|
#include "arg.h" |
|
#include "base64.hpp" |
|
#include "log.h" |
|
#include "common.h" |
|
#include "sampling.h" |
|
#include "clip.h" |
|
#include "llava.h" |
|
#include "llama.h" |
|
#include "ggml.h" |
|
|
|
#ifdef GGML_USE_CUDA |
|
#include "ggml-cuda.h" |
|
#endif |
|
#ifdef NDEBUG |
|
#include "ggml-alloc.h" |
|
#include "ggml-backend.h" |
|
#endif |
|
|
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <vector> |
|
#include <algorithm> |
|
#include <iostream> |
|
#include <fstream> |
|
|
|
|
|
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, |
|
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) { |
|
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama)); |
|
const int patch_size = 14 * 2; |
|
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0); |
|
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0); |
|
auto img_tokens = image_embed->n_image_pos; |
|
|
|
std::vector<llama_pos> mrope_pos; |
|
mrope_pos.resize(img_tokens * 4); |
|
|
|
for (int y = 0; y < ph; y++) |
|
{ |
|
for (int x = 0; x < pw; x++) |
|
{ |
|
int i = y * pw + x; |
|
mrope_pos[i] = *st_pos_id; |
|
mrope_pos[i + img_tokens] = *st_pos_id + y; |
|
mrope_pos[i + img_tokens * 2] = *st_pos_id + x; |
|
mrope_pos[i + img_tokens * 3] = 0; |
|
} |
|
} |
|
*st_pos_id += std::max(pw, ph); |
|
|
|
int processed = 0; |
|
std::vector<llama_pos> batch_mrope_pos; |
|
batch_mrope_pos.resize(img_tokens * 4); |
|
|
|
for (int i = 0; i < img_tokens; i += n_batch) { |
|
int n_eval = img_tokens - i; |
|
if (n_eval > n_batch) { |
|
n_eval = n_batch; |
|
} |
|
|
|
|
|
std::fill(batch_mrope_pos.begin(), batch_mrope_pos.end(), 0); |
|
memcpy(batch_mrope_pos.data(), &mrope_pos[processed], n_eval * sizeof(llama_pos)); |
|
memcpy(&batch_mrope_pos[n_eval * 1], &mrope_pos[img_tokens * 1 + processed], n_eval * sizeof(llama_pos)); |
|
memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos)); |
|
memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos)); |
|
|
|
llama_batch batch = { |
|
int32_t(n_eval), |
|
nullptr, |
|
(image_embed->embed+i*n_embd), |
|
batch_mrope_pos.data(), |
|
nullptr, |
|
nullptr, |
|
nullptr, |
|
}; |
|
|
|
if (llama_decode(ctx_llama, batch)) { |
|
LOG_ERR("%s : failed to eval\n", __func__); |
|
return false; |
|
} |
|
*n_past += n_eval; |
|
processed += n_eval; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) { |
|
int N = (int) tokens.size(); |
|
std::vector<llama_pos> pos; |
|
for (int i = 0; i < N; i += n_batch) { |
|
int n_eval = (int) tokens.size() - i; |
|
if (n_eval > n_batch) { |
|
n_eval = n_batch; |
|
} |
|
auto batch = llama_batch_get_one(&tokens[i], n_eval); |
|
|
|
pos.resize(batch.n_tokens * 4); |
|
std::fill(pos.begin(), pos.end(), 0); |
|
for (int j = 0; j < batch.n_tokens * 3; j ++) { |
|
pos[j] = *st_pos_id + (j % batch.n_tokens); |
|
} |
|
batch.pos = pos.data(); |
|
|
|
if (llama_decode(ctx_llama, batch)) { |
|
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); |
|
return false; |
|
} |
|
*n_past += n_eval; |
|
*st_pos_id += n_eval; |
|
} |
|
return true; |
|
} |
|
|
|
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) { |
|
std::vector<llama_token> tokens; |
|
tokens.push_back(id); |
|
return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id); |
|
} |
|
|
|
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){ |
|
std::string str2 = str; |
|
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true); |
|
eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id); |
|
return true; |
|
} |
|
|
|
static const char * sample(struct common_sampler * smpl, |
|
struct llama_context * ctx_llama, |
|
int * n_past, int * st_pos_id) { |
|
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1); |
|
common_sampler_accept(smpl, id, true); |
|
|
|
const llama_model * model = llama_get_model(ctx_llama); |
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
|
static std::string ret; |
|
if (llama_vocab_is_eog(vocab, id)) { |
|
ret = "</s>"; |
|
} else { |
|
ret = common_token_to_piece(ctx_llama, id); |
|
} |
|
eval_id(ctx_llama, id, n_past, st_pos_id); |
|
return ret.c_str(); |
|
} |
|
|
|
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,"; |
|
static const char* IMG_BASE64_TAG_END = "\">"; |
|
|
|
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) { |
|
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN); |
|
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out); |
|
} |
|
|
|
static bool prompt_contains_image(const std::string& prompt) { |
|
size_t begin, end; |
|
find_image_tag_in_prompt(prompt, begin, end); |
|
return (begin != std::string::npos); |
|
} |
|
|
|
|
|
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) { |
|
size_t img_base64_str_start, img_base64_str_end; |
|
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); |
|
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { |
|
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END); |
|
return NULL; |
|
} |
|
|
|
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN); |
|
auto base64_bytes_count = img_base64_str_end - base64_bytes_start; |
|
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count ); |
|
|
|
auto required_bytes = base64::required_encode_size(base64_str.size()); |
|
auto img_bytes = std::vector<unsigned char>(required_bytes); |
|
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin()); |
|
|
|
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size()); |
|
if (!embed) { |
|
LOG_ERR("%s: could not load image from base64 string.\n", __func__); |
|
return NULL; |
|
} |
|
|
|
return embed; |
|
} |
|
|
|
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") { |
|
size_t begin, end; |
|
find_image_tag_in_prompt(prompt, begin, end); |
|
if (begin == std::string::npos || end == std::string::npos) { |
|
return prompt; |
|
} |
|
auto pre = prompt.substr(0, begin); |
|
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END)); |
|
return pre + replacement + post; |
|
} |
|
|
|
struct llava_context { |
|
struct clip_ctx * ctx_clip = NULL; |
|
struct llama_context * ctx_llama = NULL; |
|
struct llama_model * model = NULL; |
|
}; |
|
|
|
static void print_usage(int, char ** argv) { |
|
LOG("\n example usage:\n"); |
|
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); |
|
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n"); |
|
} |
|
|
|
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) { |
|
|
|
|
|
llava_image_embed * embed = NULL; |
|
auto prompt = params->prompt; |
|
if (prompt_contains_image(prompt)) { |
|
if (!params->image.empty()) { |
|
LOG_INF("using base64 encoded image instead of command line image path\n"); |
|
} |
|
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt); |
|
if (!embed) { |
|
LOG_ERR("%s: can't load image from prompt\n", __func__); |
|
return NULL; |
|
} |
|
params->prompt = remove_image_from_prompt(prompt); |
|
} else { |
|
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str()); |
|
if (!embed) { |
|
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str()); |
|
return NULL; |
|
} |
|
} |
|
|
|
return embed; |
|
} |
|
|
|
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) { |
|
int n_past = 0; |
|
int cur_pos_id = 0; |
|
|
|
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict; |
|
|
|
std::string system_prompt, user_prompt; |
|
size_t image_pos = prompt.find("<|vision_start|>"); |
|
if (image_pos != std::string::npos) { |
|
|
|
system_prompt = prompt.substr(0, image_pos); |
|
user_prompt = prompt.substr(image_pos + std::string("<|vision_pad|>").length()); |
|
LOG_INF("system_prompt: %s\n", system_prompt.c_str()); |
|
if (params->verbose_prompt) { |
|
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true); |
|
for (int i = 0; i < (int) tmp.size(); i++) { |
|
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); |
|
} |
|
} |
|
LOG_INF("user_prompt: %s\n", user_prompt.c_str()); |
|
if (params->verbose_prompt) { |
|
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); |
|
for (int i = 0; i < (int) tmp.size(); i++) { |
|
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); |
|
} |
|
} |
|
} else { |
|
|
|
system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>"; |
|
user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n"; |
|
if (params->verbose_prompt) { |
|
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); |
|
for (int i = 0; i < (int) tmp.size(); i++) { |
|
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); |
|
} |
|
} |
|
} |
|
|
|
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true); |
|
if (image_embed != nullptr) { |
|
auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip); |
|
qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size); |
|
} |
|
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false); |
|
|
|
|
|
|
|
LOG("\n"); |
|
|
|
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling); |
|
if (!smpl) { |
|
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); |
|
exit(1); |
|
} |
|
|
|
std::string response = ""; |
|
for (int i = 0; i < max_tgt_len; i++) { |
|
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id); |
|
response += tmp; |
|
if (strcmp(tmp, "</s>") == 0) break; |
|
if (strstr(tmp, "###")) break; |
|
LOG("%s", tmp); |
|
if (strstr(response.c_str(), "<|im_end|>")) break; |
|
if (strstr(response.c_str(), "<|im_start|>")) break; |
|
if (strstr(response.c_str(), "USER:")) break; |
|
|
|
fflush(stdout); |
|
} |
|
|
|
common_sampler_free(smpl); |
|
LOG("\n"); |
|
} |
|
|
|
static struct llama_model * llava_init(common_params * params) { |
|
llama_backend_init(); |
|
llama_numa_init(params->numa); |
|
|
|
llama_model_params model_params = common_model_params_to_llama(*params); |
|
|
|
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params); |
|
if (model == NULL) { |
|
LOG_ERR("%s: unable to load model\n" , __func__); |
|
return NULL; |
|
} |
|
return model; |
|
} |
|
|
|
static struct llava_context * llava_init_context(common_params * params, llama_model * model) { |
|
const char * clip_path = params->mmproj.c_str(); |
|
|
|
auto prompt = params->prompt; |
|
if (prompt.empty()) { |
|
prompt = "describe the image in detail."; |
|
} |
|
|
|
auto ctx_clip = clip_model_load(clip_path, 1); |
|
|
|
llama_context_params ctx_params = common_context_params_to_llama(*params); |
|
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; |
|
|
|
llama_context * ctx_llama = llama_init_from_model(model, ctx_params); |
|
|
|
if (ctx_llama == NULL) { |
|
LOG_ERR("%s: failed to create the llama_context\n" , __func__); |
|
return NULL; |
|
} |
|
|
|
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); |
|
|
|
ctx_llava->ctx_llama = ctx_llama; |
|
ctx_llava->ctx_clip = ctx_clip; |
|
ctx_llava->model = model; |
|
return ctx_llava; |
|
} |
|
|
|
static void llava_free(struct llava_context * ctx_llava) { |
|
if (ctx_llava->ctx_clip) { |
|
clip_free(ctx_llava->ctx_clip); |
|
ctx_llava->ctx_clip = NULL; |
|
} |
|
|
|
llama_free(ctx_llava->ctx_llama); |
|
llama_model_free(ctx_llava->model); |
|
llama_backend_free(); |
|
} |
|
|
|
#ifndef NDEBUG |
|
|
|
static void debug_test_mrope_2d() { |
|
|
|
ggml_backend_t backend = NULL; |
|
std::string backend_name = ""; |
|
#ifdef GGML_USE_CUDA |
|
fprintf(stderr, "%s: using CUDA backend\n", __func__); |
|
backend = ggml_backend_cuda_init(0); |
|
backend_name = "cuda"; |
|
if (!backend) { |
|
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); |
|
} |
|
#endif |
|
|
|
if (!backend) { |
|
backend = ggml_backend_cpu_init(); |
|
backend_name = "cpu"; |
|
} |
|
|
|
|
|
size_t ctx_size = 0; |
|
ctx_size += 2 * ggml_tensor_overhead(); |
|
|
|
|
|
|
|
struct ggml_init_params params = { |
|
ctx_size, |
|
NULL, |
|
true, |
|
}; |
|
struct ggml_context * ctx = ggml_init(params); |
|
|
|
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 12, 30); |
|
ggml_set_name(inp_raw, "inp_raw"); |
|
ggml_set_input(inp_raw); |
|
|
|
struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 30 * 4); |
|
ggml_set_name(pos, "pos"); |
|
ggml_set_input(pos); |
|
|
|
std::vector<float> dummy_q; |
|
dummy_q.resize(128 * 12 * 30); |
|
std::fill(dummy_q.begin(), dummy_q.end(), 0.1); |
|
|
|
|
|
std::vector<int> pos_id; |
|
pos_id.resize(30 * 4); |
|
for (int i = 0; i < 30; i ++) { |
|
pos_id[i] = i; |
|
pos_id[i + 30] = i + 10; |
|
pos_id[i + 60] = i + 20; |
|
pos_id[i + 90] = i + 30; |
|
} |
|
int sections[4] = {32, 32, 0, 0}; |
|
|
|
|
|
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); |
|
|
|
|
|
ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw)); |
|
ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos)); |
|
|
|
|
|
struct ggml_cgraph * gf = NULL; |
|
struct ggml_context * ctx_cgraph = NULL; |
|
|
|
|
|
struct ggml_init_params params0 = { |
|
ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(), |
|
NULL, |
|
true, |
|
}; |
|
ctx_cgraph = ggml_init(params0); |
|
gf = ggml_new_graph(ctx_cgraph); |
|
|
|
struct ggml_tensor * result0 = ggml_rope_multi( |
|
ctx_cgraph, inp_raw, pos, nullptr, |
|
128/2, sections, LLAMA_ROPE_TYPE_VISION, 32768, 1000000, 1, |
|
0, 1, 32, 1); |
|
|
|
|
|
ggml_build_forward_expand(gf, result0); |
|
|
|
|
|
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); |
|
ggml_gallocr_alloc_graph(allocr, gf); |
|
|
|
|
|
int n_threads = 1; |
|
if (ggml_backend_is_cpu(backend)) { |
|
ggml_backend_cpu_set_n_threads(backend, n_threads); |
|
} |
|
ggml_backend_graph_compute(backend, gf); |
|
|
|
|
|
|
|
struct ggml_tensor * result = result0; |
|
|
|
float * result_data = (float *)malloc(ggml_nbytes(result)); |
|
|
|
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result)); |
|
const std::string bin_file = "mrope_2d_" + backend_name +".bin"; |
|
std::ofstream outFile(bin_file, std::ios::binary); |
|
|
|
if (outFile.is_open()) { |
|
outFile.write(reinterpret_cast<const char*>(result_data), ggml_nbytes(result)); |
|
outFile.close(); |
|
std::cout << "Data successfully written to " + bin_file << std::endl; |
|
} else { |
|
std::cerr << "Error opening file!" << std::endl; |
|
} |
|
|
|
free(result_data); |
|
|
|
ggml_free(ctx_cgraph); |
|
ggml_gallocr_free(allocr); |
|
ggml_free(ctx); |
|
ggml_backend_buffer_free(buffer); |
|
ggml_backend_free(backend); |
|
} |
|
|
|
static void debug_dump_img_embed(struct llava_context * ctx_llava) { |
|
int n_embd = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama)); |
|
int ne = n_embd * 4; |
|
float vals[56 * 56 * 3]; |
|
|
|
std::vector<float> embd; |
|
embd.resize(ne); |
|
|
|
for (int i = 0; i < 56*56; i++) |
|
{ |
|
for (int c = 0; c < 3; c++) |
|
vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56); |
|
} |
|
|
|
clip_encode_float_image(ctx_llava->ctx_clip, 16, vals, 56, 56, embd.data()); |
|
|
|
std::ofstream outFile("img_embed.bin", std::ios::binary); |
|
if (outFile.is_open()) { |
|
outFile.write(reinterpret_cast<const char*>(embd.data()), ne * sizeof(float)); |
|
|
|
outFile.close(); |
|
std::cout << "Data successfully written to mrope.bin" << std::endl; |
|
} else { |
|
std::cerr << "Error opening file!" << std::endl; |
|
} |
|
} |
|
|
|
#endif |
|
|
|
|
|
int main(int argc, char ** argv) { |
|
ggml_time_init(); |
|
|
|
common_params params; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) { |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
|
|
auto * model = llava_init(¶ms); |
|
if (model == NULL) { |
|
fprintf(stderr, "%s: error: failed to init llava model\n", __func__); |
|
return 1; |
|
} |
|
|
|
if (prompt_contains_image(params.prompt)) { |
|
auto * ctx_llava = llava_init_context(¶ms, model); |
|
|
|
auto * image_embed = load_image(ctx_llava, ¶ms, ""); |
|
|
|
|
|
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); |
|
|
|
llama_perf_context_print(ctx_llava->ctx_llama); |
|
llava_image_embed_free(image_embed); |
|
ctx_llava->model = NULL; |
|
llava_free(ctx_llava); |
|
#ifndef NDEBUG |
|
} else if (params.image[0].empty()) { |
|
auto ctx_llava = llava_init_context(¶ms, model); |
|
|
|
debug_test_mrope_2d(); |
|
debug_dump_img_embed(ctx_llava); |
|
|
|
llama_perf_context_print(ctx_llava->ctx_llama); |
|
ctx_llava->model = NULL; |
|
llava_free(ctx_llava); |
|
#endif |
|
} else { |
|
for (auto & image : params.image) { |
|
auto * ctx_llava = llava_init_context(¶ms, model); |
|
|
|
auto * image_embed = load_image(ctx_llava, ¶ms, image); |
|
if (!image_embed) { |
|
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str()); |
|
return 1; |
|
} |
|
|
|
|
|
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); |
|
|
|
llama_perf_context_print(ctx_llava->ctx_llama); |
|
llava_image_embed_free(image_embed); |
|
ctx_llava->model = NULL; |
|
llava_free(ctx_llava); |
|
} |
|
} |
|
|
|
llama_model_free(model); |
|
|
|
return 0; |
|
} |
|
|