// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates // SPDX-License-Identifier: MIT // #include #include #include #include #include #if defined(__linux__) #include #include #elif defined(__APPLE__) #include #include #include #elif defined(_WIN32) #include #include #endif #include "kleidiai.h" #include "ggml-cpu.h" #include "ggml-impl.h" #include "ggml-backend-impl.h" #include "ggml-threading.h" #include "ggml-cpu-traits.h" #include "kernels.h" #include "kai_common.h" #define GGML_COMMON_DECL_CPP #include "ggml-common.h" struct ggml_kleidiai_context { ggml_kleidiai_kernels * kernels; } static ctx = { NULL }; static void init_kleidiai_context(void) { ggml_critical_section_start(); static bool initialized = false; if (!initialized) { initialized = true; const char *env_var = getenv("GGML_KLEIDIAI_SME"); int sme_enabled = 0; cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) | (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) | (ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE); if (env_var) { sme_enabled = atoi(env_var); } if (sme_enabled != 0) { features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE; } ctx.kernels = ggml_kleidiai_select_kernels(features); } ggml_critical_section_end(); } static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) { GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS); return tensor->ne[dim]; } namespace ggml::cpu::kleidiai { class tensor_traits : public ggml::cpu::tensor_traits { bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { GGML_ASSERT(ctx.kernels); kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm; size_t k = op->src[0]->ne[0]; size_t m = op->src[1]->ne[1]; size_t mr = kernel->get_mr(); size_t kr = kernel->get_kr(); size_t sr = kernel->get_sr(); size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr); return true; } bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override { if (dst->op == GGML_OP_MUL_MAT) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(ctx.kernels); kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm; lhs_packing_info * lhs_info = &ctx.kernels->lhs_info; GGML_ASSERT(kernel); const int ith = params->ith; const int nth = params->nth; const size_t k = ne00; const size_t m = ne11; const size_t n = ne01; const size_t n_step = kernel->get_n_step(); const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step); const size_t n_start = ith * num_n_per_thread; size_t n_to_process = num_n_per_thread; if ((n_start + n_to_process) > n) { n_to_process = n - n_start; } const uint8_t * lhs = static_cast(src1->data); uint8_t * lhs_packed = (uint8_t*)params->wdata; const uint8_t * rhs_packed = static_cast(src0->data); size_t mr = kernel->get_mr(); size_t kr = kernel->get_kr(); size_t sr = kernel->get_sr(); // Calculate number of columns to be processed per thread const bool use_multithread = lhs_info->require_aligned_m_idx && m <= mr ? false : true; const size_t num_m_per_thread = use_multithread ? kai_roundup(m, nth) / nth : m; const size_t m_start = ith * num_m_per_thread; size_t m_to_process = num_m_per_thread; if ((m_start + m_to_process) > m) { m_to_process = m - m_start; } if(m_start < m) { // Transform LHS const size_t src_stride = src1->nb[1]; const float * src_ptr = reinterpret_cast(lhs + lhs_info->get_offset(0, dst->src[1]->nb[1])); const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr); void * lhs_packed_ptr = static_cast(lhs_packed + lhs_packed_offset); lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, m_start, src_ptr, src_stride, lhs_packed_ptr); } ggml_barrier(params->threadpool); // Perform the operation const size_t dst_stride = dst->nb[1]; const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr); const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0); const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride); const void * rhs_ptr = static_cast(rhs_packed + rhs_packed_offset); const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset); float *dst_ptr = reinterpret_cast(static_cast(dst->data) + dst_offset); kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX); return true; } return false; } public: int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) { GGML_ASSERT(ctx.kernels); const size_t n = tensor->ne[1]; const size_t k = tensor->ne[0]; size_t nr = ctx.kernels->gemm.get_nr(); size_t kr = ctx.kernels->gemm.get_kr(); size_t sr = ctx.kernels->gemm.get_sr(); #ifndef NDEBUG const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0); GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!"); #endif struct kai_rhs_pack_qs4cxs1s0_param params; params.lhs_zero_point = 1; params.rhs_zero_point = 8; ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms); return 0; GGML_UNUSED(data_size); } }; static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) { static tensor_traits traits; return &traits; } } // namespace ggml::cpu::kleidiai GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor); GGML_UNUSED(buffer); return GGML_STATUS_SUCCESS; } static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); auto tensor_traits = (ggml::cpu::kleidiai::tensor_traits *) tensor->extra; auto OK = tensor_traits->repack(tensor, data, size); GGML_ASSERT(OK == 0); GGML_UNUSED(buffer); } static const char * ggml_backend_cpu_kleidiai_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU_KLEIDIAI"; GGML_UNUSED(buft); } static ggml_backend_buffer_t ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); if (buffer == nullptr) { return nullptr; } buffer->buft = buft; buffer->iface.init_tensor = ggml_backend_cpu_kleidiai_buffer_init_tensor; buffer->iface.set_tensor = ggml_backend_cpu_kleidiai_buffer_set_tensor; buffer->iface.get_tensor = nullptr; buffer->iface.cpy_tensor = nullptr; return buffer; } static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return TENSOR_ALIGNMENT; GGML_UNUSED(buft); } namespace ggml::cpu::kleidiai { class extra_buffer_type : ggml::cpu::extra_buffer_type { bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override { if ( op->op == GGML_OP_MUL_MAT && op->src[0]->type == GGML_TYPE_Q4_0 && op->src[0]->buffer && (ggml_n_dims(op->src[0]) == 2) && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels ) { if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { return false; } if (op->src[1]->type == GGML_TYPE_F32 && ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) { return true; } } return false; } ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override { if (op->op == GGML_OP_MUL_MAT) { if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) { return (ggml::cpu::tensor_traits *) op->src[0]->extra; } } return nullptr; } }; } // namespace ggml::cpu::kleidiai ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) { static ggml::cpu::kleidiai::extra_buffer_type ctx; static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_kleidiai = { /* .iface = */ { /* .get_name = */ ggml_backend_cpu_kleidiai_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment, /* .get_max_size = */ nullptr, // defaults to SIZE_MAX /* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes /* .is_host = */ nullptr, }, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), /* .context = */ &ctx, }; init_kleidiai_context(); return &ggml_backend_cpu_buffer_type_kleidiai; }