#!/usr/bin/env python3 #-*- coding: utf-8 -*- # KoboldCpp is an easy-to-use AI text-generation software for GGML models. # It's a single self contained distributable from Concedo, that builds off llama.cpp, # and adds a versatile Kobold API endpoint, additional format support, # backward compatibility, as well as a fancy UI with persistent stories, # editing tools, save formats, memory, world info, author's note, characters, # scenarios and everything Kobold and KoboldAI Lite have to offer. import copy import ctypes import multiprocessing import os import math import re import argparse import platform import base64 import struct import json import sys import http.server import time import asyncio import socket import threading import html import urllib.parse as urlparse from concurrent.futures import ThreadPoolExecutor from datetime import datetime, timezone # constants sampler_order_max = 7 tensor_split_max = 16 images_max = 8 bias_min_value = -100.0 bias_max_value = 100.0 logprobs_max = 5 default_draft_amount = 8 default_ttsmaxlen = 4096 default_visionmaxres = 1024 net_save_slots = 8 # abuse prevention stop_token_max = 256 ban_token_max = 512 logit_bias_max = 512 dry_seq_break_max = 128 # global vars KcppVersion = "1.86" showdebug = True kcpp_instance = None #global running instance global_memory = {"tunnel_url": "", "restart_target":"", "input_to_exit":False, "load_complete":False} using_gui_launcher = False handle = None friendlymodelname = "inactive" friendlysdmodelname = "inactive" lastgeneratedcomfyimg = b'' fullsdmodelpath = "" #if empty, it's not initialized mmprojpath = "" #if empty, it's not initialized password = "" #if empty, no auth key required fullwhispermodelpath = "" #if empty, it's not initialized ttsmodelpath = "" #if empty, not initialized maxctx = 4096 maxhordectx = 4096 maxhordelen = 400 modelbusy = threading.Lock() requestsinqueue = 0 defaultport = 5001 showsamplerwarning = True showmaxctxwarning = True showusedmemwarning = True session_kudos_earned = 0 session_jobs = 0 session_starttime = None exitcounter = -1 punishcounter = 0 #causes a timeout if too many errors rewardcounter = 0 #reduces error counts for successful jobs totalgens = 0 currentusergenkey = "" #store a special key so polled streaming works even in multiuser pendingabortkey = "" #if an abort is received for the non-active request, remember it (at least 1) to cancel later args = None #global args runmode_untouched = True modelfile_extracted_meta = None importvars_in_progress = False has_multiplayer = False savedata_obj = None multiplayer_story_data_compressed = None #stores the full compressed story of the current multiplayer session multiplayer_turn_major = 1 # to keep track of when a client needs to sync their stories multiplayer_turn_minor = 1 multiplayer_dataformat = "" # used to tell what is the data payload in saved story. set by client multiplayer_lastactive = {} # timestamp of last activity for each unique player websearch_lastquery = "" websearch_lastresponse = [] preloaded_story = None chatcompl_adapter = None chatcompl_adapter_list = None #if using autoguess, will populate this will potential adapters embedded_kailite = None embedded_kcpp_docs = None embedded_kcpp_sdui = None sslvalid = False nocertify = False start_time = time.time() last_req_time = time.time() last_non_horde_req_time = time.time() currfinishreason = None saved_stdout = None saved_stderr = None saved_stdout_py = None saved_stderr_py = None stdout_nullfile = None stdout_nullfile_py = None CLDevices = ["1","2","3","4"] CUDevices = ["1","2","3","4","All"] CLDevicesNames = ["","","",""] CUDevicesNames = ["","","","",""] VKDevicesNames = ["","","",""] VKIsDGPU = [0,0,0,0] MaxMemory = [0] MaxFreeMemory = [0] class logit_bias(ctypes.Structure): _fields_ = [("token_id", ctypes.c_int32), ("bias", ctypes.c_float)] class token_count_outputs(ctypes.Structure): _fields_ = [("count", ctypes.c_int), ("ids", ctypes.POINTER(ctypes.c_int))] # returns top 5 logprobs per token class logprob_item(ctypes.Structure): _fields_ = [("option_count", ctypes.c_int), ("selected_token", ctypes.c_char_p), ("selected_logprob", ctypes.c_float), ("tokens", ctypes.c_char_p * logprobs_max), ("logprobs", ctypes.POINTER(ctypes.c_float))] class last_logprobs_outputs(ctypes.Structure): _fields_ = [("count", ctypes.c_int), ("logprob_items", ctypes.POINTER(logprob_item))] class load_model_inputs(ctypes.Structure): _fields_ = [("threads", ctypes.c_int), ("blasthreads", ctypes.c_int), ("max_context_length", ctypes.c_int), ("low_vram", ctypes.c_bool), ("use_mmq", ctypes.c_bool), ("use_rowsplit", ctypes.c_bool), ("executable_path", ctypes.c_char_p), ("model_filename", ctypes.c_char_p), ("lora_filename", ctypes.c_char_p), ("lora_base", ctypes.c_char_p), ("draftmodel_filename", ctypes.c_char_p), ("draft_amount", ctypes.c_int), ("draft_gpulayers", ctypes.c_int), ("draft_gpusplit", ctypes.c_float * tensor_split_max), ("mmproj_filename", ctypes.c_char_p), ("visionmaxres", ctypes.c_int), ("use_mmap", ctypes.c_bool), ("use_mlock", ctypes.c_bool), ("use_smartcontext", ctypes.c_bool), ("use_contextshift", ctypes.c_bool), ("use_fastforward", ctypes.c_bool), ("clblast_info", ctypes.c_int), ("cublas_info", ctypes.c_int), ("vulkan_info", ctypes.c_char_p), ("blasbatchsize", ctypes.c_int), ("forceversion", ctypes.c_int), ("gpulayers", ctypes.c_int), ("rope_freq_scale", ctypes.c_float), ("rope_freq_base", ctypes.c_float), ("moe_experts", ctypes.c_int), ("flash_attention", ctypes.c_bool), ("tensor_split", ctypes.c_float * tensor_split_max), ("quant_k", ctypes.c_int), ("quant_v", ctypes.c_int), ("quiet", ctypes.c_bool), ("debugmode", ctypes.c_int)] class generation_inputs(ctypes.Structure): _fields_ = [("seed", ctypes.c_int), ("prompt", ctypes.c_char_p), ("memory", ctypes.c_char_p), ("images", ctypes.c_char_p * images_max), ("max_context_length", ctypes.c_int), ("max_length", ctypes.c_int), ("temperature", ctypes.c_float), ("top_k", ctypes.c_int), ("top_a", ctypes.c_float), ("top_p", ctypes.c_float), ("min_p", ctypes.c_float), ("typical_p", ctypes.c_float), ("tfs", ctypes.c_float), ("nsigma", ctypes.c_float), ("rep_pen", ctypes.c_float), ("rep_pen_range", ctypes.c_int), ("rep_pen_slope", ctypes.c_float), ("presence_penalty", ctypes.c_float), ("mirostat", ctypes.c_int), ("mirostat_tau", ctypes.c_float), ("mirostat_eta", ctypes.c_float), ("xtc_threshold", ctypes.c_float), ("xtc_probability", ctypes.c_float), ("sampler_order", ctypes.c_int * sampler_order_max), ("sampler_len", ctypes.c_int), ("allow_eos_token", ctypes.c_bool), ("bypass_eos_token", ctypes.c_bool), ("render_special", ctypes.c_bool), ("stream_sse", ctypes.c_bool), ("grammar", ctypes.c_char_p), ("grammar_retain_state", ctypes.c_bool), ("dynatemp_range", ctypes.c_float), ("dynatemp_exponent", ctypes.c_float), ("smoothing_factor", ctypes.c_float), ("dry_multiplier", ctypes.c_float), ("dry_base", ctypes.c_float), ("dry_allowed_length", ctypes.c_int), ("dry_penalty_last_n", ctypes.c_int), ("dry_sequence_breakers_len", ctypes.c_int), ("dry_sequence_breakers", ctypes.POINTER(ctypes.c_char_p)), ("stop_sequence_len", ctypes.c_int), ("stop_sequence", ctypes.POINTER(ctypes.c_char_p)), ("logit_biases_len", ctypes.c_int), ("logit_biases", ctypes.POINTER(logit_bias)), ("banned_tokens_len", ctypes.c_int), ("banned_tokens", ctypes.POINTER(ctypes.c_char_p))] class generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("stopreason", ctypes.c_int), ("prompt_tokens", ctypes.c_int), ("completion_tokens", ctypes.c_int), ("text", ctypes.c_char_p)] class sd_load_model_inputs(ctypes.Structure): _fields_ = [("model_filename", ctypes.c_char_p), ("executable_path", ctypes.c_char_p), ("clblast_info", ctypes.c_int), ("cublas_info", ctypes.c_int), ("vulkan_info", ctypes.c_char_p), ("threads", ctypes.c_int), ("quant", ctypes.c_int), ("taesd", ctypes.c_bool), ("notile", ctypes.c_bool), ("t5xxl_filename", ctypes.c_char_p), ("clipl_filename", ctypes.c_char_p), ("clipg_filename", ctypes.c_char_p), ("vae_filename", ctypes.c_char_p), ("lora_filename", ctypes.c_char_p), ("lora_multiplier", ctypes.c_float), ("quiet", ctypes.c_bool), ("debugmode", ctypes.c_int)] class sd_generation_inputs(ctypes.Structure): _fields_ = [("prompt", ctypes.c_char_p), ("negative_prompt", ctypes.c_char_p), ("init_images", ctypes.c_char_p), ("denoising_strength", ctypes.c_float), ("cfg_scale", ctypes.c_float), ("sample_steps", ctypes.c_int), ("width", ctypes.c_int), ("height", ctypes.c_int), ("seed", ctypes.c_int), ("sample_method", ctypes.c_char_p), ("clip_skip", ctypes.c_int)] class sd_generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("data", ctypes.c_char_p)] class whisper_load_model_inputs(ctypes.Structure): _fields_ = [("model_filename", ctypes.c_char_p), ("executable_path", ctypes.c_char_p), ("clblast_info", ctypes.c_int), ("cublas_info", ctypes.c_int), ("vulkan_info", ctypes.c_char_p), ("quiet", ctypes.c_bool), ("debugmode", ctypes.c_int)] class whisper_generation_inputs(ctypes.Structure): _fields_ = [("prompt", ctypes.c_char_p), ("audio_data", ctypes.c_char_p), ("suppress_non_speech", ctypes.c_bool), ("langcode", ctypes.c_char_p)] class whisper_generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("data", ctypes.c_char_p)] class tts_load_model_inputs(ctypes.Structure): _fields_ = [("threads", ctypes.c_int), ("ttc_model_filename", ctypes.c_char_p), ("cts_model_filename", ctypes.c_char_p), ("executable_path", ctypes.c_char_p), ("clblast_info", ctypes.c_int), ("cublas_info", ctypes.c_int), ("vulkan_info", ctypes.c_char_p), ("gpulayers", ctypes.c_int), ("flash_attention", ctypes.c_bool), ("ttsmaxlen", ctypes.c_int), ("quiet", ctypes.c_bool), ("debugmode", ctypes.c_int)] class tts_generation_inputs(ctypes.Structure): _fields_ = [("prompt", ctypes.c_char_p), ("speaker_seed", ctypes.c_int), ("audio_seed", ctypes.c_int)] class tts_generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("data", ctypes.c_char_p)] def getdirpath(): return os.path.dirname(os.path.realpath(__file__)) def getabspath(): return os.path.dirname(os.path.abspath(__file__)) def file_exists(filename): return os.path.exists(os.path.join(getdirpath(), filename)) def suppress_stdout(): global saved_stdout, saved_stderr, saved_stdout_py, saved_stderr_py, stdout_nullfile, stdout_nullfile_py if not saved_stdout and not saved_stderr and not saved_stdout_py and not saved_stderr_py and not stdout_nullfile and not stdout_nullfile_py: sys.stdout.flush() sys.stderr.flush() saved_stdout = os.dup(sys.stdout.fileno()) saved_stderr = os.dup(sys.stderr.fileno()) saved_stderr_py = sys.stderr saved_stdout_py = sys.stdout stdout_nullfile = os.open(os.devnull, os.O_WRONLY) stdout_nullfile_py = open(os.devnull, 'w') os.dup2(stdout_nullfile, sys.stdout.fileno()) os.dup2(stdout_nullfile, sys.stderr.fileno()) sys.stderr = sys.stdout = stdout_nullfile_py def restore_stdout(): global saved_stdout, saved_stderr, saved_stdout_py, saved_stderr_py, stdout_nullfile, stdout_nullfile_py if saved_stdout and saved_stderr and saved_stdout_py and saved_stderr_py and stdout_nullfile and stdout_nullfile_py: sys.stdout = saved_stdout_py sys.stderr = saved_stderr_py os.dup2(saved_stdout, sys.stdout.fileno()) os.dup2(saved_stderr, sys.stderr.fileno()) os.close(stdout_nullfile) stdout_nullfile_py.close() os.close(saved_stdout) os.close(saved_stderr) saved_stdout = saved_stderr = saved_stdout_py = saved_stderr_py = stdout_nullfile = stdout_nullfile_py = None def get_default_threads(): physical_core_limit = 1 if os.cpu_count() is not None and os.cpu_count()>1: physical_core_limit = os.cpu_count() // 2 default_threads = (physical_core_limit if physical_core_limit<=3 else max(3,physical_core_limit-1)) processor = platform.processor() if 'Intel' in processor: default_threads = (8 if default_threads > 8 else default_threads) #this helps avoid e-cores. return default_threads def pick_existant_file(ntoption,nonntoption): precompiled_prefix = "precompiled_" ntexist = file_exists(ntoption) nonntexist = file_exists(nonntoption) precompiled_ntexist = file_exists(precompiled_prefix+ntoption) precompiled_nonntexist = file_exists(precompiled_prefix+nonntoption) if os.name == 'nt': if not ntexist and precompiled_ntexist: return (precompiled_prefix+ntoption) if nonntexist and not ntexist: return nonntoption return ntoption else: if not nonntexist and precompiled_nonntexist: return (precompiled_prefix+nonntoption) if ntexist and not nonntexist: return ntoption return nonntoption lib_default = pick_existant_file("koboldcpp_default.dll","koboldcpp_default.so") lib_failsafe = pick_existant_file("koboldcpp_failsafe.dll","koboldcpp_failsafe.so") lib_noavx2 = pick_existant_file("koboldcpp_noavx2.dll","koboldcpp_noavx2.so") lib_clblast = pick_existant_file("koboldcpp_clblast.dll","koboldcpp_clblast.so") lib_clblast_noavx2 = pick_existant_file("koboldcpp_clblast_noavx2.dll","koboldcpp_clblast_noavx2.so") lib_clblast_failsafe = pick_existant_file("koboldcpp_clblast_failsafe.dll","koboldcpp_clblast_failsafe.so") lib_cublas = pick_existant_file("koboldcpp_cublas.dll","koboldcpp_cublas.so") lib_hipblas = pick_existant_file("koboldcpp_hipblas.dll","koboldcpp_hipblas.so") lib_vulkan = pick_existant_file("koboldcpp_vulkan.dll","koboldcpp_vulkan.so") lib_vulkan_noavx2 = pick_existant_file("koboldcpp_vulkan_noavx2.dll","koboldcpp_vulkan_noavx2.so") libname = "" lib_option_pairs = [ (lib_default, "Use CPU"), (lib_cublas, "Use CuBLAS"), (lib_hipblas, "Use hipBLAS (ROCm)"), (lib_vulkan, "Use Vulkan"), (lib_clblast, "Use CLBlast"), (lib_noavx2, "Use CPU (Old CPU)"), (lib_vulkan_noavx2, "Use Vulkan (Old CPU)"), (lib_clblast_noavx2, "Use CLBlast (Old CPU)"), (lib_clblast_failsafe, "Use CLBlast (Older CPU)"), (lib_failsafe, "Failsafe Mode (Older CPU)")] default_option, cublas_option, hipblas_option, vulkan_option, clblast_option, noavx2_option, vulkan_noavx2_option, clblast_noavx2_option, clblast_failsafe_option, failsafe_option = (opt if file_exists(lib) or (os.name == 'nt' and file_exists(opt + ".dll")) else None for lib, opt in lib_option_pairs) runopts = [opt for lib, opt in lib_option_pairs if file_exists(lib)] def init_library(): global handle, args, libname global lib_default,lib_failsafe,lib_noavx2,lib_clblast,lib_clblast_noavx2,lib_clblast_failsafe,lib_cublas,lib_hipblas,lib_vulkan,lib_vulkan_noavx2 libname = lib_default if args.noavx2: if args.useclblast and (os.name!='nt' or file_exists("clblast.dll")): if (args.failsafe) and file_exists(lib_clblast_failsafe): libname = lib_clblast_failsafe elif file_exists(lib_clblast_noavx2): libname = lib_clblast_noavx2 elif (args.usevulkan is not None) and file_exists(lib_vulkan_noavx2): libname = lib_vulkan_noavx2 elif (args.failsafe) and file_exists(lib_failsafe): print("!!! Attempting to use FAILSAFE MODE !!!") libname = lib_failsafe elif file_exists(lib_noavx2): libname = lib_noavx2 elif (args.usecublas is not None): if file_exists(lib_cublas): libname = lib_cublas elif file_exists(lib_hipblas): libname = lib_hipblas elif (args.usevulkan is not None) and file_exists(lib_vulkan): libname = lib_vulkan elif args.useclblast and file_exists(lib_clblast) and (os.name!='nt' or file_exists("clblast.dll")): libname = lib_clblast print("Initializing dynamic library: " + libname) dir_path = getdirpath() abs_path = getabspath() #add all potential paths if os.name=='nt': os.add_dll_directory(dir_path) os.add_dll_directory(abs_path) os.add_dll_directory(os.getcwd()) if libname == lib_cublas and "CUDA_PATH" in os.environ: newpath = os.path.join(os.environ["CUDA_PATH"], "bin") if os.path.exists(newpath): os.add_dll_directory(newpath) if libname == lib_hipblas and "HIP_PATH" in os.environ: newpath = os.path.join(os.environ["HIP_PATH"], "bin") if os.path.exists(newpath): os.add_dll_directory(newpath) handle = ctypes.CDLL(os.path.join(dir_path, libname)) handle.load_model.argtypes = [load_model_inputs] handle.load_model.restype = ctypes.c_bool handle.generate.argtypes = [generation_inputs] handle.generate.restype = generation_outputs handle.new_token.restype = ctypes.c_char_p handle.new_token.argtypes = [ctypes.c_int] handle.get_stream_count.restype = ctypes.c_int handle.has_finished.restype = ctypes.c_bool handle.get_last_eval_time.restype = ctypes.c_float handle.get_last_process_time.restype = ctypes.c_float handle.get_last_token_count.restype = ctypes.c_int handle.get_last_seed.restype = ctypes.c_int handle.get_last_draft_success.restype = ctypes.c_int handle.get_last_draft_failed.restype = ctypes.c_int handle.get_total_img_gens.restype = ctypes.c_int handle.get_total_tts_gens.restype = ctypes.c_int handle.get_total_transcribe_gens.restype = ctypes.c_int handle.get_total_gens.restype = ctypes.c_int handle.get_last_stop_reason.restype = ctypes.c_int handle.abort_generate.restype = ctypes.c_bool handle.token_count.restype = token_count_outputs handle.get_pending_output.restype = ctypes.c_char_p handle.get_chat_template.restype = ctypes.c_char_p handle.sd_load_model.argtypes = [sd_load_model_inputs] handle.sd_load_model.restype = ctypes.c_bool handle.sd_generate.argtypes = [sd_generation_inputs] handle.sd_generate.restype = sd_generation_outputs handle.whisper_load_model.argtypes = [whisper_load_model_inputs] handle.whisper_load_model.restype = ctypes.c_bool handle.whisper_generate.argtypes = [whisper_generation_inputs] handle.whisper_generate.restype = whisper_generation_outputs handle.tts_load_model.argtypes = [tts_load_model_inputs] handle.tts_load_model.restype = ctypes.c_bool handle.tts_generate.argtypes = [tts_generation_inputs] handle.tts_generate.restype = tts_generation_outputs handle.last_logprobs.restype = last_logprobs_outputs handle.detokenize.argtypes = [token_count_outputs] handle.detokenize.restype = ctypes.c_char_p def set_backend_props(inputs): clblastids = 0 if args.useclblast: clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1]) inputs.clblast_info = clblastids # we must force an explicit tensor split # otherwise the default will divide equally and multigpu crap will slow it down badly inputs.cublas_info = 0 if args.usecublas: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" if not args.tensor_split: if (args.usecublas and "0" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ["HIP_VISIBLE_DEVICES"] = "0" elif (args.usecublas and "1" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "1" os.environ["HIP_VISIBLE_DEVICES"] = "1" elif (args.usecublas and "2" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "2" os.environ["HIP_VISIBLE_DEVICES"] = "2" elif (args.usecublas and "3" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "3" os.environ["HIP_VISIBLE_DEVICES"] = "3" else: if (args.usecublas and "0" in args.usecublas): inputs.cublas_info = 0 elif (args.usecublas and "1" in args.usecublas): inputs.cublas_info = 1 elif (args.usecublas and "2" in args.usecublas): inputs.cublas_info = 2 elif (args.usecublas and "3" in args.usecublas): inputs.cublas_info = 3 if args.usevulkan: #is an empty array if using vulkan without defined gpu s = "" for it in range(0,len(args.usevulkan)): s += str(args.usevulkan[it]) inputs.vulkan_info = s.encode("UTF-8") else: inputs.vulkan_info = "".encode("UTF-8") # set universal flags inputs.quiet = args.quiet inputs.debugmode = args.debugmode inputs.executable_path = (getdirpath()+"/").encode("UTF-8") return inputs def end_trim_to_sentence(input_text): enders = ['.', '!', '?', '*', '"', ')', '}', '`', ']', ';', '…'] last = -1 for ender in enders: last = max(last, input_text.rfind(ender)) nl = input_text.rfind("\n") last = max(last, nl) if last > 0: return input_text[:last + 1].strip() return input_text.strip() def tryparseint(value): try: return int(value) except ValueError: return value def is_incomplete_utf8_sequence(byte_seq): #note, this will only flag INCOMPLETE sequences, corrupted ones will be ignored. try: byte_seq.decode('utf-8') return False # Valid UTF-8 except UnicodeDecodeError as e: if e.reason == 'unexpected end of data': return True #incomplete sequence return False #invalid sequence, but not incomplete def unpack_to_dir(destpath = ""): import shutil srcpath = os.path.abspath(os.path.dirname(__file__)) cliunpack = False if destpath == "" else True print("Attempt to unpack KoboldCpp into directory...") if not cliunpack: from tkinter.filedialog import askdirectory from tkinter import messagebox destpath = askdirectory(title='Select an empty folder to unpack KoboldCpp') if not destpath: return if os.path.isdir(srcpath) and os.path.isdir(destpath) and not os.listdir(destpath): try: if cliunpack: print(f"KoboldCpp will be extracted to {destpath}\nThis process may take several seconds to complete.") else: messagebox.showinfo("Unpack Starting", f"KoboldCpp will be extracted to {destpath}\nThis process may take several seconds to complete.") for item in os.listdir(srcpath): s = os.path.join(srcpath, item) d = os.path.join(destpath, item) if item.endswith('.pyd'): # Skip .pyd files continue if os.path.isdir(s): shutil.copytree(s, d, False, None) else: shutil.copy2(s, d) if cliunpack: print(f"KoboldCpp successfully extracted to {destpath}") else: messagebox.showinfo("KoboldCpp Unpack Success", f"KoboldCpp successfully extracted to {destpath}") except Exception as e: if cliunpack: print(f"An error occurred while unpacking: {e}") else: messagebox.showerror("Error", f"An error occurred while unpacking: {e}") else: if cliunpack: print("The target folder is not empty or invalid. Please select an empty folder.") else: messagebox.showwarning("Invalid Selection", "The target folder is not empty or invalid. Please select an empty folder.") def exit_with_error(code, message, title="Error"): global using_gui_launcher print("") time.sleep(1) if using_gui_launcher: show_gui_msgbox(title, message) else: print(message, flush=True) time.sleep(2) sys.exit(code) def utfprint(str, importance = 2): #0 = only debugmode, 1 = except quiet, 2 = always print if args.quiet and importance<2: #quiet overrides debugmode return if args.debugmode < 1: if importance==1 and (args.debugmode == -1 or args.quiet): return if importance==0: return maxlen = 32000 if args.debugmode >= 1: maxlen = 64000 try: strlength = len(str) if strlength > maxlen: #limit max output len str = str[:maxlen] + f"... (+{strlength-maxlen} chars)" except Exception: pass try: print(str) except UnicodeEncodeError: # Replace or omit the problematic character utf_string = str.encode('ascii', 'ignore').decode('ascii',"ignore") utf_string = utf_string.replace('\a', '') #remove bell characters print(utf_string) def bring_terminal_to_foreground(): if os.name=='nt': ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9) ctypes.windll.user32.SetForegroundWindow(ctypes.windll.kernel32.GetConsoleWindow()) def simple_lcg_hash(input_string): #turns any string into a number between 10000 and 99999 a = 1664525 c = 1013904223 m = 89999 # Modulo hash_value = 25343 for char in input_string: hash_value = (a * hash_value + ord(char) + c) % m hash_value += 10000 return hash_value def string_has_overlap(str_a, str_b, maxcheck): max_overlap = min(maxcheck, len(str_a), len(str_b)) for i in range(1, max_overlap + 1): if str_a[-i:] == str_b[:i]: return True return False def string_contains_or_overlaps_sequence_substring(inputstr, sequences): if inputstr=="": return False for s in sequences: if s.strip()=="": continue if s.strip() in inputstr.strip() or inputstr.strip() in s.strip(): return True if string_has_overlap(inputstr, s, 10): return True return False def get_capabilities(): global savedata_obj, has_multiplayer, KcppVersion, friendlymodelname, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath, ttsmodelpath has_llm = not (friendlymodelname=="inactive") has_txt2img = not (friendlysdmodelname=="inactive" or fullsdmodelpath=="") has_vision = (mmprojpath!="") has_password = (password!="") has_whisper = (fullwhispermodelpath!="") has_search = True if args.websearch else False has_tts = (ttsmodelpath!="") admin_type = (2 if args.admin and args.admindir and args.adminpassword else (1 if args.admin and args.admindir else 0)) return {"result":"KoboldCpp", "version":KcppVersion, "protected":has_password, "llm":has_llm, "txt2img":has_txt2img,"vision":has_vision,"transcribe":has_whisper,"multiplayer":has_multiplayer,"websearch":has_search,"tts":has_tts, "savedata":(savedata_obj is not None), "admin": admin_type} def dump_gguf_metadata(file_path): #if you're gonna copy this into your own project at least credit concedo chunk_size = 1024*1024*12 # read first 12mb of file try: data = None fptr = 0 dt_table = ["u8","i8","u16","i16","u32","i32","f32","bool","str","arr","u64","i64","f64"] #13 types, else error tt_table = ["f32","f16","q4_0","q4_1","q4_2","q4_3","q5_0","q5_1","q8_0","q8_1","q2_k","q3_k","q4_k","q5_k","q6_k","q8_k","iq2_xxs","iq2_xs","iq3_xxs","iq1_s","iq4_nl","iq3_s","iq2_s","iq4_xs","i8","i16","i32","i64","f64","iq1_m","bf16","q4_0_4_4","q4_0_4_8","q4_0_8_8","tq1_0","tq2_0","iq4_nl_4_4","unknown","unknown","unknown","unknown","unknown"] def read_data(datatype): nonlocal fptr, data, dt_table if datatype=="u32": val_bytes = data[fptr:fptr + 4] val = struct.unpack(' 0 and value2 <= maxval: return value2 #contains the desired value return 0 else: return 0 #not found fsize = os.path.getsize(file_path) if fsize < 10000: #ignore files under 10kb return None with open(file_path, 'rb') as f: file_header = f.read(4) if file_header != b'GGUF': #file is not GGUF return None data = f.read(chunk_size) layercount = read_gguf_key(b'.block_count',data,512) head_count_kv = read_gguf_key(b'.attention.head_count_kv',data,8192) key_length = read_gguf_key(b'.attention.key_length',data,8192) val_length = read_gguf_key(b'.attention.value_length',data,8192) return [layercount,head_count_kv, max(key_length,val_length)] except Exception: return None def extract_modelfile_params(filepath,sdfilepath,whisperfilepath,mmprojfilepath,draftmodelpath,ttsmodelpath): global modelfile_extracted_meta modelfile_extracted_meta = None sdfsize = 0 whisperfsize = 0 mmprojsize = 0 draftmodelsize = 0 ttsmodelsize = 0 if sdfilepath and os.path.exists(sdfilepath): sdfsize = os.path.getsize(sdfilepath) if whisperfilepath and os.path.exists(whisperfilepath): whisperfsize = os.path.getsize(whisperfilepath) if mmprojfilepath and os.path.exists(mmprojfilepath): mmprojsize = os.path.getsize(mmprojfilepath) if draftmodelpath and os.path.exists(draftmodelpath): draftmodelsize = os.path.getsize(draftmodelpath) if ttsmodelpath and os.path.exists(ttsmodelpath): ttsmodelsize = os.path.getsize(ttsmodelpath) if filepath and os.path.exists(filepath): try: fsize = os.path.getsize(filepath) if fsize>10000000: #dont bother with models < 10mb as they are probably bad ggufmeta = read_gguf_metadata(filepath) modelfile_extracted_meta = [ggufmeta,fsize,sdfsize,whisperfsize,mmprojsize,draftmodelsize,ttsmodelsize] #extract done. note that meta may be null except Exception: modelfile_extracted_meta = None def autoset_gpu_layers(ctxsize,sdquanted,bbs): #shitty algo to determine how many layers to use global showusedmemwarning, modelfile_extracted_meta # reference cached values instead gpumem = MaxMemory[0] usedmem = 0 if MaxFreeMemory[0]>0: usedmem = MaxMemory[0]-MaxFreeMemory[0] if showusedmemwarning and usedmem > (2.5*1024*1024*1024): showusedmemwarning = False print(f"Note: KoboldCpp has detected that a significant amount of GPU VRAM ({usedmem/1024/1024} MB) is currently used by another application.\nFor best results, you may wish to close that application and then restart KoboldCpp.\n***") reservedmem = max(1.3*1024*1024*1024,(0.5*1024*1024*1024 + usedmem)) # determine vram overhead try: if not modelfile_extracted_meta: return 0 layerlimit = 0 fsize = modelfile_extracted_meta[1] if fsize>10000000: #dont bother with models < 10mb cs = ctxsize mem = gpumem if modelfile_extracted_meta[2] > 1024*1024*1024*5: #sdxl tax mem -= 1024*1024*1024*(6 if sdquanted else 9) elif modelfile_extracted_meta[2] > 1024*1024*512: #normal sd tax mem -= 1024*1024*1024*(3.25 if sdquanted else 4.25) if modelfile_extracted_meta[3] > 1024*1024*10: #whisper tax mem -= 350*1024*1024 if modelfile_extracted_meta[4] > 1024*1024*10: #mmproj tax mem -= 350*1024*1024 if modelfile_extracted_meta[5] > 1024*1024*10: #draft model tax mem -= (modelfile_extracted_meta[5] * 1.5) if modelfile_extracted_meta[6] > 1024*1024*10: #tts model tax mem -= max(600*1024*1024, modelfile_extracted_meta[6] * 3) mem = 0 if mem < 0 else mem csmul = 1.0 if cs: csmul = (cs/4096) if cs >= 8192 else 1.8 if cs > 4096 else 1.2 if cs > 2048 else 1.0 ggufmeta = modelfile_extracted_meta[0] if not ggufmeta or ggufmeta[0]==0: #fail to read or no layers sizeperlayer = fsize*csmul*0.052 layerlimit = int(min(200,(mem-usedmem)/sizeperlayer)) else: layers = ggufmeta[0] headcount = ggufmeta[1] headkvlen = (ggufmeta[2] if ggufmeta[2] > 0 else 128) ratio = (mem-usedmem)/(fsize*csmul*1.6*(1.0 if bbs <= 512 else 1.2)) computemem = layers*(4 if bbs <= 512 else (bbs/128))*headkvlen*cs*4*1.55 # apply blasbatchsize calculations if over 512 contextmem = layers*headcount*headkvlen*cs*4*1.15 if headcount > 0: ratio = max(ratio, (mem - reservedmem - computemem) / (fsize + contextmem)) layerlimit = min(int(ratio*layers), (layers + 3)) layerlimit = (0 if layerlimit<=2 else layerlimit) return layerlimit except Exception: return 0 def fetch_gpu_properties(testCL,testCU,testVK): import subprocess if testCU: FetchedCUdevices = [] FetchedCUdeviceMem = [] FetchedCUfreeMem = [] faileddetectvram = False AMDgpu = None try: # Get NVIDIA GPU names output = subprocess.run(['nvidia-smi','--query-gpu=name,memory.total,memory.free','--format=csv,noheader'], capture_output=True, text=True, check=True, encoding='utf-8').stdout FetchedCUdevices = [line.split(",")[0].strip() for line in output.splitlines()] FetchedCUdeviceMem = [line.split(",")[1].strip().split(" ")[0].strip() for line in output.splitlines()] FetchedCUfreeMem = [line.split(",")[2].strip().split(" ")[0].strip() for line in output.splitlines()] except Exception: FetchedCUdeviceMem = [] FetchedCUfreeMem = [] faileddetectvram = True pass if len(FetchedCUdevices)==0: try: # Get AMD ROCm GPU names output = subprocess.run(['rocminfo'], capture_output=True, text=True, check=True, encoding='utf-8').stdout device_name = None for line in output.splitlines(): # read through the output line by line line = line.strip() if line.startswith("Marketing Name:"): device_name = line.split(":", 1)[1].strip() # if we find a named device, temporarily save the name elif line.startswith("Device Type:") and "GPU" in line and device_name is not None: # if the following Device Type is a GPU (not a CPU) then add it to devices list FetchedCUdevices.append(device_name) AMDgpu = True elif line.startswith("Device Type:") and "GPU" not in line: device_name = None if FetchedCUdevices: getamdvram = subprocess.run(['rocm-smi', '--showmeminfo', 'vram', '--csv'], capture_output=True, text=True, check=True, encoding='utf-8').stdout # fetch VRAM of devices if getamdvram: FetchedCUdeviceMem = [line.split(",")[1].strip() for line in getamdvram.splitlines()[1:] if line.strip()] except Exception: FetchedCUdeviceMem = [] FetchedCUfreeMem = [] faileddetectvram = True pass lowestcumem = 0 lowestfreecumem = 0 try: for idx in range(0,4): if(len(FetchedCUdevices)>idx): CUDevicesNames[idx] = FetchedCUdevices[idx] for idx in range(0,4): if(len(FetchedCUdevices)>idx): if len(FetchedCUdeviceMem)>idx: dmem = int(FetchedCUdeviceMem[idx]) if AMDgpu else (int(FetchedCUdeviceMem[idx])*1024*1024) lowestcumem = dmem if lowestcumem==0 else (dmem if dmemidx: dmem = (int(FetchedCUfreeMem[idx])*1024*1024) lowestfreecumem = dmem if lowestfreecumem==0 else (dmem if dmem3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and any(CUDevicesNames): if "Use CuBLAS" in runopts or "Use hipBLAS (ROCm)" in runopts: args.usecublas = ["normal","mmq"] print("Auto Selected CUDA Backend...\n") found_new_backend = True elif exitcounter < 100 and (1 in VKIsDGPU) and "Use Vulkan" in runopts: for i in range(0,len(VKIsDGPU)): if VKIsDGPU[i]==1: args.usevulkan = [] print("Auto Selected Vulkan Backend...\n") found_new_backend = True break if not found_new_backend: print("No GPU Backend found...\n") def load_model(model_filename): global args inputs = load_model_inputs() inputs.model_filename = model_filename.encode("UTF-8") inputs.max_context_length = maxctx #initial value to use for ctx, can be overwritten inputs.threads = args.threads inputs.low_vram = (True if (args.usecublas and "lowvram" in args.usecublas) else False) inputs.use_mmq = (True if (args.usecublas and "nommq" not in args.usecublas) else False) inputs.use_rowsplit = (True if (args.usecublas and "rowsplit" in args.usecublas) else False) inputs.vulkan_info = "0".encode("UTF-8") inputs.blasthreads = args.blasthreads inputs.use_mmap = args.usemmap inputs.use_mlock = args.usemlock inputs.lora_filename = "".encode("UTF-8") inputs.lora_base = "".encode("UTF-8") if args.lora: inputs.lora_filename = args.lora[0].encode("UTF-8") inputs.use_mmap = False if len(args.lora) > 1: inputs.lora_base = args.lora[1].encode("UTF-8") inputs.draftmodel_filename = args.draftmodel.encode("UTF-8") if args.draftmodel else "".encode("UTF-8") inputs.draft_amount = args.draftamount inputs.draft_gpulayers = args.draftgpulayers for n in range(tensor_split_max): if args.draftgpusplit and n < len(args.draftgpusplit): inputs.draft_gpusplit[n] = float(args.draftgpusplit[n]) else: inputs.draft_gpusplit[n] = 0 inputs.mmproj_filename = args.mmproj.encode("UTF-8") if args.mmproj else "".encode("UTF-8") inputs.visionmaxres = (512 if args.visionmaxres < 512 else (2048 if args.visionmaxres > 2048 else args.visionmaxres)) inputs.use_smartcontext = args.smartcontext inputs.use_contextshift = (0 if args.noshift else 1) inputs.use_fastforward = (0 if args.nofastforward else 1) inputs.flash_attention = args.flashattention if args.quantkv>0: inputs.quant_k = inputs.quant_v = args.quantkv inputs.flash_attention = True inputs.use_contextshift = 0 else: inputs.quant_k = inputs.quant_v = 0 inputs.blasbatchsize = args.blasbatchsize inputs.forceversion = args.forceversion inputs.gpulayers = args.gpulayers inputs.rope_freq_scale = args.ropeconfig[0] if len(args.ropeconfig)>1: inputs.rope_freq_base = args.ropeconfig[1] else: inputs.rope_freq_base = 10000 for n in range(tensor_split_max): if args.tensor_split and n < len(args.tensor_split): inputs.tensor_split[n] = float(args.tensor_split[n]) else: inputs.tensor_split[n] = 0 inputs.moe_experts = args.moeexperts inputs = set_backend_props(inputs) ret = handle.load_model(inputs) return ret def generate(genparams, stream_flag=False): global maxctx, args, currentusergenkey, totalgens, pendingabortkey prompt = genparams.get('prompt', "") memory = genparams.get('memory', "") images = genparams.get('images', []) max_context_length = int(genparams.get('max_context_length', maxctx)) max_length = int(genparams.get('max_length', 200)) temperature = float(genparams.get('temperature', 0.75)) top_k = int(genparams.get('top_k', 100)) top_a = float(genparams.get('top_a', 0.0)) top_p = float(genparams.get('top_p', 0.92)) min_p = float(genparams.get('min_p', 0.0)) typical_p = float(genparams.get('typical', 1.0)) tfs = float(genparams.get('tfs', 1.0)) nsigma = float(genparams.get('nsigma', 0.0)) rep_pen = float(genparams.get('rep_pen', 1.0)) rep_pen_range = int(genparams.get('rep_pen_range', 320)) rep_pen_slope = float(genparams.get('rep_pen_slope', 1.0)) presence_penalty = float(genparams.get('presence_penalty', 0.0)) mirostat = int(genparams.get('mirostat', 0)) mirostat_tau = float(genparams.get('mirostat_tau', 5.0)) mirostat_eta = float(genparams.get('mirostat_eta', 0.1)) dry_multiplier = float(genparams.get('dry_multiplier', 0.0)) dry_base = float(genparams.get('dry_base', 1.75)) dry_allowed_length = int(genparams.get('dry_allowed_length', 2)) dry_penalty_last_n = int(genparams.get('dry_penalty_last_n', 320)) dry_sequence_breakers = genparams.get('dry_sequence_breakers', []) xtc_threshold = float(genparams.get('xtc_threshold', 0.2)) xtc_probability = float(genparams.get('xtc_probability', 0)) sampler_order = genparams.get('sampler_order', [6, 0, 1, 3, 4, 2, 5]) seed = tryparseint(genparams.get('sampler_seed', -1)) stop_sequence = genparams.get('stop_sequence', []) ban_eos_token = genparams.get('ban_eos_token', False) stream_sse = stream_flag grammar = genparams.get('grammar', '') grammar_retain_state = genparams.get('grammar_retain_state', False) genkey = genparams.get('genkey', '') trimstop = genparams.get('trim_stop', True) dynatemp_range = float(genparams.get('dynatemp_range', 0.0)) dynatemp_exponent = float(genparams.get('dynatemp_exponent', 1.0)) smoothing_factor = float(genparams.get('smoothing_factor', 0.0)) logit_biases = genparams.get('logit_bias', {}) render_special = genparams.get('render_special', False) banned_strings = genparams.get('banned_strings', []) # SillyTavern uses that name banned_tokens = genparams.get('banned_tokens', banned_strings) bypass_eos_token = genparams.get('bypass_eos', False) custom_token_bans = genparams.get('custom_token_bans', '') for tok in custom_token_bans.split(','): tok = tok.strip() # Remove leading/trailing whitespace if tok.isdigit(): logit_biases[tok] = bias_min_value inputs = generation_inputs() inputs.prompt = prompt.encode("UTF-8") inputs.memory = memory.encode("UTF-8") for n in range(images_max): if not images or n >= len(images): inputs.images[n] = "".encode("UTF-8") else: inputs.images[n] = images[n].encode("UTF-8") global showmaxctxwarning if max_context_length > maxctx: if showmaxctxwarning: print(f"\n(Warning! Request max_context_length={max_context_length} exceeds allocated context size of {maxctx}. It will be reduced to fit. Consider launching with increased --contextsize to avoid errors. This message will only show once per session.)") showmaxctxwarning = False max_context_length = maxctx min_remain = min(max_context_length-4, 16) if max_length >= (max_context_length-min_remain): max_length = max_context_length-min_remain print("\nWarning: You are trying to generate with max_length near or exceeding max_context_length. Most of the context will be removed, and your outputs will not be very coherent.") inputs.max_context_length = max_context_length # this will resize the context buffer if changed inputs.max_length = max_length inputs.temperature = temperature inputs.top_k = top_k inputs.top_a = top_a inputs.top_p = top_p inputs.min_p = min_p inputs.typical_p = typical_p inputs.tfs = tfs inputs.nsigma = nsigma inputs.rep_pen = rep_pen inputs.rep_pen_range = rep_pen_range inputs.rep_pen_slope = rep_pen_slope inputs.presence_penalty = presence_penalty inputs.stream_sse = stream_sse inputs.dynatemp_range = dynatemp_range inputs.dynatemp_exponent = dynatemp_exponent inputs.smoothing_factor = smoothing_factor inputs.grammar = grammar.encode("UTF-8") inputs.grammar_retain_state = grammar_retain_state inputs.allow_eos_token = not ban_eos_token inputs.bypass_eos_token = bypass_eos_token inputs.render_special = render_special if mirostat in (1, 2): inputs.mirostat = mirostat inputs.mirostat_tau = mirostat_tau inputs.mirostat_eta = mirostat_eta else: inputs.mirostat = inputs.mirostat_tau = inputs.mirostat_eta = 0 inputs.dry_multiplier = dry_multiplier inputs.dry_base = dry_base inputs.xtc_threshold = xtc_threshold inputs.xtc_probability = xtc_probability inputs.dry_allowed_length = dry_allowed_length inputs.dry_penalty_last_n = dry_penalty_last_n # Handle dry_sequence_breakers being passed as a json-encoded array of # strings, rather than as an array of strings itself. This is to support # SillyTavern, which passes sequence breakers to Oobabooga that way. if dry_multiplier > 0 and isinstance(dry_sequence_breakers, str): try: dry_sequence_breakers = json.loads(dry_sequence_breakers) except ValueError as e: print(f"ERROR: dry_sequence_breakers must be an array of strings or a json encoded array of strings. Could not parse '{dry_sequence_breakers}': " + str(e)) dry_sequence_breakers = [] if dry_multiplier <= 0 or dry_sequence_breakers is None: # prevent explicitly set to None, retain old behavior dry_sequence_breakers = [] dry_sequence_breakers = dry_sequence_breakers[:dry_seq_break_max] inputs.dry_sequence_breakers_len = len(dry_sequence_breakers) inputs.dry_sequence_breakers = (ctypes.c_char_p * inputs.dry_sequence_breakers_len)() for n, breaker in enumerate(dry_sequence_breakers): inputs.dry_sequence_breakers[n] = breaker.encode("UTF-8") if sampler_order and 0 < len(sampler_order) <= sampler_order_max: try: for i, sampler in enumerate(sampler_order): inputs.sampler_order[i] = sampler inputs.sampler_len = len(sampler_order) global showsamplerwarning if showsamplerwarning and inputs.mirostat==0 and inputs.sampler_len>0 and (inputs.sampler_order[0]!=6 or inputs.sampler_order[inputs.sampler_len-1]!=5): print("\n(Note: Non-default sampler_order detected. Recommended sampler values are [6,0,1,3,4,2,5]. This message will only show once per session.)") showsamplerwarning = False except TypeError as e: print("ERROR: sampler_order must be a list of integers: " + str(e)) inputs.seed = seed if stop_sequence is None: stop_sequence = [] stop_sequence = stop_sequence[:stop_token_max] inputs.stop_sequence_len = len(stop_sequence) inputs.stop_sequence = (ctypes.c_char_p * inputs.stop_sequence_len)() for n, sequence in enumerate(stop_sequence): if sequence: inputs.stop_sequence[n] = sequence.encode("UTF-8") else: inputs.stop_sequence[n] = "".encode("UTF-8") bias_list = [] try: if logit_biases and len(logit_biases) > 0: bias_list = [{"key": key, "value": value} for key, value in logit_biases.items()] except Exception as ex: print(f"Logit bias dictionary is invalid: {ex}") bias_list = bias_list[:logit_bias_max] inputs.logit_biases_len = len(bias_list) inputs.logit_biases = (logit_bias * inputs.logit_biases_len)() for n, lb in enumerate(bias_list): try: t_id = int(lb['key']) bias = float(lb['value']) t_id = -1 if t_id < 0 else t_id bias = (bias_max_value if bias > bias_max_value else (bias_min_value if bias < bias_min_value else bias)) inputs.logit_biases[n] = logit_bias(t_id, bias) except Exception as ex: inputs.logit_biases[n] = logit_bias(-1, 0.0) print(f"Skipped unparsable logit bias:{ex}") if banned_tokens is None: banned_tokens = [] banned_tokens = banned_tokens[:ban_token_max] inputs.banned_tokens_len = len(banned_tokens) inputs.banned_tokens = (ctypes.c_char_p * inputs.banned_tokens_len)() for n, tok in enumerate(banned_tokens): inputs.banned_tokens[n] = tok.encode("UTF-8") currentusergenkey = genkey totalgens += 1 #early exit if aborted if pendingabortkey!="" and pendingabortkey==genkey: print(f"\nDeferred Abort for GenKey: {pendingabortkey}") pendingabortkey = "" return {"text":"","status":-1,"stopreason":-1, "prompt_tokens":0, "completion_tokens": 0, "total_tokens": 0} else: ret = handle.generate(inputs) outstr = "" if ret.status==1: outstr = ret.text.decode("UTF-8","ignore") if trimstop: for trim_str in stop_sequence: sindex = outstr.find(trim_str) if sindex != -1 and trim_str!="": outstr = outstr[:sindex] return {"text":outstr,"status":ret.status,"stopreason":ret.stopreason,"prompt_tokens":ret.prompt_tokens, "completion_tokens": ret.completion_tokens} def sd_load_model(model_filename,vae_filename,lora_filename,t5xxl_filename,clipl_filename,clipg_filename): global args inputs = sd_load_model_inputs() inputs.model_filename = model_filename.encode("UTF-8") thds = args.threads quant = 0 if args.sdthreads and args.sdthreads > 0: sdt = int(args.sdthreads) if sdt > 0: thds = sdt if args.sdquant: quant = 1 inputs.threads = thds inputs.quant = quant inputs.taesd = True if args.sdvaeauto else False inputs.notile = True if args.sdnotile else False inputs.vae_filename = vae_filename.encode("UTF-8") inputs.lora_filename = lora_filename.encode("UTF-8") inputs.lora_multiplier = args.sdloramult inputs.t5xxl_filename = t5xxl_filename.encode("UTF-8") inputs.clipl_filename = clipl_filename.encode("UTF-8") inputs.clipg_filename = clipg_filename.encode("UTF-8") inputs = set_backend_props(inputs) ret = handle.sd_load_model(inputs) return ret def sd_comfyui_tranform_params(genparams): promptobj = genparams.get('prompt', None) if promptobj and isinstance(promptobj, dict): temp = promptobj.get('3', {}) temp = temp.get('inputs', {}) genparams["seed"] = temp.get("seed", -1) genparams["steps"] = temp.get("steps", 20) genparams["cfg_scale"] = temp.get("cfg", 5) genparams["sampler_name"] = temp.get("sampler_name", "euler") temp = promptobj.get('5', {}) temp = temp.get('inputs', {}) genparams["width"] = temp.get("width", 512) genparams["height"] = temp.get("height", 512) temp = promptobj.get('6', {}) temp = temp.get('inputs', {}) genparams["prompt"] = temp.get("text", "high quality") temp = promptobj.get('7', {}) temp = temp.get('inputs', {}) genparams["negative_prompt"] = temp.get("text", "") else: print("Warning: ComfyUI Payload Missing!") return genparams def sd_generate(genparams): global maxctx, args, currentusergenkey, totalgens, pendingabortkey, chatcompl_adapter default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter adapter_obj = genparams.get('adapter', default_adapter) forced_negprompt = adapter_obj.get("add_sd_negative_prompt", "") forced_posprompt = adapter_obj.get("add_sd_prompt", "") prompt = genparams.get("prompt", "high quality") negative_prompt = genparams.get("negative_prompt", "") if forced_negprompt!="": if negative_prompt!="": negative_prompt += ", " + forced_negprompt else: negative_prompt = forced_negprompt if forced_posprompt!="": if prompt!="": prompt += ", " + forced_posprompt else: prompt = forced_posprompt init_images_arr = genparams.get("init_images", []) init_images = ("" if (not init_images_arr or len(init_images_arr)==0 or not init_images_arr[0]) else init_images_arr[0]) denoising_strength = genparams.get("denoising_strength", 0.6) cfg_scale = genparams.get("cfg_scale", 5) sample_steps = tryparseint(genparams.get("steps", 20)) width = tryparseint(genparams.get("width", 512)) height = tryparseint(genparams.get("height", 512)) seed = tryparseint(genparams.get("seed", -1)) sample_method = genparams.get("sampler_name", "k_euler_a") clip_skip = tryparseint(genparams.get("clip_skip", -1)) #clean vars width = width - (width%64) height = height - (height%64) cfg_scale = (1 if cfg_scale < 1 else (25 if cfg_scale > 25 else cfg_scale)) sample_steps = (1 if sample_steps < 1 else (80 if sample_steps > 80 else sample_steps)) reslimit = 1024 width = (64 if width < 64 else width) height = (64 if height < 64 else height) if args.sdclamped: sample_steps = (40 if sample_steps > 40 else sample_steps) reslimit = int(args.sdclamped) reslimit = (512 if reslimit<512 else reslimit) print(f"\nImgGen: Clamped Mode (For Shared Use). Step counts and resolution are clamped to {reslimit}x{reslimit}.") biggest = max(width,height) if biggest > reslimit: scaler = biggest / reslimit width = int(width / scaler) height = int(height / scaler) width = width - (width%64) height = height - (height%64) inputs = sd_generation_inputs() inputs.prompt = prompt.encode("UTF-8") inputs.negative_prompt = negative_prompt.encode("UTF-8") inputs.init_images = init_images.encode("UTF-8") inputs.cfg_scale = cfg_scale inputs.denoising_strength = denoising_strength inputs.sample_steps = sample_steps inputs.width = width inputs.height = height inputs.seed = seed inputs.sample_method = sample_method.lower().encode("UTF-8") inputs.clip_skip = clip_skip ret = handle.sd_generate(inputs) outstr = "" if ret.status==1: outstr = ret.data.decode("UTF-8","ignore") return outstr def whisper_load_model(model_filename): global args inputs = whisper_load_model_inputs() inputs.model_filename = model_filename.encode("UTF-8") inputs = set_backend_props(inputs) ret = handle.whisper_load_model(inputs) return ret def whisper_generate(genparams): global args prompt = genparams.get("prompt", "") audio_data = genparams.get("audio_data", "") if audio_data.startswith("data:audio"): audio_data = audio_data.split(",", 1)[1] inputs = whisper_generation_inputs() inputs.prompt = prompt.encode("UTF-8") inputs.audio_data = audio_data.encode("UTF-8") lc = genparams.get("langcode", genparams.get("language", "auto")) lc = lc.strip().lower() if (lc and lc.strip().lower()!="") else "auto" inputs.langcode = lc.encode("UTF-8") inputs.suppress_non_speech = genparams.get("suppress_non_speech", False) ret = handle.whisper_generate(inputs) outstr = "" if ret.status==1: outstr = ret.data.decode("UTF-8","ignore") return outstr def tts_load_model(ttc_model_filename,cts_model_filename): global args inputs = tts_load_model_inputs() inputs.ttc_model_filename = ttc_model_filename.encode("UTF-8") inputs.cts_model_filename = cts_model_filename.encode("UTF-8") inputs.gpulayers = (999 if args.ttsgpu else 0) inputs.flash_attention = args.flashattention thds = args.threads if args.ttsthreads and args.ttsthreads > 0: ttst = int(args.ttsthreads) if ttst > 0: thds = ttst inputs.threads = thds inputs.ttsmaxlen = args.ttsmaxlen if args.ttsmaxlen < 4096 else 4096 inputs = set_backend_props(inputs) ret = handle.tts_load_model(inputs) return ret def tts_generate(genparams): global args prompt = genparams.get("input", genparams.get("text", "")) prompt = prompt.strip() voice = 1 voicestr = genparams.get("voice", genparams.get("speaker_wav", "")) voice_mapping = ["kobo","cheery","sleepy","shouty","chatty"] normalized_voice = voicestr.strip().lower() if voicestr else "" if normalized_voice in voice_mapping: voice = voice_mapping.index(normalized_voice) + 1 else: voice = simple_lcg_hash(voicestr.strip()) if voicestr else 1 inputs = tts_generation_inputs() inputs.prompt = prompt.encode("UTF-8") inputs.speaker_seed = voice aseed = -1 try: aseed = int(genparams.get("seed", -1)) except Exception: aseed = -1 inputs.audio_seed = aseed ret = handle.tts_generate(inputs) outstr = "" if ret.status==1: outstr = ret.data.decode("UTF-8","ignore") return outstr def tokenize_ids(countprompt,tcaddspecial): rawcountdata = handle.token_count(countprompt.encode("UTF-8"),tcaddspecial) countlimit = rawcountdata.count if (rawcountdata.count>=0 and rawcountdata.count<50000) else 0 # the above protects the server in case the count limit got corrupted countdata = [rawcountdata.ids[i] for i in range(countlimit)] return countdata def detokenize_ids(tokids): tokidslen = len(tokids) detokstr = "" if tokidslen > 0 and tokidslen < 65536: inputs = token_count_outputs() inputs.count = tokidslen inputs.ids = (ctypes.c_int * tokidslen)() for i, cid in enumerate(tokids): inputs.ids[i] = cid detok = handle.detokenize(inputs) detokstr = ctypes.string_at(detok).decode("UTF-8","ignore") return detokstr # Performs a web search using DuckDuckGo and extracts text content from the top results. def websearch(query): global websearch_lastquery global websearch_lastresponse global nocertify # sanitize query query = re.sub(r'[+\-\"\\/*^|<>~`]', '', query) # Remove blacklisted characters query = re.sub(r'\s+', ' ', query).strip() # Replace multiple spaces with a single space if not query or query=="": return [] query = query[:300] # only search first 300 chars, due to search engine limits if query==websearch_lastquery: print("Returning cached websearch...") return websearch_lastresponse import urllib.parse import urllib.request import difflib import random from html.parser import HTMLParser from concurrent.futures import ThreadPoolExecutor num_results = 3 searchresults = [] utfprint("Performing new websearch...",1) def fetch_searched_webpage(url, random_agent=False): uagent = 'Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)' if random_agent: agents = ["Mozilla/5.0 (Macintosh; Intel Mac OS X 13_2) Gecko/20100101 Firefox/114.0", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.1823.79 Safari/537.36 Edg/114.0.1823.79", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.5938.132 Safari/537.36"] uagent = random.choice(agents) if args.debugmode: utfprint(f"WebSearch URL: {url}") try: ssl_cert_dir = os.environ.get('SSL_CERT_DIR') if not ssl_cert_dir and not nocertify and os.name != 'nt': os.environ['SSL_CERT_DIR'] = '/etc/ssl/certs' req = urllib.request.Request(url, headers={'User-Agent': uagent}) with urllib.request.urlopen(req, timeout=15) as response: html_content = response.read().decode('utf-8', errors='ignore') return html_content except urllib.error.HTTPError: #we got blocked? try 1 more time with a different user agent try: req = urllib.request.Request(url, headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36'}) with urllib.request.urlopen(req, timeout=15) as response: html_content = response.read().decode('utf-8', errors='ignore') return html_content except Exception as e: utfprint(f"Error fetching text from URL {url}: {e}",1) return "" except Exception as e: utfprint(f"Error fetching text from URL {url}: {e}",1) return "" def fetch_webpages_parallel(urls): with ThreadPoolExecutor() as executor: # Submit tasks and gather results results = list(executor.map(fetch_searched_webpage, urls)) return results def normalize_page_text(text): text = re.sub(r'\s+([.,!?])', r'\1', text) # Remove spaces before punctuation # text = re.sub(r'([.,!?])([^\s])', r'\1 \2', text) # Ensure a single space follows punctuation, if not at the end of a line return text class VisibleTextParser(HTMLParser): def __init__(self): super().__init__() self.texts = [] self.is_script_or_style = False def handle_starttag(self, tag, attrs): if tag in {'script', 'style'}: self.is_script_or_style = True def handle_endtag(self, tag): if tag in {'script', 'style'}: self.is_script_or_style = False def handle_data(self, data): if not self.is_script_or_style and data.strip(): self.texts.append(data.strip()) def get_text(self): return ' '.join(self.texts) class ExtractResultsParser(HTMLParser): def __init__(self): super().__init__() self.titles = [] self.urls = [] self.descs = [] self.recordingTitle = False self.recordingUrl = False self.recordingDesc = False self.currsegmenttxt = "" def handle_starttag(self, tag, attrs): if tag == "a": # Check if the "class" attribute matches the target class for attr_name, attr_value in attrs: if not self.recordingTitle and attr_name == "class" and "result__a" in attr_value.split(): self.recordingTitle = True self.currsegmenttxt = "" if not self.recordingUrl and attr_name == "class" and "result__url" in attr_value.split(): self.recordingUrl = True self.currsegmenttxt = "" if not self.recordingDesc and attr_name == "class" and "result__snippet" in attr_value.split(): self.recordingDesc = True self.currsegmenttxt = "" def handle_endtag(self, tag): if tag == "a" and self.recordingTitle: self.recordingTitle = False self.titles.append(self.currsegmenttxt.strip()) self.currsegmenttxt = "" if tag == "a" and self.recordingUrl: self.recordingUrl = False self.urls.append(f"https://{self.currsegmenttxt.strip()}") self.currsegmenttxt = "" if tag == "a" and self.recordingDesc: self.recordingDesc = False self.descs.append(self.currsegmenttxt.strip()) self.currsegmenttxt = "" def handle_data(self, data): if self.recordingTitle or self.recordingDesc or self.recordingUrl: self.currsegmenttxt += data encoded_query = urllib.parse.quote(query) search_url = f"https://html.duckduckgo.com/html/?q={encoded_query}" try: search_html = fetch_searched_webpage(search_url, random_agent=True) parser = ExtractResultsParser() parser.feed(search_html) titles = parser.titles[:num_results] searchurls = parser.urls[:num_results] descs = parser.descs[:num_results] if len(descs)==0 or len(titles)==0 or len(descs)==0: utfprint("No results found! Maybe something went wrong...",1) return [] fetchedcontent = fetch_webpages_parallel(searchurls) for i in range(len(descs)): # dive into the results to try and get even more details title = titles[i] url = searchurls[i] desc = descs[i] pagedesc = "" try: desclen = len(desc) html_content = fetchedcontent[i] parser2 = VisibleTextParser() parser2.feed(html_content) scraped = parser2.get_text().strip() scraped = normalize_page_text(scraped) desc = normalize_page_text(desc) s = difflib.SequenceMatcher(None, scraped.lower(), desc.lower(), autojunk=False) matches = s.find_longest_match(0, len(scraped), 0, desclen) if matches.size > 100 and desclen-matches.size < 100: #good enough match # expand description by some chars both sides expandamtbefore = 200 expandamtafter = 800 startpt = matches.a - expandamtbefore startpt = 0 if startpt < 0 else startpt endpt = matches.a + expandamtafter + desclen pagedesc = scraped[startpt:endpt].strip() except Exception: pass searchresults.append({"title":title,"url":url,"desc":desc,"content":pagedesc}) except Exception as e: utfprint(f"Error fetching URL {search_url}: {e}",1) return [] if len(searchresults) > 0: websearch_lastquery = query websearch_lastresponse = searchresults return searchresults def is_port_in_use(portNum): try: import socket with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(('localhost', portNum)) == 0 except Exception: return True def is_ipv6_supported(): try: # Attempt to create an IPv6 socket sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1) sock.close() return True except Exception: return False # Used to parse json for openai tool calls def extract_json_from_string(input_string): parsed_json = None try: # First check if model exported perfect json parsed_json = json.loads(input_string) return parsed_json except Exception: pass try: # Next check if all we need is to add brackets to make it perfect json parsed_json = json.loads(f"[{input_string}]") return parsed_json except Exception: pass try: # Now use regular expression to match JSON objects or arrays in case part is valid json and part is not json_pattern = r'(\{.*?\}|\[.*?\])' # was json_pattern = r'(\{.*\}|\[.*\])' potential_jsons = re.findall(json_pattern, input_string, re.DOTALL) for potential_json in potential_jsons: try: parsed_json = json.loads(potential_json) return parsed_json except Exception: continue except Exception: pass return [] def parse_last_logprobs(lastlogprobs): if not lastlogprobs: return None logprobsdict = {} logprobsdict['content'] = [] logprobsdict['tokens'] = [] logprobsdict['token_logprobs'] = [] logprobsdict['top_logprobs'] = [] logprobsdict['text_offset'] = [] text_offset_counter = 0 for i in range(lastlogprobs.count): lp_content_item = {} logprob_item = lastlogprobs.logprob_items[i] toptoken = ctypes.string_at(logprob_item.selected_token).decode("UTF-8","ignore") logprobsdict['tokens'].append(toptoken) lp_content_item['token'] = toptoken logprobsdict['token_logprobs'].append(logprob_item.selected_logprob) lp_content_item['logprob'] = logprob_item.selected_logprob lp_content_item['bytes'] = list(toptoken.encode('utf-8')) lp_content_item['top_logprobs'] = [] logprobsdict['text_offset'].append(text_offset_counter) text_offset_counter += len(toptoken) tops = {} for j in range(min(logprob_item.option_count,logprobs_max)): tl_item = {} tl_item['logprob'] = logprob_item.logprobs[j] tokstr = ctypes.string_at(logprob_item.tokens[j]).decode("UTF-8","ignore") tops[tokstr] = logprob_item.logprobs[j] tl_item['token'] = tokstr tl_item['bytes'] = list(tokstr.encode('utf-8')) lp_content_item['top_logprobs'].append(tl_item) logprobsdict['top_logprobs'].append(tops) logprobsdict['content'].append(lp_content_item) return logprobsdict def transform_genparams(genparams, api_format): global chatcompl_adapter, maxctx #api format 1=basic,2=kai,3=oai,4=oai-chat,5=interrogate,6=ollama,7=ollamachat #alias all nonstandard alternative names for rep pen. rp1 = float(genparams.get('repeat_penalty', 1.0)) rp2 = float(genparams.get('repetition_penalty', 1.0)) rp3 = float(genparams.get('rep_pen', 1.0)) rp_max = max(rp1,rp2,rp3) genparams["rep_pen"] = rp_max if "use_default_badwordsids" in genparams and "ban_eos_token" not in genparams: genparams["ban_eos_token"] = genparams.get('use_default_badwordsids', False) if api_format==1: genparams["prompt"] = genparams.get('text', "") genparams["top_k"] = int(genparams.get('top_k', 120)) genparams["max_length"] = int(genparams.get('max', 200)) elif api_format==2: pass elif api_format==3 or api_format==4 or api_format==7: default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter adapter_obj = genparams.get('adapter', default_adapter) default_max_tok = (adapter_obj.get("max_length", 512) if (api_format==4 or api_format==7) else 200) genparams["max_length"] = int(genparams.get('max_tokens', genparams.get('max_completion_tokens', default_max_tok))) presence_penalty = genparams.get('presence_penalty', genparams.get('frequency_penalty', 0.0)) genparams["presence_penalty"] = float(presence_penalty) # openai allows either a string or a list as a stop sequence if isinstance(genparams.get('stop',[]), list): genparams["stop_sequence"] = genparams.get('stop', []) else: genparams["stop_sequence"] = [genparams.get('stop')] genparams["sampler_seed"] = tryparseint(genparams.get('seed', -1)) genparams["mirostat"] = genparams.get('mirostat_mode', 0) if api_format==4 or api_format==7: #handle ollama chat here too # translate openai chat completion messages format into one big string. messages_array = genparams.get('messages', []) messages_string = "" system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n") system_message_end = adapter_obj.get("system_end", "") user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n") user_message_end = adapter_obj.get("user_end", "") assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n") assistant_message_end = adapter_obj.get("assistant_end", "") tools_message_start = adapter_obj.get("tools_start", "") tools_message_end = adapter_obj.get("tools_end", "") images_added = [] message_index = 0 for message in messages_array: message_index += 1 if message['role'] == "system": messages_string += system_message_start elif message['role'] == "user": messages_string += user_message_start elif message['role'] == "assistant": messages_string += assistant_message_start elif message['role'] == "tool": messages_string += tools_message_start # content can be a string or an array of objects curr_content = message.get("content",None) if not curr_content: pass # do nothing elif isinstance(curr_content, str): messages_string += curr_content elif isinstance(curr_content, list): #is an array for item in curr_content: if item['type']=="text": messages_string += item['text'] elif item['type']=="image_url": if item['image_url'] and item['image_url']['url'] and item['image_url']['url'].startswith("data:image"): images_added.append(item['image_url']['url'].split(",", 1)[1]) # If last message, add any tools calls after message content and before message end token if any if message['role'] == "user" and message_index == len(messages_array): # Check if user is passing a openai tools array, if so add to end of prompt before assistant prompt unless tool_choice has been set to None tools_array = genparams.get('tools', []) if tools_array and len(tools_array) > 0 and genparams.get('tool_choice',None) is not None: response_array = [{"id": "insert an id for the response", "type": "function", "function": {"name": "insert the name of the function you want to call", "arguments": {"first property key": "first property value", "second property key": "second property value"}}}] json_formatting_instruction = " Use this style of JSON object formatting to give your answer if you think the user is asking you to perform an action: " + json.dumps(response_array, indent=0) tools_string = json.dumps(tools_array, indent=0) messages_string += tools_string specified_function = None if isinstance(genparams.get('tool_choice'), dict): try: specified_function = genparams.get('tool_choice').get('function').get('name') json_formatting_instruction = f"The user is asking you to use the style of this JSON object formatting to complete the parameters for the specific function named {specified_function} in the following format: " + json.dumps([{"id": "insert an id for the response", "type": "function", "function": {"name": f"{specified_function}", "arguments": {"first property key": "first property value", "second property key": "second property value"}}}], indent=0) except Exception: # In case of any issues, just revert back to no specified function pass messages_string += json_formatting_instruction # Set temperature low automatically if function calling genparams["temperature"] = 0.2 genparams["using_openai_tools"] = True # Set grammar to llamacpp example grammar to force json response (see https://github.com/ggerganov/llama.cpp/blob/master/grammars/json_arr.gbnf) genparams["grammar"] = r""" root ::= arr value ::= object | array | string | number | ("true" | "false" | "null") ws arr ::= "[\n" ws ( value (",\n" ws value)* )? "]" object ::= "{" ws ( string ":" ws value ("," ws string ":" ws value)* )? "}" ws array ::= "[" ws ( value ("," ws value)* )? "]" ws string ::= "\"" ( [^"\\\x7F\x00-\x1F] | "\\" (["\\bfnrt] | "u" [0-9a-fA-F]{4}) )* "\"" ws number ::= ("-"? ([0-9] | [1-9] [0-9]{0,15})) ("." [0-9]+)? ([eE] [-+]? [1-9] [0-9]{0,15})? ws ws ::= | " " | "\n" [ \t]{0,20} """ if message['role'] == "system": messages_string += system_message_end elif message['role'] == "user": messages_string += user_message_end elif message['role'] == "assistant": messages_string += assistant_message_end elif message['role'] == "tool": messages_string += tools_message_end messages_string += assistant_message_start genparams["prompt"] = messages_string if len(images_added)>0: genparams["images"] = images_added if len(genparams.get('stop_sequence', []))==0: #only set stop seq if it wont overwrite existing genparams["stop_sequence"] = [user_message_start.strip(),assistant_message_start.strip()] else: genparams["stop_sequence"].append(user_message_start.strip()) genparams["stop_sequence"].append(assistant_message_start.strip()) genparams["trim_stop"] = True elif api_format==5: firstimg = genparams.get('image', "") genparams["images"] = [firstimg] genparams["max_length"] = 42 adapter_obj = {} if chatcompl_adapter is None else chatcompl_adapter user_message_start = adapter_obj.get("user_start", "### Instruction:") assistant_message_start = adapter_obj.get("assistant_start", "### Response:") genparams["prompt"] = f"{user_message_start} In one sentence, write a descriptive caption for this image.\n{assistant_message_start}" elif api_format==6: detokstr = "" tokids = genparams.get('context', []) adapter_obj = {} if chatcompl_adapter is None else chatcompl_adapter user_message_start = adapter_obj.get("user_start", "\n\n### Instruction:\n") assistant_message_start = adapter_obj.get("assistant_start", "\n\n### Response:\n") try: detokstr = detokenize_ids(tokids) except Exception as e: utfprint("Ollama Context Error: " + str(e)) ollamasysprompt = genparams.get('system', "") ollamabodyprompt = f"{detokstr}{user_message_start}{genparams.get('prompt', '')}{assistant_message_start}" ollamaopts = genparams.get('options', {}) genparams["stop_sequence"] = genparams.get('stop', []) if "num_predict" in ollamaopts: genparams["max_length"] = ollamaopts.get('num_predict', 200) if "num_ctx" in ollamaopts: genparams["max_context_length"] = ollamaopts.get('num_ctx', maxctx) if "temperature" in ollamaopts: genparams["temperature"] = ollamaopts.get('temperature', 0.75) if "top_k" in ollamaopts: genparams["top_k"] = ollamaopts.get('top_k', 100) if "top_p" in ollamaopts: genparams["top_p"] = ollamaopts.get('top_p', 0.92) if "seed" in ollamaopts: genparams["sampler_seed"] = tryparseint(ollamaopts.get('seed', -1)) if "stop" in ollamaopts: genparams["stop_sequence"] = ollamaopts.get('stop', []) genparams["stop_sequence"].append(user_message_start.strip()) genparams["stop_sequence"].append(assistant_message_start.strip()) genparams["trim_stop"] = True genparams["ollamasysprompt"] = ollamasysprompt genparams["ollamabodyprompt"] = ollamabodyprompt genparams["prompt"] = ollamasysprompt + ollamabodyprompt return genparams def LaunchWebbrowser(target_url, failedmsg): try: if os.name == "posix" and "DISPLAY" in os.environ: # UNIX-like systems import subprocess clean_env = os.environ.copy() clean_env.pop("LD_LIBRARY_PATH", None) clean_env["PATH"] = "/usr/bin:/bin" result = subprocess.run(["/usr/bin/env", "xdg-open", target_url], check=True, env=clean_env) if result.returncode == 0: return # fallback successful raise RuntimeError("no xdg-open") except Exception: try: import webbrowser as wb if wb.open(target_url, autoraise=True): return # If successful, exit the function raise RuntimeError("wb.open failed") except Exception: print(failedmsg) print(f"Please manually open your browser to {target_url}") ################################################################# ### A hacky simple HTTP server simulating a kobold api by Concedo ### we are intentionally NOT using flask, because we want MINIMAL dependencies ################################################################# class KcppServerRequestHandler(http.server.SimpleHTTPRequestHandler): sys_version = "" server_version = "ConcedoLlamaForKoboldServer" def __init__(self, addr, port): self.addr = addr self.port = port def __call__(self, *args, **kwargs): super().__init__(*args, **kwargs) def log_message(self, format, *args): global showdebug if showdebug: super().log_message(format, *args) pass def extract_transcribe_from_file_upload(self, body): result = {"file": None, "prompt": None, "language": None} try: if 'content-type' in self.headers and self.headers['content-type']: boundary = self.headers['content-type'].split("=")[1].encode() if boundary: fparts = body.split(boundary) for fpart in fparts: detected_upload_filename = re.findall(r'Content-Disposition.*name="file"; filename="(.*)"', fpart.decode('utf-8',errors='ignore')) if detected_upload_filename and len(detected_upload_filename)>0: utfprint(f"Detected uploaded file: {detected_upload_filename[0]}") file_content_start = fpart.find(b'\r\n\r\n') + 4 # Position after headers file_content_end = fpart.rfind(b'\r\n') # Ending boundary if file_content_start != -1 and file_content_end != -1: if "file" in result and result["file"] is None: file_data = fpart[file_content_start:file_content_end] file_data_base64 = base64.b64encode(file_data).decode('utf-8',"ignore") base64_string = f"data:audio/wav;base64,{file_data_base64}" result["file"] = base64_string # Check for fields detected_prompt_field = re.findall(r'Content-Disposition.*name="prompt"\r\n\r\n(.*)\r\n', fpart.decode('utf-8', errors='ignore')) if detected_prompt_field and len(detected_prompt_field)>0: result["prompt"] = detected_prompt_field[0].strip() # Extract and strip whitespace detected_lang_field = re.findall(r'Content-Disposition.*name="language"\r\n\r\n(.*)\r\n', fpart.decode('utf-8', errors='ignore')) if detected_lang_field and len(detected_lang_field)>0: result["language"] = detected_lang_field[0].strip() # Extract and strip whitespace if not ("file" in result and result["file"]): print("Uploaded file not found.") return result except Exception as e: print(f"File Upload Process Error: {e}") return result async def generate_text(self, genparams, api_format, stream_flag): global friendlymodelname, chatcompl_adapter, currfinishreason currfinishreason = None def run_blocking(): # api format 1=basic,2=kai,3=oai,4=oai-chat # flag instance as non-idle for a while washordereq = genparams.get('genkey', '').startswith('HORDEREQ_') if not washordereq: global last_non_horde_req_time last_non_horde_req_time = time.time() return generate(genparams=genparams,stream_flag=stream_flag) genout = {"text": "", "status": -1, "stopreason": -1, "prompt_tokens":0, "completion_tokens": 0, "total_tokens": 0} if stream_flag: loop = asyncio.get_event_loop() executor = ThreadPoolExecutor() genout = await loop.run_in_executor(executor, run_blocking) else: genout = run_blocking() recvtxt = genout['text'] prompttokens = genout['prompt_tokens'] comptokens = genout['completion_tokens'] currfinishreason = ("length" if (genout['stopreason'] != 1) else "stop") # grab logprobs if not streaming logprobsdict = None if not stream_flag and ("logprobs" in genparams and genparams["logprobs"]): lastlogprobs = handle.last_logprobs() logprobsdict = parse_last_logprobs(lastlogprobs) # flag instance as non-idle for a while washordereq = genparams.get('genkey', '').startswith('HORDEREQ_') if not washordereq: global last_non_horde_req_time last_non_horde_req_time = time.time() utfprint("\nOutput: " + recvtxt,1) if api_format == 1: res = {"data": {"seqs": [recvtxt]}} elif api_format == 3: res = {"id": "cmpl-A1", "object": "text_completion", "created": int(time.time()), "model": friendlymodelname, "usage": {"prompt_tokens": prompttokens, "completion_tokens": comptokens, "total_tokens": (prompttokens+comptokens)}, "choices": [{"text": recvtxt, "index": 0, "finish_reason": currfinishreason, "logprobs":logprobsdict}]} elif api_format == 4: using_openai_tools = genparams.get('using_openai_tools', False) tool_calls = [] if using_openai_tools: tool_calls = extract_json_from_string(recvtxt) if tool_calls and len(tool_calls)>0: recvtxt = None res = {"id": "chatcmpl-A1", "object": "chat.completion", "created": int(time.time()), "model": friendlymodelname, "usage": {"prompt_tokens": prompttokens, "completion_tokens": comptokens, "total_tokens": (prompttokens+comptokens)}, "choices": [{"index": 0, "message": {"role": "assistant", "content": recvtxt, "tool_calls": tool_calls}, "finish_reason": currfinishreason, "logprobs":logprobsdict}]} elif api_format == 5: res = {"caption": end_trim_to_sentence(recvtxt)} elif api_format == 6: oldprompt = genparams.get('ollamabodyprompt', "") tokarr = tokenize_ids(oldprompt+recvtxt,False) res = {"model": friendlymodelname,"created_at": str(datetime.now(timezone.utc).isoformat()),"response":recvtxt,"done": True,"done_reason":currfinishreason,"context": tokarr,"total_duration": 1,"load_duration": 1,"prompt_eval_count": prompttokens,"prompt_eval_duration": 1,"eval_count": comptokens,"eval_duration": 1} elif api_format == 7: res = {"model": friendlymodelname,"created_at": str(datetime.now(timezone.utc).isoformat()),"message":{"role":"assistant","content":recvtxt},"done": True,"done_reason":currfinishreason,"total_duration": 1,"load_duration": 1,"prompt_eval_count": prompttokens,"prompt_eval_duration": 1,"eval_count": comptokens,"eval_duration": 1} else: res = {"results": [{"text": recvtxt, "finish_reason": currfinishreason, "logprobs":logprobsdict, "prompt_tokens": prompttokens, "completion_tokens": comptokens}]} try: return res except Exception as e: print(f"Generate: Error while generating: {e}") async def send_oai_sse_event(self, data): if data=="[DONE]": self.wfile.write(f'data: {data}'.encode()) else: self.wfile.write(f'data: {data}\n\n'.encode()) self.wfile.flush() async def send_kai_sse_event(self, data): self.wfile.write('event: message\n'.encode()) self.wfile.write(f'data: {data}\n\n'.encode()) self.wfile.flush() async def handle_sse_stream(self, genparams, api_format): global friendlymodelname, currfinishreason self.send_response(200) self.send_header("X-Accel-Buffering", "no") self.send_header("cache-control", "no-cache") self.send_header("connection", "keep-alive") self.end_headers(content_type='text/event-stream') current_token = 0 incomplete_token_buffer = bytearray() async_sleep_short = 0.02 await asyncio.sleep(0.35) #anti race condition, prevent check from overtaking generate try: tokenReserve = "" #keeps fully formed tokens that we cannot send out yet while True: streamDone = handle.has_finished() #exit next loop on done if streamDone: sr = handle.get_last_stop_reason() currfinishreason = ("length" if (sr!=1) else "stop") tokenStr = "" streamcount = handle.get_stream_count() while current_token < streamcount: token = handle.new_token(current_token) if token is None: # Token isnt ready yet, received nullpointer break current_token += 1 newbyte = ctypes.string_at(token) incomplete_token_buffer += bytearray(newbyte) tokenSeg = incomplete_token_buffer.decode("UTF-8","ignore") incseq = is_incomplete_utf8_sequence(incomplete_token_buffer) badFragment = (tokenSeg==" " and len(incomplete_token_buffer)>1) or incseq #partial incomplete unicode if tokenSeg!="" and not badFragment: incomplete_token_buffer.clear() tokenStr += tokenSeg if tokenStr!="" or streamDone: sseq = genparams.get('stop_sequence', []) trimstop = genparams.get('trim_stop', True) if trimstop and not streamDone and string_contains_or_overlaps_sequence_substring(tokenStr,sseq): tokenReserve += tokenStr await asyncio.sleep(async_sleep_short) #if a stop sequence could trigger soon, do not send output else: if tokenStr!="" or tokenReserve!="": tokenStr = tokenReserve + tokenStr tokenReserve = "" #apply trimming if needed if trimstop: for trim_str in sseq: sindex = tokenStr.find(trim_str) if sindex != -1 and trim_str!="": tokenStr = tokenStr[:sindex] if tokenStr!="" or streamDone: if api_format == 4: # if oai chat, set format to expected openai streaming response event_str = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"delta":{'role':'assistant','content':tokenStr}}]}) await self.send_oai_sse_event(event_str) elif api_format == 3: # non chat completions event_str = json.dumps({"id":"koboldcpp","object":"text_completion","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"text":tokenStr}]}) await self.send_oai_sse_event(event_str) else: event_str = json.dumps({"token": tokenStr, "finish_reason":currfinishreason}) await self.send_kai_sse_event(event_str) tokenStr = "" else: await asyncio.sleep(async_sleep_short) else: await asyncio.sleep(async_sleep_short) #this should keep things responsive if streamDone: if api_format == 4 or api_format == 3: # if oai chat, send last [DONE] message consistent with openai format await self.send_oai_sse_event('[DONE]') break except Exception as ex: print("Token streaming was interrupted or aborted!") print(ex) handle.abort_generate() time.sleep(0.2) #short delay # flush buffers, sleep a bit to make sure all data sent, and then force close the connection self.wfile.flush() await asyncio.sleep(0.1) self.close_connection = True await asyncio.sleep(0.05) async def handle_request(self, raw_genparams, api_format, stream_flag): tasks = [] genparams = transform_genparams(raw_genparams, api_format) try: if stream_flag: tasks.append(self.handle_sse_stream(genparams, api_format)) generate_task = asyncio.create_task(self.generate_text(genparams, api_format, stream_flag)) tasks.append(generate_task) await asyncio.gather(*tasks) generate_result = generate_task.result() return generate_result except (BrokenPipeError, ConnectionAbortedError) as cae: # attempt to abort if connection lost print("An ongoing connection was aborted or interrupted!") print(cae) handle.abort_generate() time.sleep(0.2) #short delay except Exception as e: print(e) def get_multiplayer_idle_state(self,userid): if modelbusy.locked(): return False for key, value in multiplayer_lastactive.items(): if key!=userid and time.time()-value<6: #6s to idle return False return True def check_header_password(self, target_password): auth_ok = True if target_password and target_password !="": auth_header = None auth_ok = False if 'Authorization' in self.headers: auth_header = self.headers['Authorization'] elif 'authorization' in self.headers: auth_header = self.headers['authorization'] if auth_header is not None and auth_header.startswith('Bearer '): token = auth_header[len('Bearer '):].strip() if token==target_password: auth_ok = True return auth_ok def secure_endpoint(self): #returns false if auth fails. caller should exit #handle password stuff auth_ok = self.check_header_password(password) if auth_ok is False: self.send_response(401) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "error": "Unauthorized", "msg": "Authentication key is missing or invalid.", "type": "unauthorized", }}).encode()) return False return True def noscript_webui(self): global modelbusy, sslvalid parsed_url = urlparse.urlparse(self.path) parsed_dict = urlparse.parse_qs(parsed_url.query) reply = "" status = str(parsed_dict['status'][0]) if 'status' in parsed_dict else "Ready To Generate" prompt = str(parsed_dict['prompt'][0]) if 'prompt' in parsed_dict else "" max_length = int(parsed_dict['max_length'][0]) if 'max_length' in parsed_dict else 100 temperature = float(parsed_dict['temperature'][0]) if 'temperature' in parsed_dict else 0.75 top_k = int(parsed_dict['top_k'][0]) if 'top_k' in parsed_dict else 100 top_p = float(parsed_dict['top_p'][0]) if 'top_p' in parsed_dict else 0.9 rep_pen = float(parsed_dict['rep_pen'][0]) if 'rep_pen' in parsed_dict else 1.0 ban_eos_token = int(parsed_dict['ban_eos_token'][0]) if 'ban_eos_token' in parsed_dict else 0 gencommand = (parsed_dict['generate'][0] if 'generate' in parsed_dict else "")=="Generate" if modelbusy.locked(): status = "Model is currently busy, try again later." elif gencommand: if prompt=="" or max_length<=0: status = "Need a valid prompt and length to generate." else: if max_length>512: max_length = 512 httpsaffix = ("https" if sslvalid else "http") epurl = f"{httpsaffix}://localhost:{args.port}" if args.host!="": epurl = f"{httpsaffix}://{args.host}:{args.port}" gen_payload = {"prompt": prompt,"max_length": max_length,"temperature": temperature,"top_k": top_k,"top_p": top_p,"rep_pen": rep_pen,"ban_eos_token":ban_eos_token} respjson = make_url_request(f'{epurl}/api/v1/generate', gen_payload) reply = html.escape(respjson["results"][0]["text"]) status = "Generation Completed" if "generate" in parsed_dict: del parsed_dict["generate"] parsed_dict["prompt"] = prompt + reply parsed_dict["status"] = status updated_query_string = urlparse.urlencode(parsed_dict, doseq=True) updated_path = parsed_url._replace(query=updated_query_string).geturl() self.path = updated_path self.send_response(302) self.send_header("location", self.path) self.end_headers(content_type='text/html') return finalhtml = f''' KoboldCpp NoScript Mode

KoboldCpp NoScript Mode

KoboldCpp can be used without Javascript enabled, however this is not recommended.
If you have Javascript, please use KoboldAI Lite WebUI instead.


Enter Prompt:

{status}







(Please be patient)
''' finalhtml = finalhtml.encode('utf-8') self.send_response(200) self.send_header('content-length', str(len(finalhtml))) self.end_headers(content_type='text/html') self.wfile.write(finalhtml) def do_GET(self): global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui global last_req_time, start_time global savedata_obj, has_multiplayer, multiplayer_turn_major, multiplayer_turn_minor, multiplayer_story_data_compressed, multiplayer_dataformat, multiplayer_lastactive, maxctx, maxhordelen, friendlymodelname, lastgeneratedcomfyimg, KcppVersion, totalgens, preloaded_story, exitcounter, currentusergenkey, friendlysdmodelname, fullsdmodelpath, mmprojpath, password self.path = self.path.rstrip('/') response_body = None content_type = 'application/json' if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without / content_type = 'text/html' if embedded_kailite is None: response_body = (f"Embedded KoboldAI Lite is not found.
You will have to connect via the main KoboldAI client, or use this URL to connect.").encode() else: response_body = embedded_kailite elif self.path in ["/noscript", "/noscript?"] or self.path.startswith(('/noscript?','noscript?')): #it's possible for the root url to have ?params without / self.noscript_webui() return elif self.path.endswith(('/manifest.json')): response_body = (json.dumps({"name":"KoboldAI Lite","short_name":"KoboldAI Lite","description":"Progressive Web App for KoboldAI Lite","start_url":"./","scope":".","display":"standalone","background_color":"#303030","theme_color":"#337ab7","orientation":"portrait-primary","icons":[{"src":"","type":"image/png","sizes":"150x150"}]}).encode()) elif self.path.endswith(('/api/v1/model', '/api/latest/model')): auth_ok = self.check_header_password(password) response_body = (json.dumps({'result': (friendlymodelname if auth_ok else "koboldcpp/protected-model") }).encode()) elif self.path.endswith(('/api/v1/config/max_length', '/api/latest/config/max_length')): response_body = (json.dumps({"value": maxhordelen}).encode()) elif self.path.endswith(('/api/v1/config/max_context_length', '/api/latest/config/max_context_length')): response_body = (json.dumps({"value": min(maxctx,maxhordectx)}).encode()) elif self.path.endswith(('/api/v1/config/soft_prompt', '/api/latest/config/soft_prompt')): response_body = (json.dumps({"value":""}).encode()) elif self.path.endswith(('/api/v1/config/soft_prompts_list', '/api/latest/config/soft_prompts_list')): response_body = (json.dumps({"values": []}).encode()) elif self.path.endswith(('/api/v1/info/version', '/api/latest/info/version')): response_body = (json.dumps({"result":"1.2.5"}).encode()) elif self.path.endswith(('/api/extra/true_max_context_length')): #do not advertise this to horde response_body = (json.dumps({"value": maxctx}).encode()) elif self.path.endswith(('/api/extra/version')): caps = get_capabilities() response_body = (json.dumps(caps).encode()) elif self.path.endswith(('/api/admin/list_options')): #used by admin to get info about a kcpp instance opts = [] if args.admin and args.admindir and os.path.exists(args.admindir) and self.check_header_password(args.adminpassword): dirpath = os.path.abspath(args.admindir) opts = [f for f in sorted(os.listdir(dirpath)) if (f.endswith(".kcpps") or f.endswith(".kcppt")) and os.path.isfile(os.path.join(dirpath, f))] response_body = (json.dumps(opts).encode()) elif self.path.endswith(('/api/extra/perf')): lastp = handle.get_last_process_time() laste = handle.get_last_eval_time() lastc = handle.get_last_token_count() totalgens = handle.get_total_gens() totalimggens = handle.get_total_img_gens() totalttsgens = handle.get_total_tts_gens() totaltranscribegens = handle.get_total_transcribe_gens() stopreason = handle.get_last_stop_reason() lastseed = handle.get_last_seed() lastdraftsuccess = handle.get_last_draft_success() lastdraftfailed = handle.get_last_draft_failed() uptime = time.time() - start_time idletime = time.time() - last_req_time is_quiet = True if (args.quiet and args.debugmode != 1) else False response_body = (json.dumps({"last_process":lastp,"last_eval":laste,"last_token_count":lastc, "last_seed":lastseed, "last_draft_success":lastdraftsuccess, "last_draft_failed":lastdraftfailed, "total_gens":totalgens, "stop_reason":stopreason, "total_img_gens":totalimggens, "total_tts_gens":totalttsgens, "total_transcribe_gens":totaltranscribegens, "queue":requestsinqueue, "idle":(0 if modelbusy.locked() else 1), "hordeexitcounter":exitcounter, "uptime":uptime, "idletime":idletime, "quiet":is_quiet}).encode()) elif self.path.endswith('/api/extra/generate/check'): if not self.secure_endpoint(): return pendtxtStr = "" if requestsinqueue==0 and totalgens>0 and currentusergenkey=="": pendtxt = handle.get_pending_output() pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore") response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode()) elif self.path.endswith('/api/extra/last_logprobs'): if not self.secure_endpoint(): return logprobsdict = None if requestsinqueue==0 and totalgens>0 and currentusergenkey=="": lastlogprobs = handle.last_logprobs() logprobsdict = parse_last_logprobs(lastlogprobs) response_body = (json.dumps({"logprobs":logprobsdict}).encode()) elif self.path.endswith('/v1/models'): response_body = (json.dumps({"object":"list","data":[{"id":friendlymodelname,"object":"model","created":int(time.time()),"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode()) elif self.path.endswith('/sdapi/v1/sd-models'): if friendlysdmodelname=="inactive" or fullsdmodelpath=="": response_body = (json.dumps([]).encode()) else: response_body = (json.dumps([{"title":friendlysdmodelname,"model_name":friendlysdmodelname,"hash":"8888888888","sha256":"8888888888888888888888888888888888888888888888888888888888888888","filename":fullsdmodelpath,"config": None}]).encode()) elif self.path.endswith('/sdapi/v1/options'): response_body = (json.dumps({"samples_format":"png","sd_model_checkpoint":friendlysdmodelname}).encode()) elif self.path.endswith('/sdapi/v1/samplers'): if friendlysdmodelname=="inactive" or fullsdmodelpath=="": response_body = (json.dumps([]).encode()) else: response_body = (json.dumps([{"name":"Euler","aliases":["k_euler"],"options":{}},{"name":"Euler a","aliases":["k_euler_a","k_euler_ancestral"],"options":{}},{"name":"Heun","aliases":["k_heun"],"options":{}},{"name":"DPM2","aliases":["k_dpm_2"],"options":{}},{"name":"DPM++ 2M","aliases":["k_dpmpp_2m"],"options":{}},{"name":"LCM","aliases":["k_lcm"],"options":{}}]).encode()) elif self.path.endswith('/sdapi/v1/latent-upscale-modes'): response_body = (json.dumps([]).encode()) elif self.path.endswith('/sdapi/v1/upscalers'): response_body = (json.dumps([]).encode()) elif self.path.endswith(('/speakers_list')): #xtts compatible response_body = (json.dumps(["kobo","cheery","sleepy","shouty","chatty"]).encode()) #some random voices for them to enjoy elif self.path.endswith(('/speakers')): #xtts compatible response_body = (json.dumps([{"name":"kobo","voice_id":"kobo","preview_url":""},{"name":"cheery","voice_id":"cheery","preview_url":""},{"name":"sleepy","voice_id":"sleepy","preview_url":""},{"name":"shouty","voice_id":"shouty","preview_url":""},{"name":"chatty","voice_id":"chatty","preview_url":""}]).encode()) #some random voices for them to enjoy elif self.path.endswith(('/get_tts_settings')): #xtts compatible response_body = (json.dumps({"temperature":0.75,"speed":1,"length_penalty":1,"repetition_penalty":1,"top_p":1,"top_k":4,"enable_text_splitting":True,"stream_chunk_size":100}).encode()) #some random voices for them to enjoy elif self.path.endswith(('/api/tags')): #ollama compatible response_body = (json.dumps({"models":[{"name":"koboldcpp","model":friendlymodelname,"modified_at":"2024-07-19T15:26:55.6122841+08:00","size":394998579,"digest":"b5dc5e784f2a3ee1582373093acf69a2f4e2ac1710b253a001712b86a61f88bb","details":{"parent_model":"","format":"gguf","family":"koboldcpp","families":["koboldcpp"],"parameter_size":"128M","quantization_level":"Q4_0"}}]}).encode()) #comfyui compatible elif self.path=='/system_stats': response_body = (json.dumps({"system":{"os":"posix","ram_total":12345678900,"ram_free":12345678900,"comfyui_version":"v0.3.4-3-g7126ecf","python_version":"3.10.12","pytorch_version":"2.5.1","embedded_python":False,"argv":[]},"devices":[{"name":"koboldcpp","type":"cuda","index":0,"vram_total":12345678900,"vram_free":12345678900,"torch_vram_total":12345678900,"torch_vram_free":12345678900}]}).encode()) elif self.path=='/object_info': response_body = (json.dumps({"KSampler":{"input":{"required":{"model":["MODEL",{"tooltip":""}],"seed":["INT",{"default":0,"min":0,"max":512,"tooltip":""}],"steps":["INT",{"default":20,"min":1,"max":512,"tooltip":""}],"cfg":["FLOAT",{"default":8.0,"min":0.0,"max":100.0,"step":0.1,"round":0.01,"tooltip":"512"}],"sampler_name":[["euler"],{"tooltip":""}],"scheduler":[["normal"],{"tooltip":""}],"positive":["CONDITIONING",{"tooltip":""}],"negative":["CONDITIONING",{"tooltip":""}],"latent_image":["LATENT",{"tooltip":""}],"denoise":["FLOAT",{"default":1.0,"min":0.0,"max":1.0,"step":0.01,"tooltip":""}]}},"input_order":{"required":["model","seed","steps","cfg","sampler_name","scheduler","positive","negative","latent_image","denoise"]},"output":["LATENT"],"output_is_list":[False],"output_name":["LATENT"],"name":"KSampler","display_name":"KSampler","description":"KSampler","python_module":"nodes","category":"sampling","output_node":False,"output_tooltips":[""]},"CheckpointLoaderSimple":{"input":{"required":{"ckpt_name":[[friendlysdmodelname],{"tooltip":""}]}},"input_order":{"required":["ckpt_name"]},"output":["MODEL","CLIP","VAE"],"output_is_list":[False,False,False],"output_name":["MODEL","CLIP","VAE"],"name":"CheckpointLoaderSimple","display_name":"Load","description":"","python_module":"nodes","category":"loaders","output_node":False,"output_tooltips":["","",""]},"CLIPTextEncode":{"input":{"required":{"text":["STRING",{"multiline":True,"dynamicPrompts":True,"tooltip":""}],"clip":["CLIP",{"tooltip":""}]}},"input_order":{"required":["text","clip"]},"output":["CONDITIONING"],"output_is_list":[False],"output_name":["CONDITIONING"],"name":"CLIPTextEncode","display_name":"CLIP","description":"","python_module":"nodes","category":"conditioning","output_node":False,"output_tooltips":[""]},"CLIPSetLastLayer":{"input":{"required":{"clip":["CLIP"],"stop_at_clip_layer":["INT",{"default":-1,"min":-24,"max":-1,"step":1}]}},"input_order":{"required":["clip","stop_at_clip_layer"]},"output":["CLIP"],"output_is_list":[False],"output_name":["CLIP"],"name":"CLIPSetLastLayer","display_name":"CLIPSLL","description":"","python_module":"nodes","category":"conditioning","output_node":False},"VAEDecode":{"input":{"required":{"samples":["LATENT",{"tooltip":""}],"vae":["VAE",{"tooltip":""}]}},"input_order":{"required":["samples","vae"]},"output":["IMAGE"],"output_is_list":[False],"output_name":["IMAGE"],"name":"VAEDecode","display_name":"VAE","description":"","python_module":"nodes","category":"latent","output_node":False,"output_tooltips":[""]},"VAEEncode":{"input":{"required":{"pixels":["IMAGE"],"vae":["VAE"]}},"input_order":{"required":["pixels","vae"]},"output":["LATENT"],"output_is_list":[False],"output_name":["LATENT"],"name":"VAEEncode","display_name":"VAE","description":"","python_module":"nodes","category":"latent","output_node":False},"VAEEncodeForInpaint":{"input":{"required":{"pixels":["IMAGE"],"vae":["VAE"],"mask":["MASK"],"grow_mask_by":["INT",{"default":6,"min":0,"max":64,"step":1}]}},"input_order":{"required":["pixels","vae","mask","grow_mask_by"]},"output":["LATENT"],"output_is_list":[False],"output_name":["LATENT"],"name":"VAEEncodeForInpaint","display_name":"VAE","description":"","python_module":"nodes","category":"latent/inpaint","output_node":False},"VAELoader":{"input":{"required":{"vae_name":[["kcpp_vae"]]}},"input_order":{"required":["vae_name"]},"output":["VAE"],"output_is_list":[False],"output_name":["VAE"],"name":"VAELoader","display_name":"Load VAE","description":"","python_module":"nodes","category":"loaders","output_node":False},"EmptyLatentImage":{"input":{"required":{"width":["INT",{"default":512,"min":16,"max":16384,"step":8,"tooltip":""}],"height":["INT",{"default":512,"min":16,"max":16384,"step":8,"tooltip":""}],"batch_size":["INT",{"default":1,"min":1,"max":1,"tooltip":""}]}},"input_order":{"required":["width","height","batch_size"]},"output":["LATENT"],"output_is_list":[False],"output_name":["LATENT"],"name":"EmptyLatentImage","display_name":"Empty Latent Image","description":"","python_module":"nodes","category":"latent","output_node":False,"output_tooltips":[""]}}).encode()) elif self.path.endswith('/api/models/checkpoints') or self.path.endswith('/models/checkpoints'): #emulate comfyui, duplication is redundant but added for clarity if friendlysdmodelname=="inactive" or fullsdmodelpath=="": response_body = (json.dumps([]).encode()) else: response_body = (json.dumps([friendlysdmodelname]).encode()) elif self.path=='/view' or self.path=='/api/view' or self.path.startswith('/view?') or self.path.startswith('/api/view?'): #emulate comfyui content_type = 'image/png' response_body = lastgeneratedcomfyimg elif self.path=='/history' or self.path=='/api/history' or self.path.startswith('/api/history/') or self.path.startswith('/history/'): #emulate comfyui imgdone = (False if lastgeneratedcomfyimg==b'' else True) response_body = (json.dumps({"12345678-0000-0000-0000-000000000001":{"prompt":[0,"12345678-0000-0000-0000-000000000001",{"3":{"class_type":"KSampler","inputs":{"cfg":5.0,"denoise":1.0,"latent_image":["5",0],"model":["4",0],"negative":["7",0],"positive":["6",0],"sampler_name":"euler","scheduler":"normal","seed":1,"steps":20}},"4":{"class_type":"CheckpointLoaderSimple","inputs":{"ckpt_name":friendlysdmodelname}},"5":{"class_type":"EmptyLatentImage","inputs":{"batch_size":1,"height":512,"width":512}},"6":{"class_type":"CLIPTextEncode","inputs":{"clip":["4",1],"text":"prompt"}},"7":{"class_type":"CLIPTextEncode","inputs":{"clip":["4",1],"text":""}},"8":{"class_type":"VAEDecode","inputs":{"samples":["3",0],"vae":["4",2]}},"9":{"class_type":"SaveImage","inputs":{"filename_prefix":"kliteimg","images":["8",0]}}},{},["9"]],"outputs":{"9":{"images":[{"filename":"kliteimg_00001_.png","subfolder":"","type":"output"}]}},"status":{"status_str":"success","completed":imgdone,"messages":[["execution_start",{"prompt_id":"12345678-0000-0000-0000-000000000001","timestamp":1}],["execution_cached",{"nodes":[],"prompt_id":"12345678-0000-0000-0000-000000000001","timestamp":1}],["execution_success",{"prompt_id":"12345678-0000-0000-0000-000000000001","timestamp":1}]]},"meta":{"9":{"node_id":"9","display_node":"9","parent_node":None,"real_node_id":"9"}}}}).encode()) elif self.path.endswith(('/.well-known/serviceinfo')): response_body = (json.dumps({"version":"0.2","software":{"name":"KoboldCpp","version":KcppVersion,"repository":"https://github.com/LostRuins/koboldcpp","homepage":"https://github.com/LostRuins/koboldcpp","logo":"https://raw.githubusercontent.com/LostRuins/koboldcpp/refs/heads/concedo/niko.ico"},"api":{"koboldai":{"name":"KoboldAI API","rel_url":"/api","documentation":"https://lite.koboldai.net/koboldcpp_api","version":KcppVersion},"openai":{"name":"OpenAI API","rel_url ":"/v1","documentation":"https://openai.com/documentation/api","version":KcppVersion}}}).encode()) elif self.path=="/props": ctbytes = handle.get_chat_template() chat_template = ctypes.string_at(ctbytes).decode("UTF-8","ignore") response_body = (json.dumps({ "chat_template": chat_template, "total_slots": 1, "default_generation_settings": { "n_ctx": maxctx, }, }).encode()) elif self.path=="/api" or self.path=="/docs" or self.path.startswith(('/api/?json=','/api?json=','/docs/?json=','/docs?json=')): content_type = 'text/html' if embedded_kcpp_docs is None: response_body = ("KoboldCpp API is running!\n\nAPI usage reference can be found at the wiki: https://github.com/LostRuins/koboldcpp/wiki").encode() else: response_body = embedded_kcpp_docs elif self.path.startswith(("/sdui")): content_type = 'text/html' if embedded_kcpp_sdui is None: response_body = ("KoboldCpp API is running, but KCPP SDUI is not loaded").encode() else: response_body = embedded_kcpp_sdui elif self.path=="/v1": content_type = 'text/html' response_body = ("KoboldCpp OpenAI compatible endpoint is running!\n\nFor usage reference, see https://platform.openai.com/docs/api-reference").encode() elif self.path=="/api/extra/preloadstory": if preloaded_story is None: response_body = (json.dumps({}).encode()) else: response_body = preloaded_story elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')): self.path = "/api" self.send_response(302) self.send_header("location", self.path) self.end_headers(content_type='text/html') return None if response_body is None: self.send_response(404) self.end_headers(content_type='text/html') rp = 'Error: KoboldCpp HTTP Server is running, but this endpoint does not exist. Please check the URL.' self.wfile.write(rp.encode()) else: self.send_response(200) self.send_header('content-length', str(len(response_body))) self.end_headers(content_type=content_type) self.wfile.write(response_body) return def do_POST(self): global modelbusy, requestsinqueue, currentusergenkey, totalgens, pendingabortkey, lastgeneratedcomfyimg, multiplayer_turn_major, multiplayer_turn_minor, multiplayer_story_data_compressed, multiplayer_dataformat, multiplayer_lastactive, net_save_slots contlenstr = self.headers['content-length'] content_length = 0 body = None if contlenstr: content_length = int(contlenstr) if content_length > (1024*1024*32): #32mb payload limit self.send_response(500) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Payload is too big. Max payload size is 32MB.", "type": "bad_input", }}).encode()) return body = self.rfile.read(content_length) elif self.headers.get('transfer-encoding', '').lower()=="chunked": content_length = 0 chunklimit = 0 # do not process more than 512 chunks, prevents bad actors body = b'' try: while True: chunklimit += 1 line = self.rfile.readline().strip() if line: chunk_length = max(0,int(line, 16)) content_length += chunk_length if not line or chunklimit > 512 or content_length > (1024*1024*32): #32mb payload limit self.send_response(500) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Payload is too big. Max payload size is 32MB.", "type": "bad_input", }}).encode()) return if chunk_length != 0: chunk = self.rfile.read(chunk_length) body += chunk self.rfile.readline() if chunk_length == 0: break except Exception: self.send_response(500) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Failed to parse chunked request.", "type": "bad_input", }}).encode()) return self.path = self.path.rstrip('/') response_body = None response_code = 200 if self.path.endswith('/api/extra/tokencount') or self.path.endswith('/api/extra/tokenize'): if not self.secure_endpoint(): return try: genparams = json.loads(body) countprompt = genparams.get('prompt', "") tcaddspecial = genparams.get('special', True) countdata = tokenize_ids(countprompt,tcaddspecial) response_body = (json.dumps({"value": len(countdata),"ids": countdata}).encode()) except Exception as e: utfprint("Count Tokens - Body Error: " + str(e)) response_code = 400 response_body = (json.dumps({"value": -1}).encode()) elif self.path.endswith('/api/extra/detokenize'): if not self.secure_endpoint(): return try: genparams = json.loads(body) tokids = genparams.get('ids', []) detokstr = detokenize_ids(tokids) response_body = (json.dumps({"result": detokstr,"success":True}).encode()) except Exception as e: utfprint("Detokenize Error: " + str(e)) response_code = 400 response_body = (json.dumps({"result": "","success":False}).encode()) elif self.path.endswith('/api/extra/abort'): if not self.secure_endpoint(): return multiuserkey = "" try: tempbody = json.loads(body) if isinstance(tempbody, dict): multiuserkey = tempbody.get('genkey', "") except Exception: multiuserkey = "" pass if (multiuserkey=="" and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): ag = handle.abort_generate() time.sleep(0.1) #short delay before replying response_body = (json.dumps({"success": ("true" if ag else "false"), "done":"true"}).encode()) print("\nGeneration Aborted") elif (multiuserkey!="" and requestsinqueue>0): pendingabortkey = multiuserkey response_body = (json.dumps({"success": "true", "done":"false"}).encode()) else: response_body = (json.dumps({"success": "false", "done":"false"}).encode()) elif self.path.endswith('/api/extra/generate/check'): if not self.secure_endpoint(): return pendtxtStr = "" multiuserkey = "" try: tempbody = json.loads(body) if isinstance(tempbody, dict): multiuserkey = tempbody.get('genkey', "") except Exception: multiuserkey = "" if totalgens>0: if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser pendtxt = handle.get_pending_output() pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore") response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode()) elif self.path.endswith('/api/extra/last_logprobs'): if not self.secure_endpoint(): return logprobsdict = None multiuserkey = "" try: tempbody = json.loads(body) if isinstance(tempbody, dict): multiuserkey = tempbody.get('genkey', "") except Exception: multiuserkey = "" if totalgens>0: if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser lastlogprobs = handle.last_logprobs() logprobsdict = parse_last_logprobs(lastlogprobs) response_body = (json.dumps({"logprobs":logprobsdict}).encode()) elif self.path.endswith('/api/extra/multiplayer/status'): if not self.secure_endpoint(): return if not has_multiplayer: response_body = (json.dumps({"error":"Multiplayer not enabled!"}).encode()) else: sender = "" senderbusy = False try: tempbody = json.loads(body) if isinstance(tempbody, dict): sender = tempbody.get('sender', "") senderbusy = tempbody.get('senderbusy', False) except Exception: pass if sender!="" and senderbusy: multiplayer_lastactive[sender] = int(time.time()) response_body = (json.dumps({"turn_major":multiplayer_turn_major,"turn_minor":multiplayer_turn_minor,"idle":self.get_multiplayer_idle_state(sender),"data_format":multiplayer_dataformat}).encode()) elif self.path.endswith('/api/extra/data/list'): if not self.secure_endpoint(): return if savedata_obj is None: response_body = (json.dumps([]).encode()) return output = [] for i in range (net_save_slots): if str(i) in savedata_obj: output.append(savedata_obj[str(i)]["title"]) else: output.append("") response_body = (json.dumps(output).encode()) elif self.path.endswith('/api/extra/data/load'): if not self.secure_endpoint(): return if savedata_obj is None: response_body = (json.dumps({"success":False,"data":None}).encode()) loadid = -1 try: tempbody = json.loads(body) loadid = tryparseint(tempbody.get('slot', 0)) except Exception: loadid = -1 if loadid < 0 or str(loadid) not in savedata_obj: response_body = (json.dumps({"success":False,"data":None}).encode()) else: response_body = (json.dumps({"success":True,"data":savedata_obj[str(loadid)]}).encode()) elif self.path.endswith('/api/extra/data/save'): if not self.secure_endpoint(): return if savedata_obj is None: response_code = 400 response_body = (json.dumps({"success":False, "error":"SaveDataFile not enabled!"}).encode()) else: try: incoming_story = json.loads(body) # ensure submitted data is valid json slotid = tryparseint(incoming_story.get('slot', -1)) dataformat = incoming_story.get('format', "") title = incoming_story.get('title', "") if not title or title=="": title = "Untitled Save" storybody = incoming_story.get('data', None) #should be a compressed string if slotid >= 0 and slotid < net_save_slots: # we shall provide 4 network save slots saveneeded = False if storybody and storybody!="": storybody = str(storybody) if len(storybody) > (1024*1024*8): #limit story to 8mb response_code = 400 response_body = (json.dumps({"success":False, "error":"Story is too long!"}).encode()) else: savedata_obj[str(slotid)] = {"title":title, "format":dataformat, "data":storybody} saveneeded = True else: #erasing existing story if str(slotid) in savedata_obj: savedata_obj.pop(str(slotid)) saveneeded = True if saveneeded: if args.savedatafile and os.path.exists(args.savedatafile): with open(args.savedatafile, 'w+', encoding='utf-8', errors='ignore') as f: json.dump(savedata_obj, f) print(f"Data was saved to slot {slotid}") response_body = (json.dumps({"success":True, "error":""}).encode()) else: response_code = 400 response_body = (json.dumps({"success":False, "error":"SaveDataFile is missing!"}).encode()) else: response_body = (json.dumps({"success":True, "error":""}).encode()) else: response_code = 400 response_body = (json.dumps({"success":False, "error":"No story submitted or invalid slot!"}).encode()) except Exception as e: utfprint("Remote Save Story - Body Error: " + str(e)) response_code = 400 response_body = (json.dumps({"success": False, "error":"Submitted story invalid!"}).encode()) elif self.path.endswith('/api/extra/multiplayer/getstory'): if not self.secure_endpoint(): return if not has_multiplayer: response_body = ("".encode()) elif multiplayer_story_data_compressed is None: response_body = ("".encode()) else: response_body = multiplayer_story_data_compressed.encode() elif self.path.endswith('/api/extra/multiplayer/setstory'): if not self.secure_endpoint(): return if not has_multiplayer: response_code = 400 response_body = (json.dumps({"success":False, "error":"Multiplayer not enabled!"}).encode()) else: try: incoming_story = json.loads(body) # ensure submitted data is valid json fullupdate = incoming_story.get('full_update', False) dataformat = incoming_story.get('data_format', "") sender = incoming_story.get('sender', "") storybody = incoming_story.get('data', None) #should be a compressed string if storybody: storybody = str(storybody) if len(storybody) > (1024*1024*3): #limit story to 3mb response_code = 400 response_body = (json.dumps({"success":False, "error":"Story is too long!"}).encode()) else: multiplayer_story_data_compressed = str(storybody) #save latest story multiplayer_dataformat = dataformat if sender!="": multiplayer_lastactive[sender] = int(time.time()) if fullupdate: multiplayer_turn_minor = 1 multiplayer_turn_major += 1 else: multiplayer_turn_minor += 1 response_body = (json.dumps({"success":True,"turn_major":multiplayer_turn_major,"turn_minor":multiplayer_turn_minor,"idle":self.get_multiplayer_idle_state(sender),"data_format":multiplayer_dataformat}).encode()) else: response_code = 400 response_body = (json.dumps({"success":False, "error":"No story submitted!"}).encode()) except Exception as e: utfprint("Multiplayer Set Story - Body Error: " + str(e)) response_code = 400 response_body = (json.dumps({"success": False, "error":"Submitted story invalid!"}).encode()) elif self.path.startswith(("/api/extra/websearch")): if not self.secure_endpoint(): return if args.websearch: try: tempbody = json.loads(body) searchstr = tempbody.get('q', "") searchres = websearch(searchstr) response_body = (json.dumps(searchres).encode()) except Exception as e: utfprint("WebSearch Parse Error: " + str(e)) response_code = 400 response_body = (json.dumps([]).encode()) else: response_body = (json.dumps([]).encode()) elif self.path.startswith(("/api/admin/reload_config")): resp = {"success": False} if global_memory and args.admin and args.admindir and os.path.exists(args.admindir) and self.check_header_password(args.adminpassword): targetfile = "" try: tempbody = json.loads(body) if isinstance(tempbody, dict): targetfile = tempbody.get('filename', "") except Exception: targetfile = "" if targetfile and targetfile!="": dirpath = os.path.abspath(args.admindir) targetfilepath = os.path.join(dirpath, targetfile) opts = [f for f in os.listdir(dirpath) if (f.endswith(".kcpps") or f.endswith(".kcppt")) and os.path.isfile(os.path.join(dirpath, f))] if targetfile in opts and os.path.exists(targetfilepath): print(f"Admin: Received request to reload config to {targetfile}") global_memory["restart_target"] = targetfile resp = {"success": True} response_body = (json.dumps(resp).encode()) elif self.path.endswith('/set_tts_settings'): #return dummy response response_body = (json.dumps({"message": "Settings successfully applied"}).encode()) if response_body is not None: self.send_response(response_code) self.send_header('content-length', str(len(response_body))) self.end_headers(content_type='application/json') self.wfile.write(response_body) return reqblocking = False muint = int(args.multiuser) if muint<=0 and ((args.whispermodel and args.whispermodel!="") or (args.sdmodel and args.sdmodel!="") or (args.ttsmodel and args.ttsmodel!="")): muint = 2 # this prevents errors when using voice/img together with text multiuserlimit = ((muint-1) if muint > 1 else 6) #backwards compatibility for up to 7 concurrent requests, use default limit of 7 if multiuser set to 1 if muint > 0 and requestsinqueue < multiuserlimit: reqblocking = True requestsinqueue += 1 if not modelbusy.acquire(blocking=reqblocking): self.send_response(503) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Server is busy; please try again later.", "type": "service_unavailable", }}).encode()) return if reqblocking: requestsinqueue = (requestsinqueue - 1) if requestsinqueue > 0 else 0 try: sse_stream_flag = False api_format = 0 #1=basic,2=kai,3=oai,4=oai-chat,5=interrogate,6=ollama,7=ollamachat is_imggen = False is_comfyui_imggen = False is_transcribe = False is_tts = False if self.path.endswith('/request'): api_format = 1 if self.path.endswith(('/api/v1/generate', '/api/latest/generate')): api_format = 2 if self.path.endswith('/api/extra/generate/stream'): api_format = 2 sse_stream_flag = True if self.path.endswith('/v1/completions') or self.path.endswith('/v1/completion'): api_format = 3 if self.path.endswith('/v1/chat/completions'): api_format = 4 if self.path.endswith('/sdapi/v1/interrogate'): has_vision = (mmprojpath!="") if not has_vision: self.send_response(503) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "No Vision model loaded", "type": "service_unavailable", }}).encode()) return api_format = 5 if self.path.endswith('/api/generate'): api_format = 6 if self.path.endswith('/api/chat'): api_format = 7 if self.path=="/prompt" or self.path.endswith('/sdapi/v1/txt2img') or self.path.endswith('/sdapi/v1/img2img'): is_imggen = True if self.path=="/prompt": is_comfyui_imggen = True if self.path.endswith('/api/extra/transcribe') or self.path.endswith('/v1/audio/transcriptions'): is_transcribe = True if self.path.endswith('/api/extra/tts') or self.path.endswith('/v1/audio/speech') or self.path.endswith('/tts_to_audio'): is_tts = True if is_imggen or is_transcribe or is_tts or api_format > 0: global last_req_time last_req_time = time.time() if not is_imggen and not is_transcribe and not is_tts and api_format!=5: if not self.secure_endpoint(): return genparams = None try: genparams = json.loads(body) except Exception: genparams = None if is_transcribe: #fallback handling of file uploads formdata = self.extract_transcribe_from_file_upload(body) if "file" in formdata and formdata["file"]: b64wav = formdata["file"] genparams = {"audio_data":b64wav} if "prompt" in formdata and formdata["prompt"]: genparams["prompt"] = formdata["prompt"] if "language" in formdata and formdata["language"]: genparams["language"] = formdata["language"] if not genparams: utfprint("Body Err: " + str(body)) self.send_response(500) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Error parsing input.", "type": "bad_input", }}).encode()) return utfprint("\nInput: " + json.dumps(genparams),1) if args.foreground: bring_terminal_to_foreground() if api_format > 0:#text gen # Check if streaming chat completions, if so, set stream mode to true if (api_format == 4 or api_format == 3) and "stream" in genparams and genparams["stream"]: sse_stream_flag = True gen = asyncio.run(self.handle_request(genparams, api_format, sse_stream_flag)) try: # Headers are already sent when streaming if not sse_stream_flag: self.send_response(200) genresp = (json.dumps(gen).encode()) self.send_header('content-length', str(len(genresp))) self.end_headers(content_type='application/json') self.wfile.write(genresp) except Exception as ex: utfprint(ex,0) print("Generate: The response could not be sent, maybe connection was terminated?") handle.abort_generate() time.sleep(0.2) #short delay return elif is_imggen: #image gen try: if is_comfyui_imggen: lastgeneratedcomfyimg = b'' genparams = sd_comfyui_tranform_params(genparams) gen = sd_generate(genparams) genresp = None if is_comfyui_imggen: if gen: lastgeneratedcomfyimg = base64.b64decode(gen) else: lastgeneratedcomfyimg = b'' genresp = (json.dumps({"prompt_id": "12345678-0000-0000-0000-000000000001","number": 0,"node_errors":{}}).encode()) else: genresp = (json.dumps({"images":[gen],"parameters":{},"info":""}).encode()) self.send_response(200) self.send_header('content-length', str(len(genresp))) self.end_headers(content_type='application/json') self.wfile.write(genresp) except Exception as ex: utfprint(ex,0) print("Generate Image: The response could not be sent, maybe connection was terminated?") time.sleep(0.2) #short delay return elif is_transcribe: try: gen = whisper_generate(genparams) genresp = (json.dumps({"text":gen}).encode()) self.send_response(200) self.send_header('content-length', str(len(genresp))) self.end_headers(content_type='application/json') self.wfile.write(genresp) except Exception as ex: utfprint(ex,0) print("Transcribe: The response could not be sent, maybe connection was terminated?") time.sleep(0.2) #short delay return elif is_tts: try: gen = tts_generate(genparams) wav_data = b'' if gen: wav_data = base64.b64decode(gen) # Decode the Base64 string into binary data self.send_response(200) self.send_header('content-length', str(len(wav_data))) # Set content length self.send_header('Content-Disposition', 'attachment; filename="output.wav"') self.end_headers(content_type='audio/wav') self.wfile.write(wav_data) # Write the binary WAV data to the response except Exception as ex: utfprint(ex,0) print("TTS: The response could not be sent, maybe connection was terminated?") time.sleep(0.2) #short delay return finally: time.sleep(0.05) modelbusy.release() self.send_response(404) self.end_headers(content_type='text/html') def do_OPTIONS(self): self.send_response(200) self.end_headers(content_type='text/html') def do_HEAD(self): self.send_response(200) self.end_headers(content_type='text/html') def end_headers(self, content_type=None): self.send_header('access-control-allow-origin', '*') self.send_header('access-control-allow-methods', '*') self.send_header('access-control-allow-headers', '*, Accept, Content-Type, Content-Length, Cache-Control, Accept-Encoding, X-CSRF-Token, Client-Agent, X-Fields, Content-Type, Authorization, X-Requested-With, X-HTTP-Method-Override, apikey, genkey') self.send_header("cache-control", "no-store") if content_type is not None: self.send_header('content-type', content_type) return super(KcppServerRequestHandler, self).end_headers() def RunServerMultiThreaded(addr, port, server_handler): global exitcounter, sslvalid global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui, global_memory if is_port_in_use(port): print(f"Warning: Port {port} already appears to be in use by another program.") ipv4_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) ipv4_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) ipv6_sock = None if is_ipv6_supported(): ipv6_sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) ipv6_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) ipv6_sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1) if args.ssl and sslvalid: import ssl certpath = os.path.abspath(args.ssl[0]) keypath = os.path.abspath(args.ssl[1]) context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) context.load_cert_chain(certfile=certpath, keyfile=keypath) ipv4_sock = context.wrap_socket(ipv4_sock, server_side=True) if ipv6_sock: ipv6_sock = context.wrap_socket(ipv6_sock, server_side=True) numThreads = 24 try: ipv4_sock.bind((addr, port)) ipv4_sock.listen(numThreads) except Exception: print("IPv4 Socket Failed to Bind.") if ipv6_sock: try: ipv6_sock.bind((addr, port)) ipv6_sock.listen(numThreads) except Exception: ipv6_sock = None print("IPv6 Socket Failed to Bind. IPv6 will be unavailable.") class Thread(threading.Thread): def __init__(self, i): threading.Thread.__init__(self) self.i = i self.daemon = True self.start() def run(self): global exitcounter handler = server_handler(addr, port) with http.server.HTTPServer((addr, port), handler, False) as self.httpd: try: if ipv6_sock: self.httpd.socket = ipv4_sock if self.i < 16 else ipv6_sock else: self.httpd.socket = ipv4_sock self.httpd.server_bind = self.server_close = lambda self: None self.httpd.serve_forever() except (KeyboardInterrupt,SystemExit): exitcounter = 999 self.httpd.server_close() sys.exit(0) finally: exitcounter = 999 self.httpd.server_close() os._exit(0) def stop(self): global exitcounter exitcounter = 999 self.httpd.server_close() threadArr = [] for i in range(numThreads): threadArr.append(Thread(i)) while 1: try: time.sleep(10) except (KeyboardInterrupt,SystemExit): global exitcounter exitcounter = 999 for i in range(numThreads): threadArr[i].stop() sys.exit(0) # note: customtkinter-5.2.0 def show_gui(): global using_gui_launcher using_gui_launcher = True from tkinter.filedialog import askopenfilename, askdirectory from tkinter.filedialog import asksaveasfilename # if args received, launch if len(sys.argv) != 1 and not args.showgui: import tkinter as tk root = tk.Tk() #we dont want the useless window to be visible, but we want it in taskbar root.attributes("-alpha", 0) args.model_param = askopenfilename(title="Select ggml model .bin or .gguf file or .kcpps config") root.withdraw() root.quit() if args.model_param and args.model_param!="" and (args.model_param.lower().endswith('.kcpps') or args.model_param.lower().endswith('.kcppt') or args.model_param.lower().endswith('.kcpps?download=true') or args.model_param.lower().endswith('.kcppt?download=true')): dlfile = download_model_from_url(args.model_param,[".kcpps",".kcppt"]) # maybe download from url if dlfile: args.model_param = dlfile load_config_cli(args.model_param) if not args.model_param and not args.sdmodel and not args.whispermodel and not args.ttsmodel and not args.nomodel: global exitcounter exitcounter = 999 exit_with_error(2,"No gguf model or kcpps file was selected. Exiting.") return #dummy line to get darkdetect imported in pyinstaller try: import darkdetect as darkdt darkdt.isDark() pass except Exception: pass import customtkinter as ctk nextstate = 0 #0=exit, 1=launch original_windowwidth = 580 original_windowheight = 560 windowwidth = original_windowwidth windowheight = original_windowheight ctk.set_appearance_mode("dark") root = ctk.CTk() root.geometry(str(windowwidth) + "x" + str(windowheight)) root.title(f"KoboldCpp v{KcppVersion}") gtooltip_box = None gtooltip_label = None window_reference_width = None window_reference_height = None previous_event_width = None previous_event_height = None def on_resize(event): if not event.widget.master: nonlocal window_reference_width, window_reference_height, previous_event_width,previous_event_height if not window_reference_width and not window_reference_height: window_reference_width = event.width window_reference_height = event.height previous_event_width = window_reference_width previous_event_height = window_reference_height else: new_width = event.width new_height = event.height incr_w = new_width/window_reference_width incr_h = new_height/window_reference_height smallratio = min(incr_w,incr_h) smallratio = round(smallratio,2) if new_width != previous_event_width or new_height!=previous_event_height: lastpos = root.geometry() lparr = lastpos.split('+', 1) lastpos = ("+"+str(lparr[1])) if (len(lparr)==2) else "" previous_event_width = new_width previous_event_height = new_height windowwidth = math.floor(original_windowwidth*smallratio) windowwidth = max(256, min(1024, windowwidth)) windowheight = math.floor(original_windowheight*smallratio) windowheight = max(256, min(1024, windowheight)) root.geometry(str(windowwidth) + "x" + str(windowheight) + str(lastpos)) ctk.set_widget_scaling(smallratio) changerunmode(1,1,1) togglerope(1,1,1) toggleflashattn(1,1,1) togglectxshift(1,1,1) togglehorde(1,1,1) togglesdquant(1,1,1) toggletaesd(1,1,1) if sys.platform=="darwin": root.resizable(False,False) else: root.resizable(True,True) root.bind("", on_resize) kcpp_exporting_template = False # trigger empty tooltip then remove it def show_tooltip(event, tooltip_text=None): nonlocal gtooltip_box, gtooltip_label if not gtooltip_box and not gtooltip_label: gtooltip_box = ctk.CTkToplevel(root) gtooltip_box.configure(fg_color="#ffffe0") gtooltip_box.withdraw() gtooltip_box.overrideredirect(True) gtooltip_label = ctk.CTkLabel(gtooltip_box, text=tooltip_text, text_color="#000000", fg_color="#ffffe0") gtooltip_label.pack(expand=True, ipadx=2, ipady=1) else: gtooltip_label.configure(text=tooltip_text) x, y = root.winfo_pointerxy() gtooltip_box.wm_geometry(f"+{x + 10}+{y + 10}") gtooltip_box.deiconify() def hide_tooltip(event): nonlocal gtooltip_box if gtooltip_box: gtooltip_box.withdraw() show_tooltip(None,"") #initialize tooltip objects hide_tooltip(None) default_threads = get_default_threads() tabs = ctk.CTkFrame(root, corner_radius = 0, width=windowwidth, height=windowheight-50) tabs.grid(row=0, stick="nsew") tabnames= ["Quick Launch", "Hardware", "Tokens", "Loaded Files", "Network", "Horde Worker","Image Gen","Audio","Admin","Extra"] navbuttons = {} navbuttonframe = ctk.CTkFrame(tabs, width=100, height=int(tabs.cget("height"))) navbuttonframe.grid(row=0, column=0, padx=2,pady=2) navbuttonframe.grid_propagate(False) tabcontentframe = ctk.CTkFrame(tabs, width=windowwidth - int(navbuttonframe.cget("width")), height=int(tabs.cget("height"))) tabcontentframe.grid(row=0, column=1, sticky="nsew", padx=2, pady=2) tabcontentframe.grid_propagate(False) tabcontent = {} # slider data blasbatchsize_values = ["-1", "32", "64", "128", "256", "512", "1024", "2048"] blasbatchsize_text = ["Don't Batch BLAS","32","64","128","256","512","1024","2048"] contextsize_text = ["256", "512", "1024", "2048", "3072", "4096", "6144", "8192", "10240", "12288", "14336", "16384", "20480", "24576", "28672", "32768", "40960", "49152", "57344", "65536", "81920", "98304", "114688", "131072"] antirunopts = [opt.replace("Use ", "") for lib, opt in lib_option_pairs if opt not in runopts] quantkv_text = ["F16 (Off)","8-Bit","4-Bit"] if not any(runopts): exitcounter = 999 exit_with_error(2,"KoboldCPP couldn't locate any backends to use (i.e Default, Vulkan, CLBlast, CuBLAS).\n\nTo use the program, please run the 'make' command from the directory.","No Backends Available!") # Vars - should be in scope to be used by multiple widgets gpulayers_var = ctk.StringVar(value="-1") threads_var = ctk.StringVar(value=str(default_threads)) runopts_var = ctk.StringVar() gpu_choice_var = ctk.StringVar(value="1") launchbrowser = ctk.IntVar(value=1) highpriority = ctk.IntVar() usemmap = ctk.IntVar(value=0) usemlock = ctk.IntVar() debugmode = ctk.IntVar() keepforeground = ctk.IntVar() quietmode = ctk.IntVar(value=0) nocertifymode = ctk.IntVar(value=0) lowvram_var = ctk.IntVar() mmq_var = ctk.IntVar(value=1) quantkv_var = ctk.IntVar(value=0) blas_threads_var = ctk.StringVar() blas_size_var = ctk.IntVar() version_var = ctk.StringVar(value="0") tensor_split_str_vars = ctk.StringVar(value="") rowsplit_var = ctk.IntVar() contextshift = ctk.IntVar(value=1) fastforward = ctk.IntVar(value=1) remotetunnel = ctk.IntVar(value=0) smartcontext = ctk.IntVar() flashattention = ctk.IntVar(value=0) context_var = ctk.IntVar() customrope_var = ctk.IntVar() customrope_scale = ctk.StringVar(value="1.0") customrope_base = ctk.StringVar(value="10000") chatcompletionsadapter_var = ctk.StringVar(value="AutoGuess") moeexperts_var = ctk.StringVar(value=str(-1)) model_var = ctk.StringVar() lora_var = ctk.StringVar() lora_base_var = ctk.StringVar() preloadstory_var = ctk.StringVar() savedatafile_var = ctk.StringVar() mmproj_var = ctk.StringVar() visionmaxres_var = ctk.StringVar(value=str(default_visionmaxres)) draftmodel_var = ctk.StringVar() draftamount_var = ctk.StringVar(value=str(default_draft_amount)) draftgpulayers_var = ctk.StringVar(value=str(999)) draftgpusplit_str_vars = ctk.StringVar(value="") nomodel = ctk.IntVar(value=0) port_var = ctk.StringVar(value=defaultport) host_var = ctk.StringVar(value="") multiuser_var = ctk.IntVar(value=1) multiplayer_var = ctk.IntVar(value=has_multiplayer) websearch_var = ctk.IntVar(value=0) horde_name_var = ctk.StringVar(value="koboldcpp") horde_gen_var = ctk.StringVar(value=maxhordelen) horde_context_var = ctk.StringVar(value=maxhordectx) horde_apikey_var = ctk.StringVar(value="") horde_workername_var = ctk.StringVar(value="") usehorde_var = ctk.IntVar() ssl_cert_var = ctk.StringVar() ssl_key_var = ctk.StringVar() password_var = ctk.StringVar() sd_model_var = ctk.StringVar() sd_lora_var = ctk.StringVar() sd_loramult_var = ctk.StringVar(value="1.0") sd_vae_var = ctk.StringVar() sd_t5xxl_var = ctk.StringVar() sd_clipl_var = ctk.StringVar() sd_clipg_var = ctk.StringVar() sd_vaeauto_var = ctk.IntVar(value=0) sd_notile_var = ctk.IntVar(value=0) sd_clamped_var = ctk.StringVar(value="0") sd_threads_var = ctk.StringVar(value=str(default_threads)) sd_quant_var = ctk.IntVar(value=0) whisper_model_var = ctk.StringVar() tts_model_var = ctk.StringVar() wavtokenizer_var = ctk.StringVar() ttsgpu_var = ctk.IntVar(value=0) tts_threads_var = ctk.StringVar(value=str(default_threads)) ttsmaxlen_var = ctk.StringVar(value=str(default_ttsmaxlen)) admin_var = ctk.IntVar(value=0) admin_dir_var = ctk.StringVar() admin_password_var = ctk.StringVar() def tabbuttonaction(name): for t in tabcontent: if name == t: tabcontent[t].grid(row=0, column=0) navbuttons[t].configure(fg_color="#6f727b") else: tabcontent[t].grid_remove() navbuttons[t].configure(fg_color="transparent") # Dynamically create tabs + buttons based on values of [tabnames] for idx, name in enumerate(tabnames): tabcontent[name] = ctk.CTkFrame(tabcontentframe, width=int(tabcontentframe.cget("width")), height=int(tabcontentframe.cget("height")), fg_color="transparent") tabcontent[name].grid_propagate(False) if idx == 0: tabcontent[name].grid(row=idx, sticky="nsew") ctk.CTkLabel(tabcontent[name], text= name, font=ctk.CTkFont(None, 14, 'bold')).grid(row=0, padx=12, pady = 5, stick='nw') navbuttons[name] = ctk.CTkButton(navbuttonframe, text=name, width = 100, corner_radius=0 , command = lambda d=name:tabbuttonaction(d), hover_color="#868a94" ) navbuttons[name].grid(row=idx) tabbuttonaction(tabnames[0]) # Quick Launch Tab quick_tab = tabcontent["Quick Launch"] # helper functions def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, onvalue=1, offvalue=0,tooltiptxt=""): temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=onvalue, offvalue=offvalue) if command is not None and variable is not None: variable.trace("w", command) temp.grid(row=row,column=column, padx=8, pady=1, stick="nw") if tooltiptxt!="": temp.bind("", lambda event: show_tooltip(event, tooltiptxt)) temp.bind("", hide_tooltip) return temp def makelabel(parent, text, row, column=0, tooltiptxt="", columnspan=1, padx=8): temp = ctk.CTkLabel(parent, text=text) temp.grid(row=row, column=column, padx=padx, pady=1, stick="nw", columnspan=columnspan) if tooltiptxt!="": temp.bind("", lambda event: show_tooltip(event, tooltiptxt)) temp.bind("", hide_tooltip) return temp def makeslider(parent, label, options, var, from_ , to, row=0, width=160, height=10, set=0, tooltip=""): sliderLabel = makelabel(parent, options[set], row + 1, 0, columnspan=2, padx=(width+12)) titleLabel = makelabel(parent, label, row,0,tooltip) def sliderUpdate(a,b,c): sliderLabel.configure(text = options[int(var.get())]) var.trace("w", sliderUpdate) slider = ctk.CTkSlider(parent, from_=from_, to=to, variable = var, width = width, height=height, border_width=5,number_of_steps=len(options) - 1) slider.grid(row=row+1, column=0, padx = 8, stick="w", columnspan=2) slider.set(set) return slider, sliderLabel, titleLabel def makelabelentry(parent, text, var, row=0, width=50, padx=8, singleline=False, tooltip="", labelpadx=8): label = makelabel(parent, text, row, 0, tooltip, padx=labelpadx) entry = ctk.CTkEntry(parent, width=width, textvariable=var) entry.grid(row=row, column=(0 if singleline else 1), padx=padx, sticky="nw") return entry, label #file dialog types: 0=openfile,1=savefile,2=opendir def makefileentry(parent, text, searchtext, var, row=0, width=200, filetypes=[], onchoosefile=None, singlerow=False, singlecol=True, dialog_type=0, tooltiptxt=""): label = makelabel(parent, text, row,0,tooltiptxt,columnspan=3) def getfilename(var, text): initialDir = os.path.dirname(var.get()) initialDir = initialDir if os.path.isdir(initialDir) else None fnam = None if dialog_type==2: fnam = askdirectory(title=text, mustexist=True, initialdir=initialDir) elif dialog_type==1: fnam = asksaveasfilename(title=text, filetypes=filetypes, defaultextension=filetypes, initialdir=initialDir) if not fnam: fnam = "" else: fnam = str(fnam).strip() fnam = f"{fnam}.jsondb" if ".jsondb" not in fnam.lower() else fnam else: fnam = askopenfilename(title=text,filetypes=filetypes, initialdir=initialDir) if fnam: var.set(fnam) if onchoosefile: onchoosefile(var.get()) entry = ctk.CTkEntry(parent, width, textvariable=var) button = ctk.CTkButton(parent, 50, text="Browse", command= lambda a=var,b=searchtext:getfilename(a,b)) if singlerow: if singlecol: entry.grid(row=row, column=0, padx=(94+8), stick="w") button.grid(row=row, column=0, padx=(94+width+12), stick="nw") else: entry.grid(row=row, column=1, padx=8, stick="w") button.grid(row=row, column=1, padx=(width+12), stick="nw") else: if singlecol: entry.grid(row=row+1, column=0, columnspan=3, padx=8, stick="nw") button.grid(row=row+1, column=0, columnspan=3, padx=(width+12), stick="nw") else: entry.grid(row=row+1, column=0, columnspan=1, padx=8, stick="nw") button.grid(row=row+1, column=1, columnspan=1, padx=8, stick="nw") return label, entry, button # decided to follow yellowrose's and kalomaze's suggestions, this function will automatically try to determine GPU identifiers # run in new thread so it doesnt block. does not return anything, instead overwrites specific values and redraws GUI def auto_set_backend_gui(manual_select=False): global exitcounter, runmode_untouched if manual_select: print("\nA .kcppt template was selected from GUI - automatically selecting your backend...") runmode_untouched = True fetch_gpu_properties(False,True,True) else: fetch_gpu_properties(True,True,True) found_new_backend = False #autopick cublas if suitable, requires at least 3.5GB VRAM to auto pick #we do not want to autoselect hip/cublas if the user has already changed their desired backend! if exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and (any(CUDevicesNames) or any(CLDevicesNames)) and runmode_untouched: if "Use CuBLAS" in runopts: runopts_var.set("Use CuBLAS") gpu_choice_var.set("1") print("Auto Selected CUDA Backend...\n") found_new_backend = True elif "Use hipBLAS (ROCm)" in runopts: runopts_var.set("Use hipBLAS (ROCm)") gpu_choice_var.set("1") print("Auto Selected HIP Backend...\n") found_new_backend = True elif exitcounter < 100 and (1 in VKIsDGPU) and runmode_untouched and "Use Vulkan" in runopts: for i in range(0,len(VKIsDGPU)): if VKIsDGPU[i]==1: runopts_var.set("Use Vulkan") gpu_choice_var.set(str(i+1)) print("Auto Selected Vulkan Backend...\n") found_new_backend = True break if not found_new_backend: print("Auto Selected Default Backend...\n") changed_gpu_choice_var() def on_picked_model_file(filepath): if filepath.lower().endswith('.kcpps') or filepath.lower().endswith('.kcppt'): #load it as a config file instead with open(filepath, 'r', encoding='utf-8', errors='ignore') as f: dict = json.load(f) import_vars(dict) def setup_backend_tooltip(parent): # backend count label with the tooltip function nl = '\n' tooltxt = "Number of backends you have built and available." + (f"\n\nMissing Backends: \n\n{nl.join(antirunopts)}" if len(runopts) < 8 else "") num_backends_built = makelabel(parent, str(len(runopts)) + "/9", 5, 2,tooltxt) num_backends_built.grid(row=1, column=1, padx=205, pady=0) num_backends_built.configure(text_color="#00ff00") def gui_changed_modelfile(*args): global importvars_in_progress if not importvars_in_progress: filepath = model_var.get() sdfilepath = sd_model_var.get() whisperfilepath = whisper_model_var.get() mmprojfilepath = mmproj_var.get() draftmodelpath = draftmodel_var.get() ttsmodelpath = tts_model_var.get() if ttsgpu_var.get()==1 else "" extract_modelfile_params(filepath,sdfilepath,whisperfilepath,mmprojfilepath,draftmodelpath,ttsmodelpath) changed_gpulayers_estimate() pass def changed_gpulayers_estimate(*args): predicted_gpu_layers = autoset_gpu_layers(int(contextsize_text[context_var.get()]),(sd_quant_var.get()==1),int(blasbatchsize_values[int(blas_size_var.get())])) max_gpu_layers = (f"/{modelfile_extracted_meta[0][0]+3}" if (modelfile_extracted_meta and modelfile_extracted_meta[0] and modelfile_extracted_meta[0][0]!=0) else "") index = runopts_var.get() gpu_be = (index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CLBlast (Older CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)") layercounter_label.grid(row=6, column=1, padx=75, sticky="W") quick_layercounter_label.grid(row=6, column=1, padx=75, sticky="W") if sys.platform=="darwin" and gpulayers_var.get()=="-1": quick_layercounter_label.configure(text="(Auto: All Layers)") layercounter_label.configure(text="(Auto: All Layers)") elif gpu_be and gpulayers_var.get()=="-1" and predicted_gpu_layers>0: quick_layercounter_label.configure(text=f"(Auto: {predicted_gpu_layers}{max_gpu_layers} Layers)") layercounter_label.configure(text=f"(Auto: {predicted_gpu_layers}{max_gpu_layers} Layers)") elif gpu_be and gpulayers_var.get()=="-1" and predicted_gpu_layers<=0 and (modelfile_extracted_meta and modelfile_extracted_meta[1]): quick_layercounter_label.configure(text="(Auto: No Offload)") layercounter_label.configure(text="(Auto: No Offload)") elif gpu_be and gpulayers_var.get()=="": quick_layercounter_label.configure(text="(Set -1 for Auto)") layercounter_label.configure(text="(Set -1 for Auto)") else: layercounter_label.grid_remove() quick_layercounter_label.grid_remove() pass def changed_gpu_choice_var(*args): global exitcounter if exitcounter > 100: return if gpu_choice_var.get()!="All": try: s = int(gpu_choice_var.get())-1 v = runopts_var.get() if v == "Use Vulkan" or v == "Use Vulkan (Old CPU)": quick_gpuname_label.configure(text=VKDevicesNames[s]) gpuname_label.configure(text=VKDevicesNames[s]) elif v == "Use CLBlast" or v == "Use CLBlast (Old CPU)" or v == "Use CLBlast (Older CPU)": quick_gpuname_label.configure(text=CLDevicesNames[s]) gpuname_label.configure(text=CLDevicesNames[s]) else: quick_gpuname_label.configure(text=CUDevicesNames[s]) gpuname_label.configure(text=CUDevicesNames[s]) except Exception: pass else: quick_gpuname_label.configure(text="") gpuname_label.configure(text="") gpu_choice_var.trace("w", changed_gpu_choice_var) gpulayers_var.trace("w", changed_gpulayers_estimate) def togglefastforward(a,b,c): if fastforward.get()==0: contextshift.set(0) smartcontext.set(0) togglectxshift(1,1,1) def togglectxshift(a,b,c): if contextshift.get()==0: smartcontextbox.grid() else: fastforward.set(1) smartcontextbox.grid_remove() if contextshift.get()==0 and flashattention.get()==1: qkvslider.grid() qkvlabel.grid() noqkvlabel.grid_remove() else: qkvslider.grid_remove() qkvlabel.grid_remove() noqkvlabel.grid() def toggleflashattn(a,b,c): if contextshift.get()==0 and flashattention.get()==1: qkvslider.grid() qkvlabel.grid() noqkvlabel.grid_remove() else: qkvslider.grid_remove() qkvlabel.grid_remove() noqkvlabel.grid() def guibench(): args.benchmark = "stdout" launchbrowser.set(0) guilaunch() def changerunmode(a,b,c): global runmode_untouched runmode_untouched = False index = runopts_var.get() if index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CLBlast (Older CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw") quick_gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw") if index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CLBlast (Older CPU)": gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") CUDA_gpu_selector_box.grid_remove() CUDA_quick_gpu_selector_box.grid_remove() if gpu_choice_var.get()=="All": gpu_choice_var.set("1") elif index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": gpu_selector_box.grid_remove() quick_gpu_selector_box.grid_remove() CUDA_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") CUDA_quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") else: quick_gpuname_label.grid_remove() gpuname_label.grid_remove() gpu_selector_label.grid_remove() gpu_selector_box.grid_remove() CUDA_gpu_selector_box.grid_remove() quick_gpu_selector_label.grid_remove() quick_gpu_selector_box.grid_remove() CUDA_quick_gpu_selector_box.grid_remove() if index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw") mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw") quick_mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw") splitmode_box.grid(row=5, column=1, padx=8, pady=1, stick="nw") tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw") tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw") else: lowvram_box.grid_remove() mmq_box.grid_remove() quick_mmq_box.grid_remove() tensor_split_label.grid_remove() tensor_split_entry.grid_remove() splitmode_box.grid_remove() if index == "Use Vulkan" or index == "Use Vulkan (Old CPU)": tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw") tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw") quick_use_flashattn.grid_remove() else: quick_use_flashattn.grid(row=22, column=1, padx=8, pady=1, stick="nw") if index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CLBlast (Older CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw") gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw") quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw") quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw") elif sys.platform=="darwin": gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw") gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw") quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw") quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw") else: gpu_layers_label.grid_remove() gpu_layers_entry.grid_remove() quick_gpu_layers_label.grid_remove() quick_gpu_layers_entry.grid_remove() changed_gpulayers_estimate() changed_gpu_choice_var() # presets selector makelabel(quick_tab, "Presets:", 1,0,"Select a backend to use.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nVulkan and CLBlast works on all GPUs but is somewhat slower.\nOtherwise, runs on CPU only.\nNoAVX2 and Failsafe modes support older PCs.") runoptbox = ctk.CTkComboBox(quick_tab, values=runopts, width=190,variable=runopts_var, state="readonly") runoptbox.grid(row=1, column=1,padx=8, stick="nw") runoptbox.set(runopts[0]) # Set to first available option # Tell user how many backends are available setup_backend_tooltip(quick_tab) # gpu options quick_gpu_selector_label = makelabel(quick_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.") quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly") CUDA_quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly") quick_gpuname_label = ctk.CTkLabel(quick_tab, text="") quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W") quick_gpuname_label.configure(text_color="#ffff00") quick_gpu_layers_entry,quick_gpu_layers_label = makelabelentry(quick_tab,"GPU Layers:", gpulayers_var, 6, 50,tooltip="How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81") quick_layercounter_label = ctk.CTkLabel(quick_tab, text="") quick_layercounter_label.grid(row=6, column=1, padx=75, sticky="W") quick_layercounter_label.configure(text_color="#ffff00") quick_mmq_box = makecheckbox(quick_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1,tooltiptxt="Enable MMQ mode instead of CuBLAS for prompt processing. Read the wiki. Speed may vary.") # quick boxes quick_boxes = { "Launch Browser": [launchbrowser, "Launches your default browser after model loading is complete"], "Use MMAP": [usemmap, "Use mmap to load models if enabled, model will not be unloadable"], "Use ContextShift": [contextshift, "Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info."], "Remote Tunnel": [remotetunnel, "Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL."], "Quiet Mode": [quietmode, "Prevents all generation related terminal output from being displayed."] } for idx, (name, properties) in enumerate(quick_boxes.items()): makecheckbox(quick_tab, name, properties[0], int(idx/2) + 20, idx % 2, tooltiptxt=properties[1]) quick_use_flashattn = makecheckbox(quick_tab, "Use FlashAttention", flashattention, 22, 1, tooltiptxt="Enable flash attention for GGUF models.") # context size makeslider(quick_tab, "Context Size:", contextsize_text, context_var, 0, len(contextsize_text)-1, 30, width=280, set=5,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.") # load model makefileentry(quick_tab, "GGUF Text Model:", "Select GGUF or GGML Model File", model_var, 40, 280, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.") model_var.trace("w", gui_changed_modelfile) # Hardware Tab hardware_tab = tabcontent["Hardware"] # presets selector makelabel(hardware_tab, "Presets:", 1,0,"Select a backend to use.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nVulkan and CLBlast works on all GPUs but is somewhat slower.\nOtherwise, runs on CPU only.\nNoAVX2 and Failsafe modes support older PCs.") runoptbox = ctk.CTkComboBox(hardware_tab, values=runopts, width=180,variable=runopts_var, state="readonly") runoptbox.grid(row=1, column=1,padx=8, stick="nw") runoptbox.set(runopts[0]) # Set to first available option # Tell user how many backends are available setup_backend_tooltip(hardware_tab) # gpu options gpu_selector_label = makelabel(hardware_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.") gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly") CUDA_gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly") gpuname_label = ctk.CTkLabel(hardware_tab, text="") gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpuname_label.configure(text_color="#ffff00") gpu_layers_entry,gpu_layers_label = makelabelentry(hardware_tab,"GPU Layers:", gpulayers_var, 6, 50,tooltip="How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81") layercounter_label = ctk.CTkLabel(hardware_tab, text="") layercounter_label.grid(row=6, column=1, padx=75, sticky="W") layercounter_label.configure(text_color="#ffff00") tensor_split_entry,tensor_split_label = makelabelentry(hardware_tab, "Tensor Split:", tensor_split_str_vars, 8, 80, tooltip='When using multiple GPUs this option controls how large tensors should be split across all GPUs.\nUses a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order.\nFor example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1.') lowvram_box = makecheckbox(hardware_tab, "Low VRAM (No KV offload)", lowvram_var, 4,0, tooltiptxt='Avoid offloading KV Cache or scratch buffers to VRAM.\nAllows more layers to fit, but may result in a speed loss.') mmq_box = makecheckbox(hardware_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1, tooltiptxt="Enable MMQ mode to use finetuned kernels instead of default CuBLAS/HipBLAS for prompt processing.\nRead the wiki. Speed may vary.") splitmode_box = makecheckbox(hardware_tab, "Row-Split", rowsplit_var, 5,0, tooltiptxt="Split rows across GPUs instead of splitting layers and KV across GPUs.\nUses the main GPU for small tensors and intermediate results. Speed may vary.") # threads makelabelentry(hardware_tab, "Threads:" , threads_var, 11, 50,tooltip="How many threads to use.\nRecommended value is your CPU core count, defaults are usually OK.") # hardware checkboxes hardware_boxes = { "Launch Browser": [launchbrowser, "Launches your default browser after model loading is complete"], "High Priority": [highpriority, "Increases the koboldcpp process priority.\nMay cause lag or slowdown instead. Not recommended."], "Use MMAP": [usemmap, "Use mmap to load models if enabled, model will not be unloadable"], "Use mlock": [usemlock, "Enables mlock, preventing the RAM used to load the model from being paged out."], "Debug Mode": [debugmode, "Enables debug mode, with extra info printed to the terminal."], "Keep Foreground": [keepforeground, "Bring KoboldCpp to the foreground every time there is a new generation."] } for idx, (name, properties) in enumerate(hardware_boxes.items()): makecheckbox(hardware_tab, name, properties[0], int(idx/2) + 30, idx % 2, tooltiptxt=properties[1]) # blas thread specifier makelabelentry(hardware_tab, "BLAS threads:" , blas_threads_var, 14, 50,tooltip="How many threads to use during BLAS processing.\nIf left blank, uses same value as regular thread count.") # blas batch size makeslider(hardware_tab, "BLAS Batch Size:", blasbatchsize_text, blas_size_var, 0, 7, 16,width=200, set=5,tooltip="How many tokens to process at once per batch.\nLarger values use more memory.") blas_size_var.trace("w", changed_gpulayers_estimate) # force version makelabelentry(hardware_tab, "Force Version:" , version_var, 100, 50,tooltip="If the autodetected version is wrong, you can change it here.\nLeave as 0 for default.") ctk.CTkButton(hardware_tab , text = "Run Benchmark", command = guibench ).grid(row=110,column=0, stick="se", padx= 0, pady=2) runopts_var.trace('w', changerunmode) changerunmode(1,1,1) global runmode_untouched runmode_untouched = True # Tokens Tab tokens_tab = tabcontent["Tokens"] # tokens checkboxes smartcontextbox = makecheckbox(tokens_tab, "Use SmartContext", smartcontext, 1,tooltiptxt="Uses SmartContext. Now considered outdated and not recommended.\nCheck the wiki for more info.") makecheckbox(tokens_tab, "Use ContextShift", contextshift, 2,tooltiptxt="Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.", command=togglectxshift) makecheckbox(tokens_tab, "Use FastForwarding", fastforward, 3,tooltiptxt="Use fast forwarding to recycle previous context (always reprocess if disabled).\nRecommended.", command=togglefastforward) # context size makeslider(tokens_tab, "Context Size:",contextsize_text, context_var, 0, len(contextsize_text)-1, 20, width=280, set=5,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.") context_var.trace("w", changed_gpulayers_estimate) customrope_scale_entry, customrope_scale_label = makelabelentry(tokens_tab, "RoPE Scale:", customrope_scale, row=23, padx=100, singleline=True, tooltip="For Linear RoPE scaling. RoPE frequency scale.") customrope_base_entry, customrope_base_label = makelabelentry(tokens_tab, "RoPE Base:", customrope_base, row=24, padx=100, singleline=True, tooltip="For NTK Aware Scaling. RoPE frequency base.") def togglerope(a,b,c): items = [customrope_scale_label, customrope_scale_entry,customrope_base_label, customrope_base_entry] for idx, item in enumerate(items): if customrope_var.get() == 1: item.grid() else: item.grid_remove() makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.") makecheckbox(tokens_tab, "Use FlashAttention", flashattention, 28, command=toggleflashattn, tooltiptxt="Enable flash attention for GGUF models.") noqkvlabel = makelabel(tokens_tab,"Requirments Not Met",31,0,"Requires FlashAttention ENABLED and ContextShift DISABLED.") noqkvlabel.configure(text_color="#ff5555") qkvslider,qkvlabel,qkvtitle = makeslider(tokens_tab, "Quantize KV Cache:", quantkv_text, quantkv_var, 0, 2, 30, set=0,tooltip="Enable quantization of KV cache.\nRequires FlashAttention and disables ContextShift.") makelabelentry(tokens_tab, "MoE Experts:", moeexperts_var, row=35, padx=100, singleline=True, tooltip="Override number of MoE experts.") togglerope(1,1,1) toggleflashattn(1,1,1) togglectxshift(1,1,1) # Model Tab model_tab = tabcontent["Loaded Files"] makefileentry(model_tab, "Text Model:", "Select GGUF or GGML Model File", model_var, 1,width=280,singlerow=True, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.") makefileentry(model_tab, "Text Lora:", "Select Lora File",lora_var, 3,width=280,singlerow=True,tooltiptxt="Select an optional GGML Text LoRA adapter to use.\nLeave blank to skip.") makefileentry(model_tab, "Lora Base:", "Select Lora Base File", lora_base_var, 5,width=280,singlerow=True,tooltiptxt="Select an optional F16 GGML Text LoRA base file to use.\nLeave blank to skip.") makefileentry(model_tab, "Vision mmproj:", "Select Vision mmproj File", mmproj_var, 7,width=280,singlerow=True,tooltiptxt="Select a mmproj file to use for vision models like LLaVA.\nLeave blank to skip.") makelabelentry(model_tab, "Vision MaxRes:", visionmaxres_var, 9, padx=100, singleline=True, tooltip=f"Clamp MMProj vision maximum allowed resolution. Allowed values are between 512 to 2048 px (default {default_visionmaxres}).") makefileentry(model_tab, "Draft Model:", "Select Speculative Text Model File", draftmodel_var, 11,width=280,singlerow=True,tooltiptxt="Select a draft text model file to use for speculative decoding.\nLeave blank to skip.") makelabelentry(model_tab, "Draft Amount: ", draftamount_var, 13, 50,padx=100,singleline=True,tooltip="How many tokens to draft per chunk before verifying results") makelabelentry(model_tab, "Splits: ", draftgpusplit_str_vars, 13, 50,padx=210,singleline=True,tooltip="Distribution of draft model layers. Leave blank to follow main model's gpu split. Only works if multi-gpu (All) selected in main model.", labelpadx=160) makelabelentry(model_tab, "Layers: ", draftgpulayers_var, 13, 50,padx=320,singleline=True,tooltip="How many layers to GPU offload for the draft model", labelpadx=270) makefileentry(model_tab, "Preload Story:", "Select Preloaded Story File", preloadstory_var, 15,width=280,singlerow=True,tooltiptxt="Select an optional KoboldAI JSON savefile \nto be served on launch to any client.") makefileentry(model_tab, "SaveData File:", "Select or Create New SaveData Database File", savedatafile_var, 17,width=280,filetypes=[("KoboldCpp SaveDB", "*.jsondb")],singlerow=True,dialog_type=1,tooltiptxt="Selecting a file will allow data to be loaded and saved persistently to this KoboldCpp server remotely. File is created if it does not exist.") makefileentry(model_tab, "ChatCompletions Adapter:", "Select ChatCompletions Adapter File", chatcompletionsadapter_var, 24, width=250, filetypes=[("JSON Adapter", "*.json")], tooltiptxt="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.") def pickpremadetemplate(): initialDir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'kcpp_adapters') initialDir = initialDir if os.path.isdir(initialDir) else None fnam = askopenfilename(title="Pick Premade ChatCompletions Adapter",filetypes=[("JSON Adapter", "*.json")], initialdir=initialDir) if fnam: chatcompletionsadapter_var.set(fnam) ctk.CTkButton(model_tab, 64, text="Pick Premade", command=pickpremadetemplate).grid(row=25, column=0, padx=322, stick="nw") mmproj_var.trace("w", gui_changed_modelfile) draftmodel_var.trace("w", gui_changed_modelfile) makecheckbox(model_tab, "Allow Launch Without Models", nomodel, 27, tooltiptxt="Allows running the WebUI with no model loaded.") # Network Tab network_tab = tabcontent["Network"] # interfaces makelabelentry(network_tab, "Port: ", port_var, 1, 150,tooltip=f"Select the port to host the KoboldCPP webserver.\n(Defaults to {defaultport})") makelabelentry(network_tab, "Host: ", host_var, 2, 150,tooltip="Select a specific host interface to bind to.\n(Defaults to all)") makecheckbox(network_tab, "Multiuser Mode", multiuser_var, 3,tooltiptxt="Allows requests by multiple different clients to be queued and handled in sequence.") makecheckbox(network_tab, "Remote Tunnel", remotetunnel, 3, 1,tooltiptxt="Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL.") makecheckbox(network_tab, "Quiet Mode", quietmode, 4,tooltiptxt="Prevents all generation related terminal output from being displayed.") makecheckbox(network_tab, "NoCertify Mode (Insecure)", nocertifymode, 4, 1,tooltiptxt="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.") makecheckbox(network_tab, "Shared Multiplayer", multiplayer_var, 5,tooltiptxt="Hosts a shared multiplayer session that others can join.") makecheckbox(network_tab, "Enable WebSearch", websearch_var, 5, 1,tooltiptxt="Enable the local search engine proxy so Web Searches can be done.") makefileentry(network_tab, "SSL Cert:", "Select SSL cert.pem file",ssl_cert_var, 7, width=200 ,filetypes=[("Unencrypted Certificate PEM", "*.pem")], singlerow=True, singlecol=False,tooltiptxt="Select your unencrypted .pem SSL certificate file for https.\nCan be generated with OpenSSL.") makefileentry(network_tab, "SSL Key:", "Select SSL key.pem file", ssl_key_var, 9, width=200, filetypes=[("Unencrypted Key PEM", "*.pem")], singlerow=True, singlecol=False, tooltiptxt="Select your unencrypted .pem SSL key file for https.\nCan be generated with OpenSSL.") makelabelentry(network_tab, "Password: ", password_var, 10, 200,tooltip="Enter a password required to use this instance.\nThis key will be required for all text endpoints.\nImage endpoints are not secured.") # Horde Tab horde_tab = tabcontent["Horde Worker"] makelabel(horde_tab, "Horde:", 18,0,"Settings for embedded AI Horde worker").grid(pady=10) horde_name_entry, horde_name_label = makelabelentry(horde_tab, "Horde Model Name:", horde_name_var, 20, 180,tooltip="The model name to be displayed on the AI Horde.") horde_gen_entry, horde_gen_label = makelabelentry(horde_tab, "Gen. Length:", horde_gen_var, 21, 50,tooltip="The maximum amount to generate per request \nthat this worker will accept jobs for.") horde_context_entry, horde_context_label = makelabelentry(horde_tab, "Max Context:",horde_context_var, 22, 50,tooltip="The maximum context length \nthat this worker will accept jobs for.") horde_apikey_entry, horde_apikey_label = makelabelentry(horde_tab, "API Key (If Embedded Worker):",horde_apikey_var, 23, 180,tooltip="Your AI Horde API Key that you have registered.") horde_workername_entry, horde_workername_label = makelabelentry(horde_tab, "Horde Worker Name:",horde_workername_var, 24, 180,tooltip="Your worker's name to be displayed.") def togglehorde(a,b,c): horde_items = zip([horde_name_entry, horde_gen_entry, horde_context_entry, horde_apikey_entry, horde_workername_entry], [horde_name_label, horde_gen_label, horde_context_label, horde_apikey_label, horde_workername_label]) for item, label in horde_items: if usehorde_var.get() == 1: item.grid() label.grid() else: item.grid_remove() label.grid_remove() if usehorde_var.get()==1 and (horde_name_var.get()=="koboldcpp" or horde_name_var.get()=="") and model_var.get()!="": basefile = os.path.basename(model_var.get()) horde_name_var.set(sanitize_string(os.path.splitext(basefile)[0])) makecheckbox(horde_tab, "Configure for Horde", usehorde_var, 19, command=togglehorde,tooltiptxt="Enable the embedded AI Horde worker.") togglehorde(1,1,1) # Image Gen Tab images_tab = tabcontent["Image Gen"] makefileentry(images_tab, "Stable Diffusion Model (safetensors/gguf):", "Select Stable Diffusion Model File", sd_model_var, 1, width=280, singlecol=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")], tooltiptxt="Select a .safetensors or .gguf Stable Diffusion model file on disk to be loaded.") makelabelentry(images_tab, "Clamped Mode (Limit Resolution):", sd_clamped_var, 4, 50, padx=290,singleline=True,tooltip="Limit generation steps and resolution settings for shared use.\nSet to 0 to disable, otherwise value is the size limit (min 512px).") makelabelentry(images_tab, "Image Threads:" , sd_threads_var, 6, 50,padx=290,singleline=True,tooltip="How many threads to use during image generation.\nIf left blank, uses same value as threads.") sd_model_var.trace("w", gui_changed_modelfile) sdloritem1,sdloritem2,sdloritem3 = makefileentry(images_tab, "Image LoRA (Must be non-quant):", "Select SD lora file",sd_lora_var, 10, width=280, singlecol=True, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD LoRA model file to be loaded.") sdloritem4,sdloritem5 = makelabelentry(images_tab, "Image LoRA Multiplier:" , sd_loramult_var, 12, 50,padx=290,singleline=True,tooltip="What mutiplier value to apply the SD LoRA with.") def togglesdquant(a,b,c): if sd_quant_var.get()==1: sdloritem1.grid_remove() sdloritem2.grid_remove() sdloritem3.grid_remove() sdloritem4.grid_remove() sdloritem5.grid_remove() else: if not sdloritem1.grid_info() or not sdloritem2.grid_info() or not sdloritem3.grid_info() or not sdloritem4.grid_info() or not sdloritem5.grid_info(): sdloritem1.grid() sdloritem2.grid() sdloritem3.grid() sdloritem4.grid() sdloritem5.grid() makecheckbox(images_tab, "Compress Weights (Saves Memory)", sd_quant_var, 8,command=togglesdquant,tooltiptxt="Quantizes the SD model weights to save memory. May degrade quality.") sd_quant_var.trace("w", changed_gpulayers_estimate) makefileentry(images_tab, "T5-XXL File:", "Select Optional T5-XXL model file (SD3 or flux)",sd_t5xxl_var, 14, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")],tooltiptxt="Select a .safetensors t5xxl file to be loaded.") makefileentry(images_tab, "Clip-L File:", "Select Optional Clip-L model file (SD3 or flux)",sd_clipl_var, 16, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")],tooltiptxt="Select a .safetensors t5xxl file to be loaded.") makefileentry(images_tab, "Clip-G File:", "Select Optional Clip-G model file (SD3)",sd_clipg_var, 18, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")],tooltiptxt="Select a .safetensors t5xxl file to be loaded.") sdvaeitem1,sdvaeitem2,sdvaeitem3 = makefileentry(images_tab, "Image VAE:", "Select Optional SD VAE file",sd_vae_var, 20, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD VAE file to be loaded.") def toggletaesd(a,b,c): if sd_vaeauto_var.get()==1: sdvaeitem1.grid_remove() sdvaeitem2.grid_remove() sdvaeitem3.grid_remove() else: if not sdvaeitem1.grid_info() or not sdvaeitem2.grid_info() or not sdvaeitem3.grid_info(): sdvaeitem1.grid() sdvaeitem2.grid() sdvaeitem3.grid() makecheckbox(images_tab, "Use TAE SD (AutoFix Broken VAE)", sd_vaeauto_var, 22,command=toggletaesd,tooltiptxt="Replace VAE with TAESD. May fix bad VAE.") makecheckbox(images_tab, "No VAE Tiling", sd_notile_var, 24,tooltiptxt="Disables VAE tiling, may not work for large images.") # audio tab audio_tab = tabcontent["Audio"] makefileentry(audio_tab, "Whisper Model (Speech-To-Text):", "Select Whisper .bin Model File", whisper_model_var, 1, width=280, filetypes=[("*.bin","*.bin")], tooltiptxt="Select a Whisper .bin model file on disk to be loaded for Voice Recognition.") whisper_model_var.trace("w", gui_changed_modelfile) makelabelentry(audio_tab, "OuteTTS Threads:" , tts_threads_var, 3, 50,padx=290,singleline=True,tooltip="How many threads to use during TTS generation.\nIf left blank, uses same value as threads.") makefileentry(audio_tab, "OuteTTS Model (Text-To-Speech):", "Select OuteTTS GGUF Model File", tts_model_var, 5, width=280, filetypes=[("*.gguf","*.gguf")], tooltiptxt="Select a OuteTTS GGUF model file on disk to be loaded for Narration.") tts_model_var.trace("w", gui_changed_modelfile) makefileentry(audio_tab, "WavTokenizer Model (Text-To-Speech):", "Select WavTokenizer GGUF Model File", wavtokenizer_var, 7, width=280, filetypes=[("*.gguf","*.gguf")], tooltiptxt="Select a WavTokenizer GGUF model file on disk to be loaded for Narration.") wavtokenizer_var.trace("w", gui_changed_modelfile) makecheckbox(audio_tab, "TTS Use GPU", ttsgpu_var, 9, 0,tooltiptxt="Uses the GPU for TTS.") makelabelentry(audio_tab, "OuteTTS Max Tokens:" , ttsmaxlen_var, 11, 50,padx=290,singleline=True,tooltip="Max allowed audiotokens to generate per TTS request.") ttsgpu_var.trace("w", gui_changed_modelfile) admin_tab = tabcontent["Admin"] makecheckbox(admin_tab, "Enable Model Administration", admin_var, 1, 0,tooltiptxt="Enable a admin server, allowing you to remotely relaunch and swap models and configs.") makelabelentry(admin_tab, "Admin Password:" , admin_password_var, 3, 150,padx=120,singleline=True,tooltip="Require a password to access admin functions. You are strongly advised to use one for publically accessible instances!") makefileentry(admin_tab, "Config Directory:", "Select directory containing .kcpps files to relaunch from", admin_dir_var, 5, width=280, dialog_type=2, tooltiptxt="Specify a directory to look for .kcpps configs in, which can be used to swap models.") def kcpp_export_template(): nonlocal kcpp_exporting_template kcpp_exporting_template = True export_vars() kcpp_exporting_template = False savdict = json.loads(json.dumps(args.__dict__)) file_type = [("KoboldCpp LaunchTemplate", "*.kcppt")] #remove blacklisted fields savdict = convert_args_to_template(savdict) filename = asksaveasfilename(filetypes=file_type, defaultextension=file_type) if not filename: return filenamestr = str(filename).strip() filenamestr = f"{filenamestr}.kcppt" if ".kcppt" not in filenamestr.lower() else filenamestr file = open(filenamestr, 'w') file.write(json.dumps(savdict)) file.close() pass # extra tab extra_tab = tabcontent["Extra"] makelabel(extra_tab, "Unpack KoboldCpp to a local directory to modify its files.", 1, 0) makelabel(extra_tab, "You can also launch via koboldcpp.py for faster startup.", 2, 0) ctk.CTkButton(extra_tab , text = "Unpack KoboldCpp To Folder", command = unpack_to_dir ).grid(row=3,column=0, stick="w", padx= 8, pady=2) makelabel(extra_tab, "Export as launcher .kcppt template (Expert Only)", 4, 0,tooltiptxt="Creates a KoboldCpp launch template for others to use.\nEmbeds JSON files directly into exported file when saving.\nWhen loaded, forces the backend to be automatically determined.\nWarning! Not recommended for beginners!") ctk.CTkButton(extra_tab , text = "Generate LaunchTemplate", command = kcpp_export_template ).grid(row=5,column=0, stick="w", padx= 8, pady=2) makelabel(extra_tab, "Analyze GGUF Metadata", 6, 0,tooltiptxt="Reads the metadata, weight types and tensor names in any GGUF file.") ctk.CTkButton(extra_tab , text = "Analyze GGUF", command = analyze_gguf_model_wrapper ).grid(row=7,column=0, stick="w", padx= 8, pady=2) # launch def guilaunch(): if model_var.get() == "" and sd_model_var.get() == "" and whisper_model_var.get() == "" and tts_model_var.get() == "" and nomodel.get()!=1: tmp = askopenfilename(title="Select ggml model .bin or .gguf file") model_var.set(tmp) nonlocal nextstate nextstate = 1 root.withdraw() root.quit() pass def export_vars(): nonlocal kcpp_exporting_template args.threads = int(threads_var.get()) args.usemlock = usemlock.get() == 1 args.debugmode = debugmode.get() args.launch = launchbrowser.get()==1 args.highpriority = highpriority.get()==1 args.usemmap = usemmap.get()==1 args.smartcontext = smartcontext.get()==1 args.flashattention = flashattention.get()==1 args.noshift = contextshift.get()==0 args.nofastforward = fastforward.get()==0 args.remotetunnel = remotetunnel.get()==1 args.foreground = keepforeground.get()==1 args.quiet = quietmode.get()==1 args.nocertify = nocertifymode.get()==1 args.nomodel = nomodel.get()==1 if contextshift.get()==0 and flashattention.get()==1: args.quantkv = quantkv_var.get() else: args.quantkv = 0 gpuchoiceidx = 0 args.usecpu = False args.usevulkan = None args.usecublas = None args.useclblast = None args.noavx2 = False if gpu_choice_var.get()!="All": gpuchoiceidx = int(gpu_choice_var.get())-1 if runopts_var.get() == "Use CLBlast" or runopts_var.get() == "Use CLBlast (Old CPU)" or runopts_var.get() == "Use CLBlast (Older CPU)": args.useclblast = [[0,0], [1,0], [0,1], [1,1]][gpuchoiceidx] if runopts_var.get() == "Use CLBlast (Old CPU)": args.noavx2 = True elif runopts_var.get() == "Use CLBlast (Older CPU)": args.noavx2 = True args.failsafe = True if runopts_var.get() == "Use CuBLAS" or runopts_var.get() == "Use hipBLAS (ROCm)": if gpu_choice_var.get()=="All": args.usecublas = ["lowvram"] if lowvram_var.get() == 1 else ["normal"] else: args.usecublas = ["lowvram",str(gpuchoiceidx)] if lowvram_var.get() == 1 else ["normal",str(gpuchoiceidx)] if mmq_var.get()==1: args.usecublas.append("mmq") else: args.usecublas.append("nommq") if rowsplit_var.get()==1: args.usecublas.append("rowsplit") if runopts_var.get() == "Use Vulkan" or runopts_var.get() == "Use Vulkan (Old CPU)": if gpu_choice_var.get()=="All": args.usevulkan = [] else: args.usevulkan = [int(gpuchoiceidx)] if runopts_var.get() == "Use Vulkan (Old CPU)": args.noavx2 = True if gpulayers_var.get(): args.gpulayers = int(gpulayers_var.get()) if runopts_var.get()=="Use CPU": args.usecpu = True if runopts_var.get()=="Use CPU (Old CPU)": args.noavx2 = True if runopts_var.get()=="Failsafe Mode (Older CPU)": args.noavx2 = True args.usecpu = True args.usemmap = False args.failsafe = True if tensor_split_str_vars.get()!="": tssv = tensor_split_str_vars.get() if "," in tssv: args.tensor_split = [float(x) for x in tssv.split(",")] else: args.tensor_split = [float(x) for x in tssv.split(" ")] if draftgpusplit_str_vars.get()!="": tssv = draftgpusplit_str_vars.get() if "," in tssv: args.draftgpusplit = [float(x) for x in tssv.split(",")] else: args.draftgpusplit = [float(x) for x in tssv.split(" ")] args.blasthreads = None if blas_threads_var.get()=="" else int(blas_threads_var.get()) args.blasbatchsize = int(blasbatchsize_values[int(blas_size_var.get())]) args.forceversion = 0 if version_var.get()=="" else int(version_var.get()) args.contextsize = int(contextsize_text[context_var.get()]) if customrope_var.get()==1: args.ropeconfig = [float(customrope_scale.get()),float(customrope_base.get())] args.moeexperts = int(moeexperts_var.get()) if moeexperts_var.get()!="" else -1 args.chatcompletionsadapter = None if chatcompletionsadapter_var.get() == "" else chatcompletionsadapter_var.get() try: if kcpp_exporting_template and isinstance(args.chatcompletionsadapter, str) and args.chatcompletionsadapter!="" and os.path.exists(args.chatcompletionsadapter): print("Embedding chat completions adapter...") # parse and save embedded preload story with open(args.chatcompletionsadapter, 'r', encoding='utf-8', errors='ignore') as f: args.chatcompletionsadapter = json.load(f) except Exception: pass args.model_param = None if model_var.get() == "" else model_var.get() args.lora = None if lora_var.get() == "" else ([lora_var.get()] if lora_base_var.get()=="" else [lora_var.get(), lora_base_var.get()]) args.preloadstory = None if preloadstory_var.get() == "" else preloadstory_var.get() args.savedatafile = None if savedatafile_var.get() == "" else savedatafile_var.get() try: if kcpp_exporting_template and isinstance(args.preloadstory, str) and args.preloadstory!="" and os.path.exists(args.preloadstory): print("Embedding preload story...") # parse and save embedded preload story with open(args.preloadstory, 'r', encoding='utf-8', errors='ignore') as f: args.preloadstory = json.load(f) except Exception: pass args.mmproj = None if mmproj_var.get() == "" else mmproj_var.get() args.visionmaxres = int(visionmaxres_var.get()) if visionmaxres_var.get()!="" else default_visionmaxres args.draftmodel = None if draftmodel_var.get() == "" else draftmodel_var.get() args.draftamount = int(draftamount_var.get()) if draftamount_var.get()!="" else default_draft_amount args.draftgpulayers = int(draftgpulayers_var.get()) if draftgpulayers_var.get()!="" else 999 args.ssl = None if (ssl_cert_var.get() == "" or ssl_key_var.get() == "") else ([ssl_cert_var.get(), ssl_key_var.get()]) args.password = None if (password_var.get() == "") else (password_var.get()) args.port_param = defaultport if port_var.get()=="" else int(port_var.get()) args.host = host_var.get() args.multiuser = multiuser_var.get() args.multiplayer = (multiplayer_var.get()==1) args.websearch = (websearch_var.get()==1) if usehorde_var.get() != 0: args.hordemodelname = horde_name_var.get() args.hordegenlen = int(horde_gen_var.get()) args.hordemaxctx = int(horde_context_var.get()) if horde_apikey_var.get()!="" and horde_workername_var.get()!="": args.hordekey = horde_apikey_var.get() args.hordeworkername = horde_workername_var.get() if sd_model_var.get() != "": args.sdmodel = sd_model_var.get() args.sdthreads = (0 if sd_threads_var.get()=="" else int(sd_threads_var.get())) args.sdclamped = (0 if int(sd_clamped_var.get())<=0 else int(sd_clamped_var.get())) args.sdnotile = (True if sd_notile_var.get()==1 else False) if sd_vaeauto_var.get()==1: args.sdvaeauto = True args.sdvae = "" else: args.sdvaeauto = False args.sdvae = "" if sd_vae_var.get() != "": args.sdvae = sd_vae_var.get() if sd_t5xxl_var.get() != "": args.sdt5xxl = sd_t5xxl_var.get() if sd_clipl_var.get() != "": args.sdclipl = sd_clipl_var.get() if sd_clipg_var.get() != "": args.sdclipg = sd_clipg_var.get() if sd_quant_var.get()==1: args.sdquant = True args.sdlora = "" else: if sd_lora_var.get() != "": args.sdlora = sd_lora_var.get() args.sdloramult = float(sd_loramult_var.get()) else: args.sdlora = "" if whisper_model_var.get() != "": args.whispermodel = whisper_model_var.get() if tts_model_var.get() != "" and wavtokenizer_var.get() != "": args.ttsthreads = (0 if tts_threads_var.get()=="" else int(tts_threads_var.get())) args.ttsmodel = tts_model_var.get() args.ttswavtokenizer = wavtokenizer_var.get() args.ttsgpu = (ttsgpu_var.get()==1) args.ttsmaxlen = int(ttsmaxlen_var.get()) args.admin = (admin_var.get()==1) args.admindir = admin_dir_var.get() args.adminpassword = admin_password_var.get() def import_vars(dict): global importvars_in_progress importvars_in_progress = True dict = convert_outdated_args(dict) if "threads" in dict: threads_var.set(dict["threads"]) usemlock.set(1 if "usemlock" in dict and dict["usemlock"] else 0) if "debugmode" in dict: debugmode.set(dict["debugmode"]) launchbrowser.set(1 if "launch" in dict and dict["launch"] else 0) highpriority.set(1 if "highpriority" in dict and dict["highpriority"] else 0) usemmap.set(1 if "usemmap" in dict and dict["usemmap"] else 0) smartcontext.set(1 if "smartcontext" in dict and dict["smartcontext"] else 0) flashattention.set(1 if "flashattention" in dict and dict["flashattention"] else 0) contextshift.set(0 if "noshift" in dict and dict["noshift"] else 1) fastforward.set(0 if "nofastforward" in dict and dict["nofastforward"] else 1) remotetunnel.set(1 if "remotetunnel" in dict and dict["remotetunnel"] else 0) keepforeground.set(1 if "foreground" in dict and dict["foreground"] else 0) quietmode.set(1 if "quiet" in dict and dict["quiet"] else 0) nocertifymode.set(1 if "nocertify" in dict and dict["nocertify"] else 0) nomodel.set(1 if "nomodel" in dict and dict["nomodel"] else 0) if "quantkv" in dict: quantkv_var.set(dict["quantkv"]) if "useclblast" in dict and dict["useclblast"]: if "noavx2" in dict and dict["noavx2"]: if clblast_noavx2_option is not None: runopts_var.set(clblast_noavx2_option) gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1)) else: if clblast_option is not None: runopts_var.set(clblast_option) gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1)) elif "usecublas" in dict and dict["usecublas"]: if cublas_option is not None or hipblas_option is not None: if cublas_option: runopts_var.set(cublas_option) elif hipblas_option: runopts_var.set(hipblas_option) lowvram_var.set(1 if "lowvram" in dict["usecublas"] else 0) mmq_var.set(1 if "mmq" in dict["usecublas"] else 0) rowsplit_var.set(1 if "rowsplit" in dict["usecublas"] else 0) gpu_choice_var.set("All") for g in range(4): if str(g) in dict["usecublas"]: gpu_choice_var.set(str(g+1)) break elif "usevulkan" in dict and dict['usevulkan'] is not None: if "noavx2" in dict and dict["noavx2"]: if vulkan_noavx2_option is not None: runopts_var.set(vulkan_noavx2_option) gpu_choice_var.set("All") for opt in range(0,4): if opt in dict["usevulkan"]: gpu_choice_var.set(str(opt+1)) break else: if vulkan_option is not None: runopts_var.set(vulkan_option) gpu_choice_var.set("All") for opt in range(0,4): if opt in dict["usevulkan"]: gpu_choice_var.set(str(opt+1)) break elif ("noavx2" in dict and "usecpu" in dict and dict["usecpu"] and dict["noavx2"]) or ("failsafe" in dict and dict["failsafe"]): if failsafe_option is not None: runopts_var.set(failsafe_option) elif "noavx2" in dict and dict["noavx2"]: if noavx2_option is not None: runopts_var.set(noavx2_option) elif "usecpu" in dict and dict["usecpu"]: if default_option is not None: runopts_var.set(default_option) if "gpulayers" in dict and dict["gpulayers"]: gpulayers_var.set(dict["gpulayers"]) else: gpulayers_var.set("0") if "tensor_split" in dict and dict["tensor_split"]: tssep = ','.join(map(str, dict["tensor_split"])) tensor_split_str_vars.set(tssep) if "draftgpusplit" in dict and dict["draftgpusplit"]: tssep = ','.join(map(str, dict["draftgpusplit"])) draftgpusplit_str_vars.set(tssep) if "blasthreads" in dict and dict["blasthreads"]: blas_threads_var.set(str(dict["blasthreads"])) else: blas_threads_var.set("") if "contextsize" in dict and dict["contextsize"]: context_var.set(contextsize_text.index(str(dict["contextsize"]))) if "ropeconfig" in dict and dict["ropeconfig"] and len(dict["ropeconfig"])>1: if dict["ropeconfig"][0]>0: customrope_var.set(1) customrope_scale.set(str(dict["ropeconfig"][0])) customrope_base.set(str(dict["ropeconfig"][1])) else: customrope_var.set(0) if "moeexperts" in dict and dict["moeexperts"]: moeexperts_var.set(dict["moeexperts"]) if "blasbatchsize" in dict and dict["blasbatchsize"]: blas_size_var.set(blasbatchsize_values.index(str(dict["blasbatchsize"]))) version_var.set(str(dict["forceversion"]) if ("forceversion" in dict and dict["forceversion"]) else "0") model_var.set(dict["model_param"] if ("model_param" in dict and dict["model_param"]) else "") lora_var.set("") lora_base_var.set("") if "lora" in dict and dict["lora"]: if len(dict["lora"]) > 1: lora_var.set(dict["lora"][0]) lora_base_var.set(dict["lora"][1]) else: lora_var.set(dict["lora"][0]) mmproj_var.set(dict["mmproj"] if ("mmproj" in dict and dict["mmproj"]) else "") if "visionmaxres" in dict and dict["visionmaxres"]: visionmaxres_var.set(dict["visionmaxres"]) draftmodel_var.set(dict["draftmodel"] if ("draftmodel" in dict and dict["draftmodel"]) else "") if "draftamount" in dict: draftamount_var.set(dict["draftamount"]) if "draftgpulayers" in dict: draftgpulayers_var.set(dict["draftgpulayers"]) ssl_cert_var.set("") ssl_key_var.set("") if "ssl" in dict and dict["ssl"]: if len(dict["ssl"]) == 2: ssl_cert_var.set(dict["ssl"][0]) ssl_key_var.set(dict["ssl"][1]) password_var.set(dict["password"] if ("password" in dict and dict["password"]) else "") preloadstory_var.set(dict["preloadstory"] if ("preloadstory" in dict and dict["preloadstory"]) else "") savedatafile_var.set(dict["savedatafile"] if ("savedatafile" in dict and dict["savedatafile"]) else "") chatcompletionsadapter_var.set(dict["chatcompletionsadapter"] if ("chatcompletionsadapter" in dict and dict["chatcompletionsadapter"]) else "") port_var.set(dict["port_param"] if ("port_param" in dict and dict["port_param"]) else defaultport) host_var.set(dict["host"] if ("host" in dict and dict["host"]) else "") multiuser_var.set(dict["multiuser"] if ("multiuser" in dict) else 1) multiplayer_var.set(dict["multiplayer"] if ("multiplayer" in dict) else 0) websearch_var.set(dict["websearch"] if ("websearch" in dict) else 0) horde_name_var.set(dict["hordemodelname"] if ("hordemodelname" in dict and dict["hordemodelname"]) else "koboldcpp") horde_context_var.set(dict["hordemaxctx"] if ("hordemaxctx" in dict and dict["hordemaxctx"]) else maxhordectx) horde_gen_var.set(dict["hordegenlen"] if ("hordegenlen" in dict and dict["hordegenlen"]) else maxhordelen) horde_apikey_var.set(dict["hordekey"] if ("hordekey" in dict and dict["hordekey"]) else "") horde_workername_var.set(dict["hordeworkername"] if ("hordeworkername" in dict and dict["hordeworkername"]) else "") usehorde_var.set(1 if ("hordekey" in dict and dict["hordekey"]) else 0) sd_model_var.set(dict["sdmodel"] if ("sdmodel" in dict and dict["sdmodel"]) else "") sd_clamped_var.set(int(dict["sdclamped"]) if ("sdclamped" in dict and dict["sdclamped"]) else 0) sd_threads_var.set(str(dict["sdthreads"]) if ("sdthreads" in dict and dict["sdthreads"]) else str(default_threads)) sd_quant_var.set(1 if ("sdquant" in dict and dict["sdquant"]) else 0) sd_vae_var.set(dict["sdvae"] if ("sdvae" in dict and dict["sdvae"]) else "") sd_t5xxl_var.set(dict["sdt5xxl"] if ("sdt5xxl" in dict and dict["sdt5xxl"]) else "") sd_clipl_var.set(dict["sdclipl"] if ("sdclipl" in dict and dict["sdclipl"]) else "") sd_clipg_var.set(dict["sdclipg"] if ("sdclipg" in dict and dict["sdclipg"]) else "") sd_vaeauto_var.set(1 if ("sdvaeauto" in dict and dict["sdvaeauto"]) else 0) sd_notile_var.set(1 if ("sdnotile" in dict and dict["sdnotile"]) else 0) sd_lora_var.set(dict["sdlora"] if ("sdlora" in dict and dict["sdlora"]) else "") sd_loramult_var.set(str(dict["sdloramult"]) if ("sdloramult" in dict and dict["sdloramult"]) else "1.0") whisper_model_var.set(dict["whispermodel"] if ("whispermodel" in dict and dict["whispermodel"]) else "") tts_threads_var.set(str(dict["ttsthreads"]) if ("ttsthreads" in dict and dict["ttsthreads"]) else str(default_threads)) tts_model_var.set(dict["ttsmodel"] if ("ttsmodel" in dict and dict["ttsmodel"]) else "") wavtokenizer_var.set(dict["ttswavtokenizer"] if ("ttswavtokenizer" in dict and dict["ttswavtokenizer"]) else "") ttsgpu_var.set(dict["ttsgpu"] if ("ttsgpu" in dict) else 0) ttsmaxlen_var.set(str(dict["ttsmaxlen"]) if ("ttsmaxlen" in dict and dict["ttsmaxlen"]) else str(default_ttsmaxlen)) admin_var.set(dict["admin"] if ("admin" in dict) else 0) admin_dir_var.set(dict["admindir"] if ("admindir" in dict and dict["admindir"]) else "") admin_password_var.set(dict["adminpassword"] if ("adminpassword" in dict and dict["adminpassword"]) else "") importvars_in_progress = False gui_changed_modelfile() if "istemplate" in dict and dict["istemplate"]: auto_set_backend_gui(True) def save_config_gui(): nonlocal kcpp_exporting_template kcpp_exporting_template = False export_vars() savdict = json.loads(json.dumps(args.__dict__)) file_type = [("KoboldCpp Settings", "*.kcpps")] filename = asksaveasfilename(filetypes=file_type, defaultextension=file_type) if not filename: return filenamestr = str(filename).strip() filenamestr = f"{filenamestr}.kcpps" if ".kcpps" not in filenamestr.lower() else filenamestr file = open(filenamestr, 'w') file.write(json.dumps(savdict)) file.close() pass def load_config_gui(): #this is used to populate the GUI with a config file, whereas load_config_cli simply overwrites cli args file_type = [("KoboldCpp Settings", "*.kcpps *.kcppt")] global runmode_untouched filename = askopenfilename(filetypes=file_type, defaultextension=file_type, initialdir=None) if not filename or filename=="": return runmode_untouched = False with open(filename, 'r', encoding='utf-8', errors='ignore') as f: dict = json.load(f) import_vars(dict) pass def display_help(): LaunchWebbrowser("https://github.com/LostRuins/koboldcpp/wiki","Cannot launch help in browser.") def display_help_models(): LaunchWebbrowser("https://github.com/LostRuins/koboldcpp/wiki#what-models-does-koboldcpp-support-what-architectures-are-supported","Cannot launch help in browser.") def display_updates(): LaunchWebbrowser("https://github.com/LostRuins/koboldcpp/releases/latest","Cannot launch updates in browser.") ctk.CTkButton(tabs , text = "Launch", fg_color="#2f8d3c", hover_color="#2faa3c", command = guilaunch, width=80, height = 35 ).grid(row=1,column=1, stick="se", padx= 25, pady=5) ctk.CTkButton(tabs , text = "Update", fg_color="#9900cc", hover_color="#aa11dd", command = display_updates, width=90, height = 35 ).grid(row=1,column=0, stick="sw", padx= 5, pady=5) ctk.CTkButton(tabs , text = "Save", fg_color="#084a66", hover_color="#085a88", command = save_config_gui, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 5, pady=5) ctk.CTkButton(tabs , text = "Load", fg_color="#084a66", hover_color="#085a88", command = load_config_gui, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 70, pady=5) ctk.CTkButton(tabs , text = "Help (Find Models)", fg_color="#992222", hover_color="#bb3333", command = display_help, width=100, height = 35 ).grid(row=1,column=1, stick="sw", padx= 135, pady=5) # start a thread that tries to get actual gpu names and layer counts gpuinfo_thread = threading.Thread(target=auto_set_backend_gui) gpuinfo_thread.start() #submit job in new thread so nothing is waiting if args.showgui: if isinstance(args, argparse.Namespace): dict = vars(args) import_vars(dict) # runs main loop until closed or launch clicked try: root.mainloop() except (KeyboardInterrupt,SystemExit): exitcounter = 999 print("Exiting by user request.") sys.exit(0) if nextstate==0: exitcounter = 999 print("Exiting by user request.") sys.exit(0) else: # processing vars kcpp_exporting_template = False export_vars() if not args.model_param and not args.sdmodel and not args.whispermodel and not args.ttsmodel and not args.nomodel: exitcounter = 999 print("") time.sleep(0.5) if using_gui_launcher: givehelp = show_gui_yesnobox("No Model Loaded","No text or image model file was selected. Cannot continue.\n\nDo you want help finding a GGUF model?") if givehelp == 'yes': display_help_models() else: print("No text or image model file was selected. Cannot continue.", flush=True) time.sleep(2) sys.exit(2) def show_gui_msgbox(title,message): print(title + ": " + message, flush=True) try: from tkinter import messagebox import tkinter as tk root = tk.Tk() root.attributes("-alpha", 0) messagebox.showerror(title=title, message=message) root.withdraw() root.quit() except Exception: pass def show_gui_yesnobox(title,message): print(title + ": " + message, flush=True) try: from tkinter import messagebox import tkinter as tk root = tk.Tk() root.attributes("-alpha", 0) result = messagebox.askquestion(title=title, message=message,icon='error') root.withdraw() root.quit() return result except Exception: return False pass def print_with_time(txt): print(f"{datetime.now().strftime('[%H:%M:%S]')} " + txt, flush=True) def make_url_request(url, data, method='POST', headers={}, timeout=300): import urllib.request global nocertify try: request = None ssl_cert_dir = os.environ.get('SSL_CERT_DIR') if not ssl_cert_dir and not nocertify and os.name != 'nt': os.environ['SSL_CERT_DIR'] = '/etc/ssl/certs' if method=='POST': json_payload = json.dumps(data).encode('utf-8') request = urllib.request.Request(url, data=json_payload, headers=headers, method=method) request.add_header('content-type', 'application/json') else: request = urllib.request.Request(url, headers=headers, method=method) response_data = "" with urllib.request.urlopen(request,timeout=timeout) as response: response_data = response.read().decode('utf-8',"ignore") json_response = json.loads(response_data) return json_response except urllib.error.HTTPError as e: try: errmsg = e.read().decode('utf-8',"ignore") print_with_time(f"Error: {e} - {errmsg}") except Exception as e: print_with_time(f"Error: {e}") return None except Exception as e: print_with_time(f"Error: {e} - {response_data}") return None #A very simple and stripped down embedded horde worker with no dependencies def run_horde_worker(args, api_key, worker_name): import random global friendlymodelname, maxhordectx, maxhordelen, exitcounter, punishcounter, modelbusy, session_starttime, sslvalid httpsaffix = ("https" if sslvalid else "http") epurl = f"{httpsaffix}://localhost:{args.port}" if args.host!="": epurl = f"{httpsaffix}://{args.host}:{args.port}" def submit_completed_generation(url, jobid, sessionstart, submit_dict): global exitcounter, punishcounter, session_kudos_earned, session_jobs, rewardcounter reply = make_url_request_horde(url, submit_dict) if not reply: punishcounter += 1 print_with_time("Error, Job submit failed.") else: reward = reply["reward"] session_kudos_earned += reward session_jobs += 1 curtime = datetime.now() elapsedtime=curtime-sessionstart hrs = int(elapsedtime.total_seconds()) // 3600 mins = elapsedtime.seconds // 60 % 60 secs = elapsedtime.seconds % 60 elapsedtimestr = f"{hrs:03d}h:{mins:02d}m:{secs:02d}s" earnrate = session_kudos_earned/(elapsedtime.total_seconds()/3600) print_with_time(f'Submitted {jobid} and earned {reward:.0f} kudos\n[Total:{session_kudos_earned:.0f} kudos, Time:{elapsedtimestr}, Jobs:{session_jobs}, EarnRate:{earnrate:.0f} kudos/hr]') rewardcounter += 1 if rewardcounter > 50: rewardcounter = 0 if exitcounter > 1: exitcounter -= 1 def make_url_request_horde(url, data, method='POST',addmykey=False): global password headers = headers = {"apikey": api_key,'User-Agent':'KoboldCppEmbeddedWorkerV2','Client-Agent':'KoboldCppEmbedWorker:2'} if addmykey and password!="": headers["Authorization"] = f"Bearer {password}" ret = make_url_request(url, data, method, headers) if not ret: print("Make sure your Horde API key and worker name is valid!") return ret current_id = None current_payload = None current_generation = None session_starttime = datetime.now() sleepy_counter = 0 #if this exceeds a value, worker becomes sleepy (slower) exitcounter = 0 print(f"===\nEmbedded Horde Worker '{worker_name}' Starting...\n(To use your own Horde Bridge/Scribe worker instead, don't set your API key)\n") BRIDGE_AGENT = "KoboldCppEmbedWorker:2:https://github.com/LostRuins/koboldcpp" cluster = "https://aihorde.net" while exitcounter < 10: time.sleep(3) readygo = make_url_request_horde(f'{epurl}/api/v1/info/version', None,'GET',addmykey=True) if readygo: print_with_time(f"Embedded Horde Worker '{worker_name}' is started.") break while exitcounter < 10: currentjob_attempts = 0 current_generation = None if punishcounter >= 5: punishcounter = 0 exitcounter += 1 if exitcounter < 10: penaltytime = (2 ** exitcounter) print_with_time(f"Horde Worker Paused for {penaltytime} min - Too many errors. It will resume automatically, but you should restart it.") print_with_time("Caution: Too many failed jobs may lead to entering maintenance mode.") time.sleep(60 * penaltytime) else: print_with_time("Horde Worker Exit limit reached, too many errors.") global last_non_horde_req_time sec_since_non_horde = time.time() - last_non_horde_req_time no_recent_local_usage = sec_since_non_horde>20 if not no_recent_local_usage: #print_with_time(f"Recent Local Usage - Horde Worker Waiting...") time.sleep(1) continue #first, make sure we are not generating if modelbusy.locked(): time.sleep(0.2) continue #pop new request gen_dict = { "name": worker_name, "models": [friendlymodelname], "max_length": maxhordelen, "max_context_length": min(maxctx,maxhordectx), "priority_usernames": [], "softprompts": [], "bridge_agent": BRIDGE_AGENT, } pop = make_url_request_horde(f'{cluster}/api/v2/generate/text/pop',gen_dict) if not pop: punishcounter += 1 print_with_time(f"Failed to fetch job from {cluster}. Waiting 10 seconds...") time.sleep(10) continue if not pop["id"]: slp = (1 if sleepy_counter<10 else (2 if sleepy_counter<25 else 3)) time.sleep(slp) sleepy_counter += 1 if sleepy_counter==20: print_with_time("No recent jobs, entering low power mode...") continue sleepy_counter = 0 current_id = pop['id'] current_payload = pop['payload'] print("") #empty newline print_with_time(f"Job {current_id} received from {cluster} for {current_payload.get('max_length',80)} tokens and {current_payload.get('max_context_length',1024)} max context. Starting generation...") #do gen while exitcounter < 10: if not modelbusy.locked(): #horde gets a genkey to avoid KCPP overlap current_payload['genkey'] = f"HORDEREQ_{random.randint(100, 999)}" current_generation = make_url_request_horde(f'{epurl}/api/v1/generate', current_payload, method='POST',addmykey=True) if current_generation: break else: currentjob_attempts += 1 if currentjob_attempts>5: break print_with_time("Server Busy - Not ready to generate...") time.sleep(5) #submit reply print("") #empty newline if current_generation: submit_dict = { "id": current_id, "generation": current_generation["results"][0]["text"], "state": "ok" } submiturl = cluster + '/api/v2/generate/text/submit' submit_thread = threading.Thread(target=submit_completed_generation, args=(submiturl, current_id, session_starttime, submit_dict)) submit_thread.start() #submit job in new thread so nothing is waiting else: print_with_time("Error, Abandoned current job due to errors. Getting new job.") current_id = None current_payload = None time.sleep(0.1) if exitcounter<100: print_with_time("Horde Worker Shutdown - Too many errors.") else: print_with_time("Horde Worker Shutdown - Server Closing.") exitcounter = 999 time.sleep(3) sys.exit(2) def convert_outdated_args(args): dict = args if isinstance(args, argparse.Namespace): dict = vars(args) if "sdconfig" in dict and dict["sdconfig"] and len(dict["sdconfig"])>0: dict["sdmodel"] = dict["sdconfig"][0] if dict["sdconfig"] and len(dict["sdconfig"]) > 1: dict["sdclamped"] = 512 if dict["sdconfig"] and len(dict["sdconfig"]) > 2: dict["sdthreads"] = int(dict["sdconfig"][2]) if dict["sdconfig"] and len(dict["sdconfig"]) > 3: dict["sdquant"] = (True if dict["sdconfig"][3]=="quant" else False) if "hordeconfig" in dict and dict["hordeconfig"] and dict["hordeconfig"][0]!="": dict["hordemodelname"] = dict["hordeconfig"][0] if len(dict["hordeconfig"]) > 1: dict["hordegenlen"] = int(dict["hordeconfig"][1]) if len(dict["hordeconfig"]) > 2: dict["hordemaxctx"] = int(dict["hordeconfig"][2]) if len(dict["hordeconfig"]) > 4: dict["hordekey"] = dict["hordeconfig"][3] dict["hordeworkername"] = dict["hordeconfig"][4] if "noblas" in dict and dict["noblas"]: dict["usecpu"] = True if "failsafe" in dict and dict["failsafe"]: #failsafe implies noavx2 dict["noavx2"] = True if ("model_param" not in dict or not dict["model_param"]) and ("model" in dict): model_value = dict["model"] #may be null, empty/non-empty string, empty/non empty array if isinstance(model_value, str) and model_value: # Non-empty string dict["model_param"] = model_value elif isinstance(model_value, list) and model_value: # Non-empty list dict["model_param"] = model_value[0] # Take the first file in the list return args def setuptunnel(global_memory, has_sd): # This script will help setup a cloudflared tunnel for accessing KoboldCpp over the internet # It should work out of the box on both linux and windows try: import subprocess import re global sslvalid httpsaffix = ("https" if sslvalid else "http") ssladd = (" --no-tls-verify" if sslvalid else "") def run_tunnel(): tunnelproc = None tunneloutput = "" tunnelrawlog = "" time.sleep(0.2) if os.name == 'nt': print("Starting Cloudflare Tunnel for Windows, please wait...", flush=True) tunnelproc = subprocess.Popen(f"cloudflared.exe tunnel --url {httpsaffix}://localhost:{args.port}{ssladd}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) elif sys.platform=="darwin": print("Starting Cloudflare Tunnel for MacOS, please wait...", flush=True) tunnelproc = subprocess.Popen(f"./cloudflared tunnel --url {httpsaffix}://localhost:{args.port}{ssladd}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) elif sys.platform == "linux" and platform.machine().lower() == "aarch64": print("Starting Cloudflare Tunnel for ARM64 Linux, please wait...", flush=True) tunnelproc = subprocess.Popen(f"./cloudflared-linux-arm64 tunnel --url {httpsaffix}://localhost:{args.port}{ssladd}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) else: print("Starting Cloudflare Tunnel for Linux, please wait...", flush=True) tunnelproc = subprocess.Popen(f"./cloudflared-linux-amd64 tunnel --url {httpsaffix}://localhost:{args.port}{ssladd}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) time.sleep(10) def tunnel_reader(): nonlocal tunnelproc,tunneloutput,tunnelrawlog pattern = r'https://[\w\.-]+\.trycloudflare\.com' while True: line = tunnelproc.stderr.readline() #cloudflare writes to stderr for some reason tunnelrawlog += line+"\n" if not line: return found = re.findall(pattern, line) for x in found: tunneloutput = x if global_memory and global_memory["load_complete"]: print(f"Your remote Kobold API can be found at {tunneloutput}/api") print(f"Your remote OpenAI Compatible API can be found at {tunneloutput}/v1") if has_sd: print(f"StableUI is available at {tunneloutput}/sdui/") print("======\n") print(f"Your remote tunnel is ready, please connect to {tunneloutput}", flush=True) if global_memory: global_memory["tunnel_url"] = tunneloutput return tunnel_reader_thread = threading.Thread(target=tunnel_reader) tunnel_reader_thread.start() time.sleep(5) if tunneloutput=="": print(f"Error: Could not create cloudflare tunnel!\nMore Info:\n{tunnelrawlog}", flush=True) time.sleep(0.5) tunnelproc.wait() if os.name == 'nt': downloader_internal("https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-windows-amd64.exe", "cloudflared.exe", True, 500000) elif sys.platform=="darwin": downloader_internal("https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-darwin-amd64.tgz", "cloudflared-darwin-amd64.tgz", True, 500000) subprocess.run("tar -xzf cloudflared-darwin-amd64.tgz", shell=True) subprocess.run("chmod +x 'cloudflared'", shell=True) elif sys.platform == "linux" and platform.machine().lower() == "aarch64": downloader_internal("https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-arm64", "cloudflared-linux-arm64", True, 500000) subprocess.run("chmod +x 'cloudflared-linux-arm64'", shell=True) else: downloader_internal("https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64", "cloudflared-linux-amd64", True, 500000) subprocess.run("chmod +x 'cloudflared-linux-amd64'", shell=True) print("Attempting to start tunnel thread...", flush=True) tunnel_thread = threading.Thread(target=run_tunnel) tunnel_thread.start() except Exception as ex: print("Remote Tunnel Failed!") print(str(ex)) return None def unload_libs(): global handle OS = platform.system() dll_close = None if OS == "Windows": # pragma: Windows from ctypes import wintypes dll_close = ctypes.windll.kernel32.FreeLibrary dll_close.argtypes = [wintypes.HMODULE] dll_close.restype = ctypes.c_int elif OS == "Darwin": try: try: # macOS 11 (Big Sur). Possibly also later macOS 10s. stdlib = ctypes.CDLL("libc.dylib") except OSError: stdlib = ctypes.CDLL("libSystem") except OSError: # Older macOSs. Not only is the name inconsistent but it's # not even in PATH. stdlib = ctypes.CDLL("/usr/lib/system/libsystem_c.dylib") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif OS == "Linux": try: stdlib = ctypes.CDLL("") except OSError: stdlib = ctypes.CDLL("libc.so") # Alpine Linux. dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif sys.platform == "msys": # msys can also use `ctypes.CDLL("kernel32.dll").FreeLibrary()`. stdlib = ctypes.CDLL("msys-2.0.dll") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif sys.platform == "cygwin": stdlib = ctypes.CDLL("cygwin1.dll") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif OS == "FreeBSD": # FreeBSD uses `/usr/lib/libc.so.7` where `7` is another version number. # It is not in PATH but using its name instead of its path is somehow the # only way to open it. The name must include the .so.7 suffix. stdlib = ctypes.CDLL("libc.so.7") dll_close = stdlib.close if handle and dll_close: print("Unloading Libraries...") dll_close(handle._handle) del handle handle = None def reload_new_config(filename): #for changing config after launch with open(filename, 'r', encoding='utf-8', errors='ignore') as f: try: config = json.load(f) args.istemplate = False for key, value in config.items(): #do not overwrite certain values if key not in ["remotetunnel","showgui","port","host","port_param","admin","adminpassword","admindir","ssl","nocertify","benchmark","prompt","config"]: setattr(args, key, value) setattr(args,"showgui",False) setattr(args,"benchmark",False) setattr(args,"prompt","") setattr(args,"config",None) setattr(args,"launch",None) except Exception as e: print(f"Reload New Config Failed: {e}") def load_config_cli(filename): print("Loading .kcpps configuration file...") with open(filename, 'r', encoding='utf-8', errors='ignore') as f: config = json.load(f) args.istemplate = False raw_args = (sys.argv[1:]) #a lousy hack to allow for overriding kcpps for key, value in config.items(): if f"--{key}" in raw_args: if key!="config": print(f"Overriding Config Value: {key}") else: setattr(args, key, value) if args.istemplate: print("\nA .kcppt template was selected from CLI...") if (args.usecublas is None) and (args.usevulkan is None) and (args.useclblast is None): print("Automatically selecting your backend...") auto_set_backend_cli() def convert_args_to_template(savdict): savdict["istemplate"] = True savdict["gpulayers"] = -1 savdict["threads"] = -1 savdict["hordekey"] = "" savdict["hordeworkername"] = "" savdict["sdthreads"] = 0 savdict["password"] = None savdict["usemmap"] = False savdict["usemlock"] = False savdict["debugmode"] = 0 savdict["ssl"] = None savdict["useclblast"] = None savdict["usecublas"] = None savdict["usevulkan"] = None savdict["tensor_split"] = None savdict["draftgpusplit"] = None savdict["config"] = None savdict["ttsthreads"] = 0 return savdict def save_config_cli(filename, template): savdict = json.loads(json.dumps(args.__dict__)) if template: savdict = convert_args_to_template(savdict) if filename is None: return filenamestr = str(filename).strip() filenamestr = f"{filenamestr}.kcpps" if ".kcpps" not in filenamestr.lower() else filenamestr file = open(filenamestr, 'w') file.write(json.dumps(savdict)) file.close() print(f"\nSaved .kcpps configuration file as {filename}\nIt can be loaded with --config [filename] in future.") pass def delete_old_pyinstaller(): try: base_path = sys._MEIPASS except Exception: return # not running from pyinstaller if not base_path: return import time import os import shutil selfdirpath = os.path.abspath(base_path) temp_parentdir_path = os.path.abspath(os.path.join(base_path, '..')) for dirname in os.listdir(temp_parentdir_path): absdirpath = os.path.abspath(os.path.join(temp_parentdir_path, dirname)) if os.path.isdir(absdirpath) and os.path.basename(absdirpath).startswith('_MEI'): #only delete kobold pyinstallers if absdirpath!=selfdirpath and (time.time() - os.path.getctime(absdirpath)) > 14400: # remove if older than 4 hours kobold_itemcheck1 = os.path.join(absdirpath, 'koboldcpp_default.dll') kobold_itemcheck2 = os.path.join(absdirpath, 'koboldcpp_default.so') kobold_itemcheck3 = os.path.join(absdirpath, 'klite.embd') kobold_itemcheck4 = os.path.join(absdirpath, 'cublasLt64_11.dll') kobold_itemcheck5 = os.path.join(absdirpath, 'cublas64_11.dll') kobold_itemcheck6 = os.path.join(absdirpath, 'clblast.dll') if os.path.exists(kobold_itemcheck1) or os.path.exists(kobold_itemcheck2) or os.path.exists(kobold_itemcheck3) or (os.path.exists(kobold_itemcheck4) and os.path.exists(kobold_itemcheck5) and os.path.exists(kobold_itemcheck6)): try: shutil.rmtree(absdirpath) print(f"Deleted orphaned pyinstaller dir: {absdirpath}") except Exception as e: print(f"Error deleting orphaned pyinstaller dir: {absdirpath}: {e}") def sanitize_string(input_string): # alphanumeric characters, dots, dashes, and underscores import re sanitized_string = re.sub( r'[^\w\d\.\-_]', '', input_string) return sanitized_string def downloader_internal(input_url, output_filename, capture_output, min_file_size=64): # 64 bytes required by default import shutil import subprocess import os if "https://huggingface.co/" in input_url and "/blob/main/" in input_url: input_url = input_url.replace("/blob/main/", "/resolve/main/") if output_filename == "auto": output_filename = os.path.basename(input_url).split('?')[0].split('#')[0] if os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size: print(f"{output_filename} already exists, using existing file.") return output_filename print(f"Downloading {input_url}", flush=True) dl_success = False try: if shutil.which("aria2c") is not None: rc = subprocess.run( f"aria2c -x 16 -s 16 --summary-interval=30 --console-log-level=error --log-level=error --download-result=default --allow-overwrite=true --file-allocation=none -o {output_filename} {input_url}", shell=True, capture_output=capture_output, text=True, check=True, encoding='utf-8' ) dl_success = (rc.returncode == 0 and os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size) except subprocess.CalledProcessError as e: print(f"aria2c failed: {e}") try: if not dl_success and shutil.which("curl") is not None: rc = subprocess.run( f"curl -fLo {output_filename} {input_url}", shell=True, capture_output=capture_output, text=True, check=True, encoding='utf-8' ) dl_success = (rc.returncode == 0 and os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size) except subprocess.CalledProcessError as e: print(f"curl failed: {e}") try: if not dl_success and shutil.which("wget") is not None: rc = subprocess.run( f"wget -O {output_filename} {input_url}", shell=True, capture_output=capture_output, text=True, check=True, encoding='utf-8' ) dl_success = (rc.returncode == 0 and os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size) except subprocess.CalledProcessError as e: print(f"wget failed: {e}") if not dl_success: print("Could not find suitable download software, or all download methods failed. Please install aria2, curl, or wget.") return None return output_filename def download_model_from_url(url, permitted_types=[".gguf",".safetensors", ".ggml", ".bin"], min_file_size=64): if url and url!="": if url.endswith("?download=true"): url = url.replace("?download=true","") end_ext_ok = False for t in permitted_types: if url.endswith(t): end_ext_ok = True break if ((url.startswith("http://") or url.startswith("https://")) and end_ext_ok): dlfile = downloader_internal(url, "auto", False, min_file_size) return dlfile return None def analyze_gguf_model(args,filename): try: stime = datetime.now() dump_gguf_metadata(filename) atime = (datetime.now() - stime).total_seconds() print(f"---\nAnalyzing completed in {atime:.2f}s.\n---",flush=True) except Exception as e: print(f"Cannot Analyze File: {e}") return def analyze_gguf_model_wrapper(filename=""): if not filename or filename=="": try: from tkinter.filedialog import askopenfilename filename = askopenfilename(title="Select GGUF to analyze") except Exception as e: print(f"Cannot select file to analyze: {e}") if not filename or filename=="" or not os.path.exists(filename): print("Selected GGUF file not found. Please select a valid GGUF file to analyze.") return print("---") print(f"Analyzing {filename}, please wait...\n---",flush=True) dumpthread = threading.Thread(target=analyze_gguf_model, args=(args,filename)) dumpthread.start() def main(launch_args): global args, showdebug, kcpp_instance, exitcounter, using_gui_launcher, sslvalid, global_memory args = launch_args #note: these are NOT shared with the child processes! if (args.version) and len(sys.argv) <= 2: print(f"{KcppVersion}") # just print version and exit return #prevent quantkv from being used without flash attn if args.quantkv and args.quantkv>0 and not args.flashattention: exit_with_error(1, "Error: Using --quantkv requires --flashattention") args = convert_outdated_args(args) temp_hide_print = (args.model_param and args.prompt and not args.benchmark and not (args.debugmode >= 1)) if not temp_hide_print: print(f"***\nWelcome to KoboldCpp - Version {KcppVersion}") if args.debugmode != 1: showdebug = False #not shared with child process! if args.debugmode >= 1: print("Debug Mode is Enabled!") args.quiet = False # verbose outputs try: delete_old_pyinstaller() #perform some basic cleanup of old temporary directories except Exception as e: print(f"Error cleaning up orphaned pyinstaller dirs: {e}") if args.unpack: unpack_to_dir(args.unpack) return if args.analyze: analyze_gguf_model_wrapper(args.analyze) return if args.exportconfig and args.exportconfig!="": save_config_cli(args.exportconfig,False) return if args.exporttemplate and args.exporttemplate!="": save_config_cli(args.exporttemplate,True) return if args.config and len(args.config)==1: #handle initial config loading for launch cfgname = args.config[0] if isinstance(cfgname, str): dlfile = download_model_from_url(cfgname,[".kcpps",".kcppt"]) if dlfile: cfgname = dlfile if isinstance(cfgname, str) and os.path.exists(cfgname): load_config_cli(cfgname) elif args.ignoremissing: print("Ignoring missing kcpp config file...") else: exitcounter = 999 exit_with_error(2,"Specified kcpp config file invalid or not found.") args = convert_outdated_args(args) #positional handling for kcpps files (drag and drop) if args.model_param and args.model_param!="" and (args.model_param.lower().endswith('.kcpps') or args.model_param.lower().endswith('.kcppt') or args.model_param.lower().endswith('.kcpps?download=true') or args.model_param.lower().endswith('.kcppt?download=true')): dlfile = download_model_from_url(args.model_param,[".kcpps",".kcppt"]) # maybe download from url if dlfile: args.model_param = dlfile load_config_cli(args.model_param) # show the GUI launcher if a model was not provided if args.showgui or (not args.model_param and not args.sdmodel and not args.whispermodel and not args.ttsmodel and not args.nomodel): #give them a chance to pick a file print("For command line arguments, please refer to --help") print("***") try: show_gui() except Exception as ex: exitcounter = 999 ermsg = "Reason: " + str(ex) + "\nFile selection GUI unsupported.\ncustomtkinter python module required!\n\nYou must use the command line instead, e.g. python ./koboldcpp.py --help" show_gui_msgbox("Warning, GUI failed to start",ermsg) if args.skiplauncher: print("Note: In order to use --skiplauncher, you need to specify a model with --model") time.sleep(3) sys.exit(2) if args.ssl: #need to duplicate here for the tunnel if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]): sslvalid = True if args.admin and not args.admindir: args.admin = False print("\nWARNING: Admin was set without selecting an admin directory. Admin cannot be used.\n") if not args.admin: #run in single process mode if args.remotetunnel and not args.prompt and not args.benchmark: setuptunnel(global_memory, True if args.sdmodel else False) kcpp_main_process(args,global_memory,using_gui_launcher) if global_memory["input_to_exit"]: print("===") print("Press ENTER key to exit.", flush=True) input() else: # manager command queue for admin mode with multiprocessing.Manager() as mp_manager: global_memory = mp_manager.dict({"tunnel_url": "", "restart_target":"", "input_to_exit":False, "load_complete":False}) if args.remotetunnel and not args.prompt and not args.benchmark: setuptunnel(global_memory, True if args.sdmodel else False) # invoke the main koboldcpp process original_args = copy.deepcopy(args) kcpp_instance = multiprocessing.Process(target=kcpp_main_process,kwargs={"launch_args": args, "g_memory": global_memory, "gui_launcher": using_gui_launcher}) kcpp_instance.daemon = True kcpp_instance.start() fault_recovery_mode = False #if a config reload fails, recover back to old settings while True: # keep the manager alive try: restart_target = "" if not kcpp_instance or not kcpp_instance.is_alive(): if fault_recovery_mode: #attempt to recover print("Attempting to recover to safe mode, launching known-good config...") fault_recovery_mode = False args = copy.deepcopy(original_args) #restore known good original launcher args if kcpp_instance: kcpp_instance.terminate() kcpp_instance.join(timeout=10) # Ensure process is stopped kcpp_instance = None kcpp_instance = multiprocessing.Process(target=kcpp_main_process,kwargs={"launch_args": args, "g_memory": global_memory, "gui_launcher": False}) kcpp_instance.daemon = True kcpp_instance.start() global_memory["restart_target"] = "" time.sleep(3) else: break # kill the program if fault_recovery_mode and global_memory["load_complete"]: fault_recovery_mode = False restart_target = global_memory["restart_target"] if restart_target!="": print(f"Reloading new config: {restart_target}") global_memory["restart_target"] = "" time.sleep(0.5) #sleep for 0.5s then restart if args.admin and args.admindir: dirpath = os.path.abspath(args.admindir) targetfilepath = os.path.join(dirpath, restart_target) if os.path.exists(targetfilepath): print("Terminating old process...") global_memory["load_complete"] = False kcpp_instance.terminate() kcpp_instance.join(timeout=10) # Ensure process is stopped kcpp_instance = None print("Restarting KoboldCpp...") fault_recovery_mode = True reload_new_config(targetfilepath) kcpp_instance = multiprocessing.Process(target=kcpp_main_process,kwargs={"launch_args": args, "g_memory": global_memory, "gui_launcher": False}) kcpp_instance.daemon = True kcpp_instance.start() global_memory["restart_target"] = "" time.sleep(3) else: time.sleep(0.2) except (KeyboardInterrupt,SystemExit): break if global_memory["input_to_exit"]: print("===") print("Press ENTER key to exit.", flush=True) input() def kcpp_main_process(launch_args, g_memory=None, gui_launcher=False): global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui, start_time, exitcounter, global_memory, using_gui_launcher global libname, args, friendlymodelname, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath, ttsmodelpath start_server = True args = launch_args global_memory = g_memory using_gui_launcher = gui_launcher start_time = time.time() if args.model_param and args.prompt and not args.benchmark and not (args.debugmode >= 1): suppress_stdout() if args.model_param and (args.benchmark or args.prompt): start_server = False #try to read story if provided if args.preloadstory: global preloaded_story canload = False if isinstance(args.preloadstory, str) and os.path.exists(args.preloadstory): print(f"Preloading saved story {args.preloadstory} into server...") with open(args.preloadstory, mode='rb') as f: preloaded_story = f.read() canload = True elif isinstance(args.preloadstory, str): print("Preloading saved story as JSON into server...") try: import ast parsed = ast.literal_eval(args.preloadstory) preloaded_story = json.dumps(parsed).encode() canload = True except Exception as ex: print(ex) elif isinstance(args.preloadstory, dict): try: preloaded_story = json.dumps(args.preloadstory).encode() canload = True except Exception as ex: print(ex) if canload: print("Saved story preloaded.") else: print("Warning: Saved story file invalid or not found. No story will be preloaded into server.") # try to read chat completions adapter if args.chatcompletionsadapter: global chatcompl_adapter, chatcompl_adapter_list ccadapter_path = None canload = False adapt_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'kcpp_adapters') adapt_dir = adapt_dir if os.path.isdir(adapt_dir) else None if isinstance(args.chatcompletionsadapter, str) and os.path.exists(args.chatcompletionsadapter): ccadapter_path = os.path.abspath(args.chatcompletionsadapter) elif isinstance(args.chatcompletionsadapter, str) and adapt_dir: filename = args.chatcompletionsadapter if not filename.endswith(".json"): filename += ".json" #strip to just the filename filename = os.path.basename(filename) premade_adapt_path = os.path.join(adapt_dir,filename) if premade_adapt_path and os.path.exists(premade_adapt_path): ccadapter_path = os.path.abspath(premade_adapt_path) if ccadapter_path: print(f"Loading Chat Completions Adapter: {ccadapter_path}") with open(ccadapter_path, 'r', encoding='utf-8', errors='replace') as f: chatcompl_adapter = json.load(f) canload = True else: if isinstance(args.chatcompletionsadapter, str) and args.chatcompletionsadapter!="": try: import ast parsed = ast.literal_eval(args.chatcompletionsadapter) chatcompl_adapter = json.loads(json.dumps(parsed)) canload = True except Exception as ex: print(ex) elif isinstance(args.chatcompletionsadapter, dict): try: chatcompl_adapter = json.loads(json.dumps(args.chatcompletionsadapter)) canload = True except Exception as ex: print(ex) if canload: print("Chat Completions Adapter Loaded") else: print("Warning: Chat Completions Adapter invalid or not found.") if (chatcompl_adapter is not None and isinstance(chatcompl_adapter, list)): chatcompl_adapter_list = chatcompl_adapter chatcompl_adapter = None # handle model downloads if needed if args.model_param and args.model_param!="": dlfile = download_model_from_url(args.model_param,[".gguf",".bin", ".ggml"],min_file_size=500000) if dlfile: args.model_param = dlfile if args.model and isinstance(args.model, list) and len(args.model)>1: #handle multi file downloading for extramodel in args.model[1:]: download_model_from_url(extramodel,[".gguf",".bin", ".ggml"],min_file_size=500000) if args.sdmodel and args.sdmodel!="": dlfile = download_model_from_url(args.sdmodel,[".gguf",".safetensors"],min_file_size=500000) if dlfile: args.sdmodel = dlfile if args.sdt5xxl and args.sdt5xxl!="": dlfile = download_model_from_url(args.sdt5xxl,[".gguf",".safetensors"],min_file_size=500000) if dlfile: args.sdt5xxl = dlfile if args.sdclipl and args.sdclipl!="": dlfile = download_model_from_url(args.sdclipl,[".gguf",".safetensors"],min_file_size=500000) if dlfile: args.sdclipl = dlfile if args.sdclipg and args.sdclipg!="": dlfile = download_model_from_url(args.sdclipg,[".gguf",".safetensors"],min_file_size=500000) if dlfile: args.sdclipg = dlfile if args.sdvae and args.sdvae!="": dlfile = download_model_from_url(args.sdvae,[".gguf",".safetensors"],min_file_size=500000) if dlfile: args.sdvae = dlfile if args.sdlora and args.sdlora!="": dlfile = download_model_from_url(args.sdlora,[".gguf",".safetensors"],min_file_size=500000) if dlfile: args.sdlora = dlfile if args.mmproj and args.mmproj!="": dlfile = download_model_from_url(args.mmproj,[".gguf"],min_file_size=500000) if dlfile: args.mmproj = dlfile if args.whispermodel and args.whispermodel!="": dlfile = download_model_from_url(args.whispermodel,[".gguf",".bin"],min_file_size=500000) if dlfile: args.whispermodel = dlfile if args.draftmodel and args.draftmodel!="": dlfile = download_model_from_url(args.draftmodel,[".gguf"],min_file_size=500000) if dlfile: args.draftmodel = dlfile if args.ttsmodel and args.ttsmodel!="": dlfile = download_model_from_url(args.ttsmodel,[".gguf"],min_file_size=500000) if dlfile: args.ttsmodel = dlfile if args.ttswavtokenizer and args.ttswavtokenizer!="": dlfile = download_model_from_url(args.ttswavtokenizer,[".gguf"],min_file_size=500000) if dlfile: args.ttswavtokenizer = dlfile # sanitize and replace the default vanity name. remember me.... if args.model_param and args.model_param!="": newmdldisplayname = os.path.basename(args.model_param) newmdldisplayname = os.path.splitext(newmdldisplayname)[0] friendlymodelname = "koboldcpp/" + sanitize_string(newmdldisplayname) # horde worker settings global maxhordelen, maxhordectx, showdebug, has_multiplayer, savedata_obj if args.hordemodelname and args.hordemodelname!="": friendlymodelname = args.hordemodelname if args.debugmode == 1: friendlymodelname = "debug-" + friendlymodelname if not friendlymodelname.startswith("koboldcpp/"): friendlymodelname = "koboldcpp/" + friendlymodelname if (args.hordemodelname and args.hordemodelname!="") or (args.hordeworkername and args.hordeworkername!="") or (args.hordekey and args.hordekey!=""): if args.debugmode == 0: args.debugmode = -1 if args.hordegenlen and args.hordegenlen > 0: maxhordelen = int(args.hordegenlen) if args.hordemaxctx and args.hordemaxctx > 0: maxhordectx = int(args.hordemaxctx) if args.debugmode != 1: showdebug = False if args.multiplayer: has_multiplayer = True if args.savedatafile and isinstance(args.savedatafile, str): filepath = os.path.abspath(args.savedatafile) # Ensure it's an absolute path if not filepath.endswith(".jsondb"): filepath += ".jsondb" try: with open(filepath, 'r+', encoding='utf-8', errors='ignore') as f: loaded = json.load(f) savedata_obj = loaded print(f"Loaded existing savedatafile at '{filepath}'.") except FileNotFoundError: try: os.makedirs(os.path.dirname(filepath), exist_ok=True) with open(filepath, 'w+', encoding='utf-8', errors='ignore') as f: savedata_obj = {} print(f"File '{filepath}' did not exist. Created new savedatafile.") json.dump(savedata_obj, f) except Exception as e: print(f"Failed to create savedatafile '{filepath}': {e}") except Exception as e: print(f"Failed to access savedatafile '{filepath}': {e}") if args.highpriority: print("Setting process to Higher Priority - Use Caution") try: import psutil os_used = sys.platform process = psutil.Process(os.getpid()) # Set high priority for the python script for the CPU oldprio = process.nice() if os_used == "win32": # Windows (either 32-bit or 64-bit) process.nice(psutil.REALTIME_PRIORITY_CLASS) print("High Priority for Windows Set: " + str(oldprio) + " to " + str(process.nice())) elif os_used == "linux": # linux process.nice(psutil.IOPRIO_CLASS_RT) print("High Priority for Linux Set: " + str(oldprio) + " to " + str(process.nice())) else: # MAC OS X or other process.nice(-18) print("High Priority for Other OS Set :" + str(oldprio) + " to " + str(process.nice())) except Exception as ex: print("Error, Could not change process priority: " + str(ex)) if args.contextsize: global maxctx maxctx = args.contextsize if args.nocertify: import ssl global nocertify nocertify = True ssl._create_default_https_context = ssl._create_unverified_context if args.gpulayers: shouldavoidgpu = False if args.usecpu and sys.platform!="darwin": shouldavoidgpu = True if args.gpulayers and args.gpulayers>0: print("WARNING: GPU layers is set, but a GPU backend was not selected! GPU will not be used!") args.gpulayers = 0 elif args.gpulayers==-1 and sys.platform=="darwin" and args.model_param and os.path.exists(args.model_param): print("MacOS detected: Auto GPU layers set to maximum") args.gpulayers = 200 elif not shouldavoidgpu and args.model_param and os.path.exists(args.model_param): if (args.usecublas is None) and (args.usevulkan is None) and (args.useclblast is None): print("No GPU or CPU backend was selected. Trying to assign one for you automatically...") auto_set_backend_cli() if MaxMemory[0] == 0: #try to get gpu vram for cuda if not picked yet fetch_gpu_properties(False,True,True) pass if args.gpulayers==-1: if MaxMemory[0] > 0 and (not args.usecpu) and ((args.usecublas is not None) or (args.usevulkan is not None) or (args.useclblast is not None) or sys.platform=="darwin"): extract_modelfile_params(args.model_param,args.sdmodel,args.whispermodel,args.mmproj,args.draftmodel,args.ttsmodel if args.ttsgpu else "") layeramt = autoset_gpu_layers(args.contextsize,args.sdquant,args.blasbatchsize) print(f"Auto Recommended GPU Layers: {layeramt}") args.gpulayers = layeramt else: print("No GPU backend found, or could not automatically determine GPU layers. Please set it manually.") args.gpulayers = 0 if args.threads == -1: args.threads = get_default_threads() print(f"Auto Set Threads: {args.threads}") init_library() # Note: if blas does not exist and is enabled, program will crash. print("==========") time.sleep(1) if args.password and args.password!="": password = args.password.strip() #handle loading text model if args.model_param: if not os.path.exists(args.model_param): if args.ignoremissing: print(f"Ignoring missing model file: {args.model_param}") args.model_param = None else: exitcounter = 999 exit_with_error(2,f"Cannot find text model file: {args.model_param}") if args.lora and args.lora[0]!="": if not os.path.exists(args.lora[0]): if args.ignoremissing: print(f"Ignoring missing lora file: {args.lora[0]}") args.lora = None else: exitcounter = 999 exit_with_error(2,f"Cannot find lora file: {args.lora[0]}") else: args.lora[0] = os.path.abspath(args.lora[0]) if len(args.lora) > 1: if not os.path.exists(args.lora[1]): if args.ignoremissing: print(f"Ignoring missing lora base: {args.lora[1]}") args.lora = None else: exitcounter = 999 exit_with_error(2,f"Cannot find lora base: {args.lora[1]}") else: args.lora[1] = os.path.abspath(args.lora[1]) if args.mmproj and args.mmproj!="": if not os.path.exists(args.mmproj): if args.ignoremissing: print(f"Ignoring missing mmproj file: {args.mmproj}") args.mmproj = None else: exitcounter = 999 exit_with_error(2,f"Cannot find mmproj file: {args.mmproj}") else: global mmprojpath args.mmproj = os.path.abspath(args.mmproj) mmprojpath = args.mmproj if not args.blasthreads or args.blasthreads <= 0: args.blasthreads = args.threads modelname = os.path.abspath(args.model_param) print(args) # Flush stdout for win32 issue with regards to piping in terminals, # especially before handing over to C++ context. print(f"==========\nLoading Text Model: {modelname}", flush=True) if not modelname.endswith(".bin") and not modelname.endswith(".gguf"): print("WARNING: Selected Text Model does not seem to be a GGUF file! Are you sure you picked the right file?") loadok = load_model(modelname) print("Load Text Model OK: " + str(loadok)) if not loadok: exitcounter = 999 exit_with_error(3,"Could not load text model: " + modelname) if (chatcompl_adapter_list is not None and isinstance(chatcompl_adapter_list, list)): # The chat completions adapter is a list that needs derivation from chat templates # Try to derive chat completions adapter from chat template, now that we have the model loaded if not args.nomodel and args.model_param: ctbytes = handle.get_chat_template() chat_template = ctypes.string_at(ctbytes).decode("UTF-8","ignore") if chat_template != "": for entry in chatcompl_adapter_list: if all(s in chat_template for s in entry['search']): print(f"Chat completion heuristic: {entry['name']}") chatcompl_adapter = entry['adapter'] break if chatcompl_adapter is None: print("Chat template heuristics failed to identify chat completions format. Alpaca will be used.") #handle loading image model if args.sdmodel and args.sdmodel!="": imgmodel = args.sdmodel if not imgmodel or not os.path.exists(imgmodel): if args.ignoremissing: print(f"Ignoring missing img model file: {imgmodel}") args.sdmodel = None else: exitcounter = 999 exit_with_error(2,f"Cannot find image model file: {imgmodel}") else: imglora = "" imgvae = "" imgt5xxl = "" imgclipl = "" imgclipg = "" if args.sdlora: if os.path.exists(args.sdlora): imglora = os.path.abspath(args.sdlora) else: print("Missing SD LORA model file...") if args.sdvae: if os.path.exists(args.sdvae): imgvae = os.path.abspath(args.sdvae) else: print("Missing SD VAE model file...") if args.sdt5xxl: if os.path.exists(args.sdt5xxl): imgt5xxl = os.path.abspath(args.sdt5xxl) else: print("Missing SD T5-XXL model file...") if args.sdclipl: if os.path.exists(args.sdclipl): imgclipl = os.path.abspath(args.sdclipl) else: print("Missing SD Clip-L model file...") if args.sdclipg: if os.path.exists(args.sdclipg): imgclipg = os.path.abspath(args.sdclipg) else: print("Missing SD Clip-G model file...") imgmodel = os.path.abspath(imgmodel) fullsdmodelpath = imgmodel friendlysdmodelname = os.path.basename(imgmodel) friendlysdmodelname = os.path.splitext(friendlysdmodelname)[0] friendlysdmodelname = sanitize_string(friendlysdmodelname) loadok = sd_load_model(imgmodel,imgvae,imglora,imgt5xxl,imgclipl,imgclipg) print("Load Image Model OK: " + str(loadok)) if not loadok: exitcounter = 999 exit_with_error(3,"Could not load image model: " + imgmodel) #handle whisper model if args.whispermodel and args.whispermodel!="": whispermodel = args.whispermodel if not whispermodel or not os.path.exists(whispermodel): if args.ignoremissing: print(f"Ignoring missing whisper model file: {whispermodel}") args.whispermodel = None else: exitcounter = 999 exit_with_error(2,f"Cannot find whisper model file: {whispermodel}") else: whispermodel = os.path.abspath(whispermodel) fullwhispermodelpath = whispermodel loadok = whisper_load_model(whispermodel) print("Load Whisper Model OK: " + str(loadok)) if not loadok: exitcounter = 999 exit_with_error(3,"Could not load whisper model: " + whispermodel) #handle tts model if args.ttsmodel and args.ttsmodel!="" and args.ttswavtokenizer and args.ttswavtokenizer!="": if not os.path.exists(args.ttsmodel) or not os.path.exists(args.ttswavtokenizer): if args.ignoremissing: print("Ignoring missing TTS model files!") args.ttsmodel = None args.ttswavtokenizer = None else: exitcounter = 999 exit_with_error(2,f"Cannot find tts model files: {args.ttsmodel} or {args.ttswavtokenizer}") else: ttsmodelpath = args.ttsmodel ttsmodelpath = os.path.abspath(ttsmodelpath) wavtokpath = args.ttswavtokenizer wavtokpath = os.path.abspath(wavtokpath) loadok = tts_load_model(ttsmodelpath,wavtokpath) print("Load TTS Model OK: " + str(loadok)) if not loadok: exitcounter = 999 exit_with_error(3,"Could not load TTS model!") #load embedded lite try: basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) with open(os.path.join(basepath, "klite.embd"), mode='rb') as f: embedded_kailite = f.read() # patch it with extra stuff origStr = "Sorry, KoboldAI Lite requires Javascript to function." patchedStr = "Sorry, KoboldAI Lite requires Javascript to function.
You can use KoboldCpp NoScript mode instead." embedded_kailite = embedded_kailite.decode("UTF-8","ignore") embedded_kailite = embedded_kailite.replace(origStr, patchedStr) embedded_kailite = embedded_kailite.encode() print("Embedded KoboldAI Lite loaded.") except Exception: print("Could not find KoboldAI Lite. Embedded KoboldAI Lite will not be available.") try: basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) with open(os.path.join(basepath, "kcpp_docs.embd"), mode='rb') as f: embedded_kcpp_docs = f.read() print("Embedded API docs loaded.") except Exception: print("Could not find Embedded KoboldCpp API docs.") try: basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) with open(os.path.join(basepath, "kcpp_sdui.embd"), mode='rb') as f: embedded_kcpp_sdui = f.read() if args.sdmodel: print("Embedded SDUI loaded.") except Exception: print("Could not find Embedded SDUI.") # print enabled modules caps = get_capabilities() enabledmlist = [] disabledmlist = [] apimlist = ["KoboldCppApi"] if "llm" in caps and caps["llm"]: apimlist.append("OpenAiApi") apimlist.append("OllamaApi") if "txt2img" in caps and caps["txt2img"]: apimlist.append("A1111ForgeApi") apimlist.append("ComfyUiApi") if "transcribe" in caps and caps["transcribe"]: apimlist.append("WhisperTranscribeApi") if "tts" in caps and caps["tts"]: apimlist.append("XttsApi") apimlist.append("OpenAiSpeechApi") enabledmlist.append("TextGeneration") if "llm" in caps and caps["llm"] else disabledmlist.append("TextGeneration") enabledmlist.append("ImageGeneration") if "txt2img" in caps and caps["txt2img"] else disabledmlist.append("ImageGeneration") enabledmlist.append("VoiceRecognition") if "transcribe" in caps and caps["transcribe"] else disabledmlist.append("VoiceRecognition") enabledmlist.append("MultimodalVision") if "vision" in caps and caps["vision"] else disabledmlist.append("MultimodalVision") enabledmlist.append("NetworkMultiplayer") if "multiplayer" in caps and caps["multiplayer"] else disabledmlist.append("NetworkMultiplayer") enabledmlist.append("ApiKeyPassword") if "protected" in caps and caps["protected"] else disabledmlist.append("ApiKeyPassword") enabledmlist.append("WebSearchProxy") if "websearch" in caps and caps["websearch"] else disabledmlist.append("WebSearchProxy") enabledmlist.append("TextToSpeech") if "tts" in caps and caps["tts"] else disabledmlist.append("TextToSpeech") enabledmlist.append("AdminControl") if "admin" in caps and caps["admin"]!=0 else disabledmlist.append("AdminControl") print(f"======\nActive Modules: {' '.join(enabledmlist)}") print(f"Inactive Modules: {' '.join(disabledmlist)}") print(f"Enabled APIs: {' '.join(apimlist)}") if args.port_param!=defaultport: args.port = args.port_param global sslvalid if args.ssl: if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]): sslvalid = True print("SSL configuration is valid and will be used.") else: print("Your SSL configuration is INVALID. SSL will not be used.") endpoint_url = "" remote_url = "" httpsaffix = ("https" if sslvalid else "http") if args.host=="": endpoint_url = f"{httpsaffix}://localhost:{args.port}" else: endpoint_url = f"{httpsaffix}://{args.host}:{args.port}" if not args.remotetunnel: print(f"Starting Kobold API on port {args.port} at {endpoint_url}/api/") print(f"Starting OpenAI Compatible API on port {args.port} at {endpoint_url}/v1/") if args.sdmodel: print(f"StableUI is available at {endpoint_url}/sdui/") elif global_memory: val = global_memory["tunnel_url"] if val: endpoint_url = val remote_url = val print(f"Your remote Kobold API can be found at {endpoint_url}/api") print(f"Your remote OpenAI Compatible API can be found at {endpoint_url}/v1") if args.sdmodel: print(f"StableUI is available at {endpoint_url}/sdui/") global_memory["load_complete"] = True if args.launch: def launch_browser_thread(): LaunchWebbrowser(endpoint_url,"--launch was set, but could not launch web browser automatically.") browser_thread = threading.Timer(2, launch_browser_thread) #2 second delay browser_thread.start() if args.hordekey and args.hordekey!="": if args.hordeworkername and args.hordeworkername!="": horde_thread = threading.Thread(target=run_horde_worker,args=(args,args.hordekey,args.hordeworkername)) horde_thread.daemon = True horde_thread.start() else: print("Horde worker could not start. You need to specify a horde worker name with --hordeworkername") #if post-ready script specified, execute it if args.onready: def onready_subprocess(): import subprocess print("Starting Post-Load subprocess...") subprocess.run(args.onready[0], shell=True) timer_thread = threading.Timer(1, onready_subprocess) #1 second delay timer_thread.start() if not start_server: save_to_file = (args.benchmark and args.benchmark!="stdout" and args.benchmark!="") benchmaxctx = maxctx benchlen = args.promptlimit benchtemp = 0.1 benchtopk = 1 benchreppen = 1 benchbaneos = True benchmodel = sanitize_string(os.path.splitext(os.path.basename(modelname))[0]) benchprompt = "" if args.prompt: benchprompt = args.prompt benchtopk = 100 benchreppen = 1.07 benchtemp = 0.8 if not args.benchmark: benchbaneos = False if args.benchmark: if os.path.exists(args.benchmark) and os.path.getsize(args.benchmark) > 1000000: print("\nWarning: The benchmark CSV output file you selected exceeds 1MB. This is probably not what you want, did you select the wrong CSV file?\nFor safety, benchmark output will not be saved.") save_to_file = False if save_to_file: print(f"\nRunning benchmark (Save to File: {args.benchmark})...") else: print("\nRunning benchmark (Not Saved)...") if benchprompt=="": benchprompt = " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" for i in range(0,14): #generate massive prompt benchprompt += benchprompt genp = { "prompt":benchprompt, "max_length":benchlen, "max_context_length":benchmaxctx, "temperature":benchtemp, "top_k":benchtopk, "rep_pen":benchreppen, "ban_eos_token":benchbaneos } genout = generate(genparams=genp) result = genout['text'] if args.prompt and not args.benchmark: restore_stdout() print(result) if args.benchmark: result = (result[:8] if len(result)>8 else "") if not args.prompt else result t_pp = float(handle.get_last_process_time())*float(benchmaxctx-benchlen)*0.001 t_gen = float(handle.get_last_eval_time())*float(benchlen)*0.001 s_pp = float(benchmaxctx-benchlen)/t_pp s_gen = float(benchlen)/t_gen datetimestamp = datetime.now(timezone.utc) benchflagstr = f"NoAVX2={args.noavx2} Threads={args.threads} HighPriority={args.highpriority} Cublas_Args={args.usecublas} Tensor_Split={args.tensor_split} BlasThreads={args.blasthreads} BlasBatchSize={args.blasbatchsize} FlashAttention={args.flashattention} KvCache={args.quantkv}" print(f"\nBenchmark Completed - v{KcppVersion} Results:\n======") print(f"Flags: {benchflagstr}") print(f"Timestamp: {datetimestamp}") print(f"Backend: {libname}") print(f"Layers: {args.gpulayers}") print(f"Model: {benchmodel}") print(f"MaxCtx: {benchmaxctx}") print(f"GenAmount: {benchlen}\n-----") print(f"ProcessingTime: {t_pp:.3f}s") print(f"ProcessingSpeed: {s_pp:.2f}T/s") print(f"GenerationTime: {t_gen:.3f}s") print(f"GenerationSpeed: {s_gen:.2f}T/s") print(f"TotalTime: {(t_pp+t_gen):.3f}s") print(f"Output: {result}\n-----") if save_to_file: try: with open(args.benchmark, "a") as file: file.seek(0, 2) if file.tell() == 0: #empty file file.write("Timestamp,Backend,Layers,Model,MaxCtx,GenAmount,ProcessingTime,ProcessingSpeed,GenerationTime,GenerationSpeed,TotalTime,Output,Flags") file.write(f"\n{datetimestamp},{libname},{args.gpulayers},{benchmodel},{benchmaxctx},{benchlen},{t_pp:.2f},{s_pp:.2f},{t_gen:.2f},{s_gen:.2f},{(t_pp+t_gen):.2f},{result},{benchflagstr}") except Exception as e: print(f"Error writing benchmark to file: {e}") if global_memory and using_gui_launcher and not save_to_file: global_memory["input_to_exit"] = True time.sleep(1) if start_server: if args.remotetunnel: if remote_url: print(f"======\nYour remote tunnel is ready, please connect to {remote_url}", flush=True) else: # Flush stdout for previous win32 issue so the client can see output. print(f"======\nPlease connect to custom endpoint at {endpoint_url}", flush=True) asyncio.run(RunServerMultiThreaded(args.host, args.port, KcppServerRequestHandler)) else: # Flush stdout for previous win32 issue so the client can see output. if not args.prompt or args.benchmark: print("Server was not started, main function complete. Idling.", flush=True) if __name__ == '__main__': import multiprocessing multiprocessing.freeze_support() def check_range(value_type, min_value, max_value): def range_checker(arg: str): try: f = value_type(arg) except ValueError: raise argparse.ArgumentTypeError(f'must be a valid {value_type}') if f < min_value or f > max_value: raise argparse.ArgumentTypeError(f'must be within [{min_value}, {max_value}]') return f return range_checker parser = argparse.ArgumentParser(description=f'KoboldCpp Server - Version {KcppVersion}') modelgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args modelgroup.add_argument("--model", metavar=('[filenames]'), help="Model file to load. Accepts multiple values if they are URLs.", type=str, nargs='+', default=[]) modelgroup.add_argument("model_param", help="Model file to load (positional)", nargs="?") portgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args portgroup.add_argument("--port", metavar=('[portnumber]'), help=f"Port to listen on. (Defaults to {defaultport})", default=defaultport, type=int, action='store') portgroup.add_argument("port_param", help="Port to listen on (positional)", default=defaultport, nargs="?", type=int, action='store') parser.add_argument("--host", metavar=('[ipaddr]'), help="Host IP to listen on. If this flag is not set, all routable interfaces are accepted.", default="") parser.add_argument("--launch", help="Launches a web browser when load is completed.", action='store_true') parser.add_argument("--config", metavar=('[filename]'), help="Load settings from a .kcpps file. Other arguments will be ignored", type=str, nargs=1) parser.add_argument("--threads", metavar=('[threads]'), help="Use a custom number of threads if specified. Otherwise, uses an amount based on CPU cores", type=int, default=get_default_threads()) compatgroup = parser.add_mutually_exclusive_group() compatgroup.add_argument("--usecublas", help="Use CuBLAS for GPU Acceleration. Requires CUDA. Select lowvram to not allocate VRAM scratch buffer. Enter a number afterwards to select and use 1 GPU. Leaving no number will use all GPUs. For hipBLAS binaries, please check YellowRoseCx rocm fork.", nargs='*',metavar=('[lowvram|normal] [main GPU ID] [mmq|nommq] [rowsplit]'), choices=['normal', 'lowvram', '0', '1', '2', '3', 'all', 'mmq', 'nommq', 'rowsplit']) compatgroup.add_argument("--usevulkan", help="Use Vulkan for GPU Acceleration. Can optionally specify one or more GPU Device ID (e.g. --usevulkan 0), leave blank to autodetect.", metavar=('[Device IDs]'), nargs='*', type=int, default=None) compatgroup.add_argument("--useclblast", help="Use CLBlast for GPU Acceleration. Must specify exactly 2 arguments, platform ID and device ID (e.g. --useclblast 1 0).", type=int, choices=range(0,9), nargs=2) compatgroup.add_argument("--usecpu", help="Do not use any GPU acceleration (CPU Only)", action='store_true') parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 4096). Supported values are [256,512,1024,2048,3072,4096,6144,8192,10240,12288,14336,16384,20480,24576,28672,32768,40960,49152,57344,65536,81920,98304,114688,131072]. IF YOU USE ANYTHING ELSE YOU ARE ON YOUR OWN.",metavar=('[256,512,1024,2048,3072,4096,6144,8192,10240,12288,14336,16384,20480,24576,28672,32768,40960,49152,57344,65536,81920,98304,114688,131072]'), type=check_range(int,256,262144), default=4096) parser.add_argument("--gpulayers", help="Set number of layers to offload to GPU when using GPU. Requires GPU. Set to -1 to try autodetect, set to 0 to disable GPU offload.",metavar=('[GPU layers]'), nargs='?', const=1, type=int, default=-1) parser.add_argument("--tensor_split", help="For CUDA and Vulkan only, ratio to split tensors across multiple GPUs, space-separated list of proportions, e.g. 7 3", metavar=('[Ratios]'), type=float, nargs='+') #more advanced params advparser = parser.add_argument_group('Advanced Commands') advparser.add_argument("--version", help="Prints version and exits.", action='store_true') advparser.add_argument("--analyze", metavar=('[filename]'), help="Reads the metadata, weight types and tensor names in any GGUF file.", default="") advparser.add_argument("--ropeconfig", help="If set, uses customized RoPE scaling from configured frequency scale and frequency base (e.g. --ropeconfig 0.25 10000). Otherwise, uses NTK-Aware scaling set automatically based on context size. For linear rope, simply set the freq-scale and ignore the freq-base",metavar=('[rope-freq-scale]', '[rope-freq-base]'), default=[0.0, 10000.0], type=float, nargs='+') advparser.add_argument("--blasbatchsize", help="Sets the batch size used in BLAS processing (default 512). Setting it to -1 disables BLAS mode, but keeps other benefits like GPU offload.", type=int,choices=[-1,32,64,128,256,512,1024,2048], default=512) advparser.add_argument("--blasthreads", help="Use a different number of threads during BLAS if specified. Otherwise, has the same value as --threads",metavar=('[threads]'), type=int, default=0) advparser.add_argument("--lora", help="LLAMA models only, applies a lora file on top of model. Experimental.", metavar=('[lora_filename]', '[lora_base]'), nargs='+') advparser.add_argument("--noshift", help="If set, do not attempt to Trim and Shift the GGUF context.", action='store_true') advparser.add_argument("--nofastforward", help="If set, do not attempt to fast forward GGUF context (always reprocess). Will also enable noshift", action='store_true') compatgroup3 = advparser.add_mutually_exclusive_group() compatgroup3.add_argument("--usemmap", help="If set, uses mmap to load model.", action='store_true') advparser.add_argument("--usemlock", help="Enables mlock, preventing the RAM used to load the model from being paged out. Not usually recommended.", action='store_true') advparser.add_argument("--noavx2", help="Do not use AVX2 instructions, a slower compatibility mode for older devices.", action='store_true') advparser.add_argument("--failsafe", help="Use failsafe mode, extremely slow CPU only compatibility mode that should work on all devices. Can be combined with useclblast if your device supports OpenCL.", action='store_true') advparser.add_argument("--debugmode", help="Shows additional debug info in the terminal.", nargs='?', const=1, type=int, default=0) advparser.add_argument("--onready", help="An optional shell command to execute after the model has been loaded.", metavar=('[shell command]'), type=str, default="",nargs=1) advparser.add_argument("--benchmark", help="Do not start server, instead run benchmarks. If filename is provided, appends results to provided file.", metavar=('[filename]'), nargs='?', const="stdout", type=str, default=None) advparser.add_argument("--prompt", metavar=('[prompt]'), help="Passing a prompt string triggers a direct inference, loading the model, outputs the response to stdout and exits. Can be used alone or with benchmark.", type=str, default="") advparser.add_argument("--promptlimit", help="Sets the maximum number of generated tokens, usable only with --prompt or --benchmark",metavar=('[token limit]'), type=int, default=100) advparser.add_argument("--multiuser", help="Runs in multiuser mode, which queues incoming requests instead of blocking them.", metavar=('limit'), nargs='?', const=1, type=int, default=1) advparser.add_argument("--multiplayer", help="Hosts a shared multiplayer session that others can join.", action='store_true') advparser.add_argument("--websearch", help="Enable the local search engine proxy so Web Searches can be done.", action='store_true') advparser.add_argument("--remotetunnel", help="Uses Cloudflare to create a remote tunnel, allowing you to access koboldcpp remotely over the internet even behind a firewall.", action='store_true') advparser.add_argument("--highpriority", help="Experimental flag. If set, increases the process CPU priority, potentially speeding up generation. Use caution.", action='store_true') advparser.add_argument("--foreground", help="Windows only. Sends the terminal to the foreground every time a new prompt is generated. This helps avoid some idle slowdown issues.", action='store_true') advparser.add_argument("--preloadstory", metavar=('[savefile]'), help="Configures a prepared story json save file to be hosted on the server, which frontends (such as KoboldAI Lite) can access over the API.", default="") advparser.add_argument("--savedatafile", metavar=('[savefile]'), help="If enabled, creates or opens a persistent database file on the server, that allows users to save and load their data remotely. A new file is created if it does not exist.", default="") advparser.add_argument("--quiet", help="Enable quiet mode, which hides generation inputs and outputs in the terminal. Quiet mode is automatically enabled when running a horde worker.", action='store_true') advparser.add_argument("--ssl", help="Allows all content to be served over SSL instead. A valid UNENCRYPTED SSL cert and key .pem files must be provided", metavar=('[cert_pem]', '[key_pem]'), nargs='+') advparser.add_argument("--nocertify", help="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.", action='store_true') advparser.add_argument("--mmproj", metavar=('[filename]'), help="Select a multimodal projector file for vision models like LLaVA.", default="") advparser.add_argument("--visionmaxres", metavar=('[max px]'), help="Clamp MMProj vision maximum allowed resolution. Allowed values are between 512 to 2048 px (default 1024).", type=int, default=default_visionmaxres) advparser.add_argument("--draftmodel", metavar=('[filename]'), help="Load a small draft model for speculative decoding. It will be fully offloaded. Vocab must match the main model.", default="") advparser.add_argument("--draftamount", metavar=('[tokens]'), help="How many tokens to draft per chunk before verifying results", type=int, default=default_draft_amount) advparser.add_argument("--draftgpulayers", metavar=('[layers]'), help="How many layers to offload to GPU for the draft model (default=full offload)", type=int, default=999) advparser.add_argument("--draftgpusplit", help="GPU layer distribution ratio for draft model (default=same as main). Only works if multi-GPUs selected for MAIN model and tensor_split is set!", metavar=('[Ratios]'), type=float, nargs='+') advparser.add_argument("--password", metavar=('[API key]'), help="Enter a password required to use this instance. This key will be required for all text endpoints. Image endpoints are not secured.", default=None) advparser.add_argument("--ignoremissing", help="Ignores all missing non-essential files, just skipping them instead.", action='store_true') advparser.add_argument("--chatcompletionsadapter", metavar=('[filename]'), help="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.", default="AutoGuess") advparser.add_argument("--flashattention", help="Enables flash attention.", action='store_true') advparser.add_argument("--quantkv", help="Sets the KV cache data type quantization, 0=f16, 1=q8, 2=q4. Requires Flash Attention, and disables context shifting.",metavar=('[quantization level 0/1/2]'), type=int, choices=[0,1,2], default=0) advparser.add_argument("--forceversion", help="If the model file format detection fails (e.g. rogue modified model) you can set this to override the detected format (enter desired version, e.g. 401 for GPTNeoX-Type2).",metavar=('[version]'), type=int, default=0) advparser.add_argument("--smartcontext", help="Reserving a portion of context to try processing less frequently. Outdated. Not recommended.", action='store_true') advparser.add_argument("--unpack", help="Extracts the file contents of the KoboldCpp binary into a target directory.", metavar=('destination'), type=str, default="") advparser.add_argument("--exportconfig", help="Exports the current selected arguments as a .kcpps settings file", metavar=('[filename]'), type=str, default="") advparser.add_argument("--exporttemplate", help="Exports the current selected arguments as a .kcppt template file", metavar=('[filename]'), type=str, default="") advparser.add_argument("--nomodel", help="Allows you to launch the GUI alone, without selecting any model.", action='store_true') advparser.add_argument("--moeexperts", metavar=('[num of experts]'), help="How many experts to use for MoE models (default=follow gguf)", type=int, default=-1) compatgroup2 = parser.add_mutually_exclusive_group() compatgroup2.add_argument("--showgui", help="Always show the GUI instead of launching the model right away when loading settings from a .kcpps file.", action='store_true') compatgroup2.add_argument("--skiplauncher", help="Doesn't display or use the GUI launcher.", action='store_true') hordeparsergroup = parser.add_argument_group('Horde Worker Commands') hordeparsergroup.add_argument("--hordemodelname", metavar=('[name]'), help="Sets your AI Horde display model name.", default="") hordeparsergroup.add_argument("--hordeworkername", metavar=('[name]'), help="Sets your AI Horde worker name.", default="") hordeparsergroup.add_argument("--hordekey", metavar=('[apikey]'), help="Sets your AI Horde API key.", default="") hordeparsergroup.add_argument("--hordemaxctx", metavar=('[amount]'), help="Sets the maximum context length your worker will accept from an AI Horde job.", type=int, default=0) hordeparsergroup.add_argument("--hordegenlen", metavar=('[amount]'), help="Sets the maximum number of tokens your worker will generate from an AI horde job.", type=int, default=0) sdparsergroup = parser.add_argument_group('Image Generation Commands') sdparsergroup.add_argument("--sdmodel", metavar=('[filename]'), help="Specify a stable diffusion safetensors or gguf model to enable image generation.", default="") sdparsergroup.add_argument("--sdthreads", metavar=('[threads]'), help="Use a different number of threads for image generation if specified. Otherwise, has the same value as --threads.", type=int, default=0) sdparsergroup.add_argument("--sdclamped", metavar=('[maxres]'), help="If specified, limit generation steps and resolution settings for shared use. Accepts an extra optional parameter that indicates maximum resolution (eg. 768 clamps to 768x768, min 512px, disabled if 0).", nargs='?', const=512, type=int, default=0) sdparsergroup.add_argument("--sdt5xxl", metavar=('[filename]'), help="Specify a T5-XXL safetensors model for use in SD3 or Flux. Leave blank if prebaked or unused.", default="") sdparsergroup.add_argument("--sdclipl", metavar=('[filename]'), help="Specify a Clip-L safetensors model for use in SD3 or Flux. Leave blank if prebaked or unused.", default="") sdparsergroup.add_argument("--sdclipg", metavar=('[filename]'), help="Specify a Clip-G safetensors model for use in SD3. Leave blank if prebaked or unused.", default="") sdparsergroupvae = sdparsergroup.add_mutually_exclusive_group() sdparsergroupvae.add_argument("--sdvae", metavar=('[filename]'), help="Specify a stable diffusion safetensors VAE which replaces the one in the model.", default="") sdparsergroupvae.add_argument("--sdvaeauto", help="Uses a built-in VAE via TAE SD, which is very fast, and fixed bad VAEs.", action='store_true') sdparsergrouplora = sdparsergroup.add_mutually_exclusive_group() sdparsergrouplora.add_argument("--sdquant", help="If specified, loads the model quantized to save memory.", action='store_true') sdparsergrouplora.add_argument("--sdlora", metavar=('[filename]'), help="Specify a stable diffusion LORA safetensors model to be applied. Cannot be used with quant models.", default="") sdparsergroup.add_argument("--sdloramult", metavar=('[amount]'), help="Multiplier for the LORA model to be applied.", type=float, default=1.0) sdparsergroup.add_argument("--sdnotile", help="Disables VAE tiling, may not work for large images.", action='store_true') whisperparsergroup = parser.add_argument_group('Whisper Transcription Commands') whisperparsergroup.add_argument("--whispermodel", metavar=('[filename]'), help="Specify a Whisper .bin model to enable Speech-To-Text transcription.", default="") ttsparsergroup = parser.add_argument_group('TTS Narration Commands') ttsparsergroup.add_argument("--ttsmodel", metavar=('[filename]'), help="Specify the OuteTTS Text-To-Speech GGUF model.", default="") ttsparsergroup.add_argument("--ttswavtokenizer", metavar=('[filename]'), help="Specify the WavTokenizer GGUF model.", default="") ttsparsergroup.add_argument("--ttsgpu", help="Use the GPU for TTS.", action='store_true') ttsparsergroup.add_argument("--ttsmaxlen", help="Limit number of audio tokens generated with TTS.", type=int, default=default_ttsmaxlen) ttsparsergroup.add_argument("--ttsthreads", metavar=('[threads]'), help="Use a different number of threads for TTS if specified. Otherwise, has the same value as --threads.", type=int, default=0) admingroup = parser.add_argument_group('Administration Commands') admingroup.add_argument("--admin", help="Enables admin mode, allowing you to unload and reload different configurations or models.", action='store_true') admingroup.add_argument("--adminpassword", metavar=('[password]'), help="Require a password to access admin functions. You are strongly advised to use one for publically accessible instances!", default=None) admingroup.add_argument("--admindir", metavar=('[directory]'), help="Specify a directory to look for .kcpps configs in, which can be used to swap models.", default="") deprecatedgroup = parser.add_argument_group('Deprecated Commands, DO NOT USE!') deprecatedgroup.add_argument("--hordeconfig", help=argparse.SUPPRESS, nargs='+') deprecatedgroup.add_argument("--sdconfig", help=argparse.SUPPRESS, nargs='+') compatgroup.add_argument("--noblas", help=argparse.SUPPRESS, action='store_true') compatgroup3.add_argument("--nommap", help=argparse.SUPPRESS, action='store_true') main(parser.parse_args())