|
|
|
|
|
|
struct clip_image_f32 { |
|
int nx; |
|
int ny; |
|
|
|
std::vector<float> buf; |
|
}; |
|
|
|
struct clip_image_grid_shape { |
|
int first; |
|
int second; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) { |
|
int original_width = original_size.first; |
|
int original_height = original_size.second; |
|
|
|
std::pair<int, int> best_fit; |
|
int max_effective_resolution = 0; |
|
int min_wasted_resolution = std::numeric_limits<int>::max(); |
|
|
|
for (const auto& resolution : possible_resolutions) { |
|
int width = resolution.first; |
|
int height = resolution.second; |
|
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height); |
|
int downscaled_width = static_cast<int>(original_width * scale); |
|
int downscaled_height = static_cast<int>(original_height * scale); |
|
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); |
|
int wasted_resolution = (width * height) - effective_resolution; |
|
|
|
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { |
|
max_effective_resolution = effective_resolution; |
|
min_wasted_resolution = wasted_resolution; |
|
best_fit = resolution; |
|
} |
|
} |
|
|
|
return best_fit; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto best_resolution = select_best_resolution(image_size, grid_pinpoints); |
|
return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size}; |
|
} |
|
|
|
|
|
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) { |
|
struct { |
|
struct ggml_context * ctx; |
|
} model; |
|
|
|
const int32_t image_size = clip_image_size(ctx_clip); |
|
const int32_t patch_size = clip_patch_size(ctx_clip); |
|
|
|
int32_t num_patches_per_side = image_size / patch_size; |
|
|
|
int num_patches_width = grid_shape.first; |
|
int num_patches_height = grid_shape.second; |
|
|
|
const size_t num_images = num_patches_width * num_patches_height + 1; |
|
|
|
|
|
size_t ctx_size = 0; |
|
|
|
{ |
|
ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; |
|
ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32); |
|
} |
|
|
|
struct ggml_init_params params { |
|
ctx_size, |
|
NULL, |
|
false, |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.ctx = ggml_init(params); |
|
|
|
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); |
|
|
|
|
|
for (size_t i = 1; i < num_images; i++) { |
|
size_t offset = (i-1) * clip_embd_nbytes(ctx_clip); |
|
memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip)); |
|
} |
|
|
|
struct ggml_cgraph * gf = ggml_new_graph(model.ctx); |
|
size_t size_ele = ggml_type_size(GGML_TYPE_F32); |
|
|
|
struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features, |
|
num_patches_per_side * clip_n_mmproj_embd(ctx_clip), |
|
num_patches_per_side, |
|
num_patches_width, |
|
num_patches_height, |
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip), |
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side, |
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0); |
|
|
|
struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0); |
|
|
|
ggml_build_forward_expand(gf, flatten); |
|
ggml_graph_compute_with_ctx(model.ctx, gf, 1); |
|
struct ggml_tensor* result = ggml_graph_node(gf, -1); |
|
|
|
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); |
|
|
|
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); |
|
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml_free(model.ctx); |
|
return true; |
|
} |
|
|
|
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) { |
|
int width = image->nx; |
|
int height = image->ny; |
|
int num_patches = (height / patch_size) * (width / patch_size); |
|
clip_image_f32 * patch = clip_image_f32_init(); |
|
patch->nx = patch_size * num_patches; |
|
patch->ny = patch_size; |
|
patch->buf.resize(3 * patch->nx * patch->ny); |
|
|
|
int patch_index = 0; |
|
|
|
for (int i = 0; i < height; i += patch_size) { |
|
for (int j = 0; j < width; j += patch_size) { |
|
for (int pi = 0; pi < patch_size; ++pi) { |
|
for (int pj = 0; pj < patch_size; ++pj) { |
|
int input_index = ((i + pi) * width + (j + pj)) * 3; |
|
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3; |
|
patch->buf[output_index] = image->buf[input_index]; |
|
patch->buf[output_index+1] = image->buf[input_index+1]; |
|
patch->buf[output_index+2] = image->buf[input_index+2]; |
|
} |
|
} |
|
patch_index++; |
|
} |
|
} |
|
return patch; |
|
} |
|
|
|
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { |
|
|
|
clip_image_f32_batch img_res_v; |
|
img_res_v.size = 0; |
|
img_res_v.data = nullptr; |
|
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) { |
|
LOG_ERR("%s: unable to preprocess image\n", __func__); |
|
delete[] img_res_v.data; |
|
return false; |
|
} |
|
|
|
const int64_t t_img_enc_start_us = ggml_time_us(); |
|
|
|
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); |
|
|
|
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) { |
|
std::vector<float *> image_embd_v; |
|
image_embd_v.resize(img_res_v.size); |
|
struct clip_image_size * load_image_size = clip_image_size_init(); |
|
|
|
for (size_t i = 0; i < img_res_v.size; i++) { |
|
const int64_t t_img_enc_step_start_us = ggml_time_us(); |
|
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny)); |
|
int patch_size=14; |
|
load_image_size->width = img_res_v.data[i].nx; |
|
load_image_size->height = img_res_v.data[i].ny; |
|
clip_add_load_image_size(ctx_clip, load_image_size); |
|
|
|
bool encoded = false; |
|
if (clip_is_qwen2vl(ctx_clip)) { |
|
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); |
|
} |
|
else { |
|
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); |
|
} |
|
|
|
if (!encoded) { |
|
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); |
|
return false; |
|
} |
|
const int64_t t_img_enc_steop_batch_us = ggml_time_us(); |
|
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0); |
|
} |
|
const int64_t t_img_enc_batch_us = ggml_time_us(); |
|
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); |
|
|
|
int n_img_pos_out = 0; |
|
for (size_t i = 0; i < image_embd_v.size(); i++) { |
|
std::memcpy( |
|
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), |
|
image_embd_v[i], |
|
clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny)); |
|
n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]); |
|
} |
|
*n_img_pos = n_img_pos_out; |
|
for (size_t i = 0; i < image_embd_v.size(); i++) { |
|
free(image_embd_v[i]); |
|
} |
|
image_embd_v.clear(); |
|
load_image_size->width = img->nx; |
|
load_image_size->height = img->ny; |
|
clip_add_load_image_size(ctx_clip, load_image_size); |
|
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height); |
|
delete[] img_res_v.data; |
|
img_res_v.size = 0; |
|
img_res_v.data = nullptr; |
|
} |
|
else if (clip_is_glm(ctx_clip)){ |
|
struct clip_image_size * load_image_size = clip_image_size_init(); |
|
load_image_size->width = img_res_v.data[0].nx; |
|
load_image_size->height = img_res_v.data[0].ny; |
|
clip_add_load_image_size(ctx_clip, load_image_size); |
|
|
|
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); |
|
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2); |
|
*n_img_pos = (pos * pos + 2); |
|
if (!encoded){ |
|
LOG_ERR("Unable to encode image \n"); |
|
return false; |
|
} |
|
} |
|
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) { |
|
|
|
*n_img_pos = clip_n_patches(ctx_clip); |
|
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); |
|
delete[] img_res_v.data; |
|
if (!encoded) { |
|
LOG_ERR("Unable to encode image\n"); |
|
|
|
return false; |
|
} |
|
} |
|
else { |
|
|
|
|
|
std::vector<float *> image_embd_v; |
|
image_embd_v.resize(img_res_v.size); |
|
for (size_t i = 0; i < img_res_v.size; i++) { |
|
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); |
|
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); |
|
if (!encoded) { |
|
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); |
|
return false; |
|
} |
|
} |
|
const int64_t t_img_enc_batch_us = ggml_time_us(); |
|
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); |
|
|
|
const int32_t * image_grid = clip_image_grid(ctx_clip); |
|
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip); |
|
|
|
std::vector<std::pair<int, int>> grid_pinpoints; |
|
for (size_t i = 0; i < num_gridpoints; i += 2) { |
|
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]}); |
|
} |
|
|
|
|
|
delete[] img_res_v.data; |
|
img_res_v.size = 0; |
|
img_res_v.data = nullptr; |
|
|
|
const int32_t image_size = clip_image_size(ctx_clip); |
|
|
|
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size); |
|
|
|
int n_img_pos_out; |
|
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out); |
|
*n_img_pos = n_img_pos_out; |
|
|
|
for (size_t i = 0; i < image_embd_v.size(); i++) { |
|
free(image_embd_v[i]); |
|
} |
|
image_embd_v.clear(); |
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); |
|
|
|
const int64_t t_img_enc_end_us = ggml_time_us(); |
|
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; |
|
|
|
LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos); |
|
|
|
return true; |
|
} |
|
|
|
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) { |
|
|
|
int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama)); |
|
auto n_image_embd = clip_n_mmproj_embd(ctx_clip); |
|
if (n_image_embd != n_llama_embd) { |
|
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { |
|
|
|
int num_max_patches = 11; |
|
if (clip_is_minicpmv(ctx_clip)) { |
|
num_max_patches = 10; |
|
} |
|
if (clip_is_glm(ctx_clip)) { |
|
num_max_patches = 1; |
|
} |
|
float * image_embd; |
|
if (clip_is_qwen2vl(ctx_clip)) { |
|
|
|
image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny)); |
|
} else { |
|
image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); |
|
} |
|
if (!image_embd) { |
|
LOG_ERR("Unable to allocate memory for image embeddings\n"); |
|
return false; |
|
} |
|
|
|
int n_img_pos; |
|
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) { |
|
LOG_ERR("%s: cannot encode image, aborting\n", __func__); |
|
free(image_embd); |
|
return false; |
|
} |
|
*image_embd_out = image_embd; |
|
*n_img_pos_out = n_img_pos; |
|
|
|
return true; |
|
} |
|
|
|
struct llava_embd_batch { |
|
std::vector<llama_pos> pos; |
|
std::vector<int32_t> n_seq_id; |
|
std::vector<llama_seq_id> seq_id_0; |
|
std::vector<llama_seq_id *> seq_ids; |
|
std::vector<int8_t> logits; |
|
llama_batch batch; |
|
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { |
|
pos .resize(n_tokens); |
|
n_seq_id.resize(n_tokens); |
|
seq_ids .resize(n_tokens + 1); |
|
logits .resize(n_tokens); |
|
seq_id_0.resize(1); |
|
seq_id_0[0] = seq_id; |
|
seq_ids [n_tokens] = nullptr; |
|
batch = { |
|
n_tokens, |
|
nullptr, |
|
embd, |
|
pos.data(), |
|
n_seq_id.data(), |
|
seq_ids.data(), |
|
logits.data(), |
|
}; |
|
for (int i = 0; i < n_tokens; i++) { |
|
batch.pos [i] = pos_0 + i; |
|
batch.n_seq_id[i] = 1; |
|
batch.seq_id [i] = seq_id_0.data(); |
|
batch.logits [i] = false; |
|
} |
|
} |
|
}; |
|
|
|
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) { |
|
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama)); |
|
|
|
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) { |
|
int n_eval = image_embed->n_image_pos - i; |
|
if (n_eval > n_batch) { |
|
n_eval = n_batch; |
|
} |
|
float * embd = image_embed->embed+i*n_embd; |
|
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0); |
|
if (llama_decode(ctx_llama, llava_batch.batch)) { |
|
LOG_ERR("%s : failed to eval\n", __func__); |
|
return false; |
|
} |
|
*n_past += n_eval; |
|
} |
|
return true; |
|
} |
|
|
|
struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) { |
|
clip_image_u8 * img = clip_image_u8_init(); |
|
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img, 2048)) { |
|
clip_image_u8_free(img); |
|
LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__); |
|
return NULL; |
|
} |
|
|
|
float* image_embed = NULL; |
|
int n_image_pos = 0; |
|
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos); |
|
if (!image_embed_result) { |
|
clip_image_u8_free(img); |
|
LOG_ERR("%s: couldn't embed the image\n", __func__); |
|
return NULL; |
|
} |
|
|
|
clip_image_u8_free(img); |
|
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed)); |
|
result->embed = image_embed; |
|
result->n_image_pos = n_image_pos; |
|
return result; |
|
} |
|
|
|
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) { |
|
auto file = fopen(path, "rb"); |
|
if (file == NULL) { |
|
LOG_ERR("%s: can't read file %s\n", __func__, path); |
|
return false; |
|
} |
|
|
|
fseek(file, 0, SEEK_END); |
|
auto fileSize = ftell(file); |
|
fseek(file, 0, SEEK_SET); |
|
|
|
auto buffer = (unsigned char *)malloc(fileSize); |
|
if (buffer == NULL) { |
|
LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path); |
|
perror("Memory allocation error"); |
|
fclose(file); |
|
return false; |
|
} |
|
errno = 0; |
|
size_t ret = fread(buffer, 1, fileSize, file); |
|
if (ferror(file)) { |
|
LOG_ERR("read error: %s", strerror(errno)); |
|
free(buffer); |
|
fclose(file); |
|
return false; |
|
} |
|
if (ret != (size_t) fileSize) { |
|
LOG_ERR("unexpectedly reached end of file"); |
|
free(buffer); |
|
fclose(file); |
|
return false; |
|
} |
|
fclose(file); |
|
|
|
*bytesOut = buffer; |
|
*sizeOut = fileSize; |
|
return true; |
|
} |
|
|
|
struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { |
|
unsigned char* image_bytes; |
|
long image_bytes_length; |
|
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); |
|
if (!loaded) { |
|
LOG_ERR("%s: failed to load %s\n", __func__, image_path); |
|
return NULL; |
|
} |
|
|
|
llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length); |
|
free(image_bytes); |
|
|
|
return embed; |
|
} |
|
|
|
void llava_image_embed_free(struct llava_image_embed * embed) { |
|
free(embed->embed); |
|
free(embed); |
|
} |
|
|