#ifndef SLANG_PRELUDE_SCALAR_INTRINSICS_H #define SLANG_PRELUDE_SCALAR_INTRINSICS_H #if !defined(SLANG_LLVM) && SLANG_PROCESSOR_X86_64 && SLANG_VC // If we have visual studio and 64 bit processor, we can assume we have popcnt, and can include x86 intrinsics # include #endif #ifndef SLANG_FORCE_INLINE # define SLANG_FORCE_INLINE inline #endif #ifdef SLANG_PRELUDE_NAMESPACE namespace SLANG_PRELUDE_NAMESPACE { #endif #ifndef SLANG_PRELUDE_PI # define SLANG_PRELUDE_PI 3.14159265358979323846 #endif union Union32 { uint32_t u; int32_t i; float f; }; union Union64 { uint64_t u; int64_t i; double d; }; // 32 bit cast conversions SLANG_FORCE_INLINE int32_t _bitCastFloatToInt(float f) { Union32 u; u.f = f; return u.i; } SLANG_FORCE_INLINE float _bitCastIntToFloat(int32_t i) { Union32 u; u.i = i; return u.f; } SLANG_FORCE_INLINE uint32_t _bitCastFloatToUInt(float f) { Union32 u; u.f = f; return u.u; } SLANG_FORCE_INLINE float _bitCastUIntToFloat(uint32_t ui) { Union32 u; u.u = ui; return u.f; } // ----------------------------- F16 ----------------------------------------- // This impl is based on FloatToHalf that is in Slang codebase SLANG_FORCE_INLINE uint32_t f32tof16(const float value) { const uint32_t inBits = _bitCastFloatToUInt(value); // bits initially set to just the sign bit uint32_t bits = (inBits >> 16) & 0x8000; // Mantissa can't be used as is, as it holds last bit, for rounding. uint32_t m = (inBits >> 12) & 0x07ff; uint32_t e = (inBits >> 23) & 0xff; if (e < 103) { // It's zero return bits; } if (e == 0xff) { // Could be a NAN or INF. Is INF if *input* mantissa is 0. // Remove last bit for rounding to make output mantissa. m >>= 1; // We *assume* float16/float32 signaling bit and remaining bits // semantics are the same. (The signalling bit convention is target specific!). // Non signal bit's usage within mantissa for a NAN are also target specific. // If the m is 0, it could be because the result is INF, but it could also be because all the // bits that made NAN were dropped as we have less mantissa bits in f16. // To fix for this we make non zero if m is 0 and the input mantissa was not. // This will (typically) produce a signalling NAN. m += uint32_t(m == 0 && (inBits & 0x007fffffu)); // Combine for output return (bits | 0x7c00u | m); } if (e > 142) { // INF. return bits | 0x7c00u; } if (e < 113) { m |= 0x0800u; bits |= (m >> (114 - e)) + ((m >> (113 - e)) & 1); return bits; } bits |= ((e - 112) << 10) | (m >> 1); bits += m & 1; return bits; } static const float g_f16tof32Magic = _bitCastIntToFloat((127 + (127 - 15)) << 23); SLANG_FORCE_INLINE float f16tof32(const uint32_t value) { const uint32_t sign = (value & 0x8000) << 16; uint32_t exponent = (value & 0x7c00) >> 10; uint32_t mantissa = (value & 0x03ff); if (exponent == 0) { // If mantissa is 0 we are done, as output is 0. // If it's not zero we must have a denormal. if (mantissa) { // We have a denormal so use the magic to do exponent adjust return _bitCastIntToFloat(sign | ((value & 0x7fff) << 13)) * g_f16tof32Magic; } } else { // If the exponent is NAN or INF exponent is 0x1f on input. // If that's the case, we just need to set the exponent to 0xff on output // and the mantissa can just stay the same. If its 0 it's INF, else it is NAN and we just copy the bits // // Else we need to correct the exponent in the normalized case. exponent = (exponent == 0x1F) ? 0xff : (exponent + (-15 + 127)); } return _bitCastUIntToFloat(sign | (exponent << 23) | (mantissa << 13)); } // ----------------------------- F32 ----------------------------------------- // Helpers SLANG_FORCE_INLINE float F32_calcSafeRadians(float radians); #ifdef SLANG_LLVM SLANG_PRELUDE_EXTERN_C_START // Unary float F32_ceil(float f); float F32_floor(float f); float F32_round(float f); float F32_sin(float f); float F32_cos(float f); float F32_tan(float f); float F32_asin(float f); float F32_acos(float f); float F32_atan(float f); float F32_sinh(float f); float F32_cosh(float f); float F32_tanh(float f); float F32_log2(float f); float F32_log(float f); float F32_log10(float f); float F32_exp2(float f); float F32_exp(float f); float F32_abs(float f); float F32_trunc(float f); float F32_sqrt(float f); bool F32_isnan(float f); bool F32_isfinite(float f); bool F32_isinf(float f); // Binary SLANG_FORCE_INLINE float F32_min(float a, float b) { return a < b ? a : b; } SLANG_FORCE_INLINE float F32_max(float a, float b) { return a > b ? a : b; } float F32_pow(float a, float b); float F32_fmod(float a, float b); float F32_remainder(float a, float b); float F32_atan2(float a, float b); float F32_frexp(float x, int* e); float F32_modf(float x, float* ip); // Ternary SLANG_FORCE_INLINE float F32_fma(float a, float b, float c) { return a * b + c; } SLANG_PRELUDE_EXTERN_C_END #else // Unary SLANG_FORCE_INLINE float F32_ceil(float f) { return ::ceilf(f); } SLANG_FORCE_INLINE float F32_floor(float f) { return ::floorf(f); } SLANG_FORCE_INLINE float F32_round(float f) { return ::roundf(f); } SLANG_FORCE_INLINE float F32_sin(float f) { return ::sinf(f); } SLANG_FORCE_INLINE float F32_cos(float f) { return ::cosf(f); } SLANG_FORCE_INLINE float F32_tan(float f) { return ::tanf(f); } SLANG_FORCE_INLINE float F32_asin(float f) { return ::asinf(f); } SLANG_FORCE_INLINE float F32_acos(float f) { return ::acosf(f); } SLANG_FORCE_INLINE float F32_atan(float f) { return ::atanf(f); } SLANG_FORCE_INLINE float F32_sinh(float f) { return ::sinhf(f); } SLANG_FORCE_INLINE float F32_cosh(float f) { return ::coshf(f); } SLANG_FORCE_INLINE float F32_tanh(float f) { return ::tanhf(f); } SLANG_FORCE_INLINE float F32_log2(float f) { return ::log2f(f); } SLANG_FORCE_INLINE float F32_log(float f) { return ::logf(f); } SLANG_FORCE_INLINE float F32_log10(float f) { return ::log10f(f); } SLANG_FORCE_INLINE float F32_exp2(float f) { return ::exp2f(f); } SLANG_FORCE_INLINE float F32_exp(float f) { return ::expf(f); } SLANG_FORCE_INLINE float F32_abs(float f) { return ::fabsf(f); } SLANG_FORCE_INLINE float F32_trunc(float f) { return ::truncf(f); } SLANG_FORCE_INLINE float F32_sqrt(float f) { return ::sqrtf(f); } SLANG_FORCE_INLINE bool F32_isnan(float f) { return SLANG_PRELUDE_STD isnan(f); } SLANG_FORCE_INLINE bool F32_isfinite(float f) { return SLANG_PRELUDE_STD isfinite(f); } SLANG_FORCE_INLINE bool F32_isinf(float f) { return SLANG_PRELUDE_STD isinf(f); } // Binary SLANG_FORCE_INLINE float F32_min(float a, float b) { return ::fminf(a, b); } SLANG_FORCE_INLINE float F32_max(float a, float b) { return ::fmaxf(a, b); } SLANG_FORCE_INLINE float F32_pow(float a, float b) { return ::powf(a, b); } SLANG_FORCE_INLINE float F32_fmod(float a, float b) { return ::fmodf(a, b); } SLANG_FORCE_INLINE float F32_remainder(float a, float b) { return ::remainderf(a, b); } SLANG_FORCE_INLINE float F32_atan2(float a, float b) { return float(::atan2(a, b)); } SLANG_FORCE_INLINE float F32_frexp(float x, int* e) { return ::frexpf(x, e); } SLANG_FORCE_INLINE float F32_modf(float x, float* ip) { return ::modff(x, ip); } // Ternary SLANG_FORCE_INLINE float F32_fma(float a, float b, float c) { return ::fmaf(a, b, c); } #endif SLANG_FORCE_INLINE float F32_calcSafeRadians(float radians) { // Put 0 to 2pi cycles to cycle around 0 to 1 float a = radians * (1.0f / float(SLANG_PRELUDE_PI * 2)); // Get truncated fraction, as value in 0 - 1 range a = a - F32_floor(a); // Convert back to 0 - 2pi range return (a * float(SLANG_PRELUDE_PI * 2)); } SLANG_FORCE_INLINE float F32_rsqrt(float f) { return 1.0f / F32_sqrt(f); } SLANG_FORCE_INLINE float F32_sign(float f) { return ( f == 0.0f) ? f : (( f < 0.0f) ? -1.0f : 1.0f); } SLANG_FORCE_INLINE float F32_frac(float f) { return f - F32_floor(f); } SLANG_FORCE_INLINE uint32_t F32_asuint(float f) { Union32 u; u.f = f; return u.u; } SLANG_FORCE_INLINE int32_t F32_asint(float f) { Union32 u; u.f = f; return u.i; } // ----------------------------- F64 ----------------------------------------- SLANG_FORCE_INLINE double F64_calcSafeRadians(double radians); #ifdef SLANG_LLVM SLANG_PRELUDE_EXTERN_C_START // Unary double F64_ceil(double f); double F64_floor(double f); double F64_round(double f); double F64_sin(double f); double F64_cos(double f); double F64_tan(double f); double F64_asin(double f); double F64_acos(double f); double F64_atan(double f); double F64_sinh(double f); double F64_cosh(double f); double F64_tanh(double f); double F64_log2(double f); double F64_log(double f); double F64_log10(double f); double F64_exp2(double f); double F64_exp(double f); double F64_abs(double f); double F64_trunc(double f); double F64_sqrt(double f); bool F64_isnan(double f); bool F64_isfinite(double f); bool F64_isinf(double f); // Binary SLANG_FORCE_INLINE double F64_min(double a, double b) { return a < b ? a : b; } SLANG_FORCE_INLINE double F64_max(double a, double b) { return a > b ? a : b; } double F64_pow(double a, double b); double F64_fmod(double a, double b); double F64_remainder(double a, double b); double F64_atan2(double a, double b); double F64_frexp(double x, int* e); double F64_modf(double x, double* ip); // Ternary SLANG_FORCE_INLINE double F64_fma(double a, double b, double c) { return a * b + c; } SLANG_PRELUDE_EXTERN_C_END #else // SLANG_LLVM // Unary SLANG_FORCE_INLINE double F64_ceil(double f) { return ::ceil(f); } SLANG_FORCE_INLINE double F64_floor(double f) { return ::floor(f); } SLANG_FORCE_INLINE double F64_round(double f) { return ::round(f); } SLANG_FORCE_INLINE double F64_sin(double f) { return ::sin(f); } SLANG_FORCE_INLINE double F64_cos(double f) { return ::cos(f); } SLANG_FORCE_INLINE double F64_tan(double f) { return ::tan(f); } SLANG_FORCE_INLINE double F64_asin(double f) { return ::asin(f); } SLANG_FORCE_INLINE double F64_acos(double f) { return ::acos(f); } SLANG_FORCE_INLINE double F64_atan(double f) { return ::atan(f); } SLANG_FORCE_INLINE double F64_sinh(double f) { return ::sinh(f); } SLANG_FORCE_INLINE double F64_cosh(double f) { return ::cosh(f); } SLANG_FORCE_INLINE double F64_tanh(double f) { return ::tanh(f); } SLANG_FORCE_INLINE double F64_log2(double f) { return ::log2(f); } SLANG_FORCE_INLINE double F64_log(double f) { return ::log(f); } SLANG_FORCE_INLINE double F64_log10(float f) { return ::log10(f); } SLANG_FORCE_INLINE double F64_exp2(double f) { return ::exp2(f); } SLANG_FORCE_INLINE double F64_exp(double f) { return ::exp(f); } SLANG_FORCE_INLINE double F64_abs(double f) { return ::fabs(f); } SLANG_FORCE_INLINE double F64_trunc(double f) { return ::trunc(f); } SLANG_FORCE_INLINE double F64_sqrt(double f) { return ::sqrt(f); } SLANG_FORCE_INLINE bool F64_isnan(double f) { return SLANG_PRELUDE_STD isnan(f); } SLANG_FORCE_INLINE bool F64_isfinite(double f) { return SLANG_PRELUDE_STD isfinite(f); } SLANG_FORCE_INLINE bool F64_isinf(double f) { return SLANG_PRELUDE_STD isinf(f); } // Binary SLANG_FORCE_INLINE double F64_min(double a, double b) { return ::fmin(a, b); } SLANG_FORCE_INLINE double F64_max(double a, double b) { return ::fmax(a, b); } SLANG_FORCE_INLINE double F64_pow(double a, double b) { return ::pow(a, b); } SLANG_FORCE_INLINE double F64_fmod(double a, double b) { return ::fmod(a, b); } SLANG_FORCE_INLINE double F64_remainder(double a, double b) { return ::remainder(a, b); } SLANG_FORCE_INLINE double F64_atan2(double a, double b) { return ::atan2(a, b); } SLANG_FORCE_INLINE double F64_frexp(double x, int* e) { return ::frexp(x, e); } SLANG_FORCE_INLINE double F64_modf(double x, double* ip) { return ::modf(x, ip); } // Ternary SLANG_FORCE_INLINE double F64_fma(double a, double b, double c) { return ::fma(a, b, c); } #endif // SLANG_LLVM SLANG_FORCE_INLINE double F64_rsqrt(double f) { return 1.0 / F64_sqrt(f); } SLANG_FORCE_INLINE double F64_sign(double f) { return (f == 0.0) ? f : ((f < 0.0) ? -1.0 : 1.0); } SLANG_FORCE_INLINE double F64_frac(double f) { return f - F64_floor(f); } SLANG_FORCE_INLINE void F64_asuint(double d, uint32_t* low, uint32_t* hi) { Union64 u; u.d = d; *low = uint32_t(u.u); *hi = uint32_t(u.u >> 32); } SLANG_FORCE_INLINE void F64_asint(double d, int32_t* low, int32_t* hi) { Union64 u; u.d = d; *low = int32_t(u.u); *hi = int32_t(u.u >> 32); } SLANG_FORCE_INLINE double F64_calcSafeRadians(double radians) { // Put 0 to 2pi cycles to cycle around 0 to 1 double a = radians * (1.0f / (SLANG_PRELUDE_PI * 2)); // Get truncated fraction, as value in 0 - 1 range a = a - F64_floor(a); // Convert back to 0 - 2pi range return (a * (SLANG_PRELUDE_PI * 2)); } // ----------------------------- I32 ----------------------------------------- SLANG_FORCE_INLINE int32_t I32_abs(int32_t f) { return (f < 0) ? -f : f; } SLANG_FORCE_INLINE int32_t I32_min(int32_t a, int32_t b) { return a < b ? a : b; } SLANG_FORCE_INLINE int32_t I32_max(int32_t a, int32_t b) { return a > b ? a : b; } SLANG_FORCE_INLINE float I32_asfloat(int32_t x) { Union32 u; u.i = x; return u.f; } SLANG_FORCE_INLINE uint32_t I32_asuint(int32_t x) { return uint32_t(x); } SLANG_FORCE_INLINE double I32_asdouble(int32_t low, int32_t hi ) { Union64 u; u.u = (uint64_t(hi) << 32) | uint32_t(low); return u.d; } // ----------------------------- U32 ----------------------------------------- SLANG_FORCE_INLINE uint32_t U32_abs(uint32_t f) { return f; } SLANG_FORCE_INLINE uint32_t U32_min(uint32_t a, uint32_t b) { return a < b ? a : b; } SLANG_FORCE_INLINE uint32_t U32_max(uint32_t a, uint32_t b) { return a > b ? a : b; } SLANG_FORCE_INLINE float U32_asfloat(uint32_t x) { Union32 u; u.u = x; return u.f; } SLANG_FORCE_INLINE uint32_t U32_asint(int32_t x) { return uint32_t(x); } SLANG_FORCE_INLINE double U32_asdouble(uint32_t low, uint32_t hi) { Union64 u; u.u = (uint64_t(hi) << 32) | low; return u.d; } SLANG_FORCE_INLINE uint32_t U32_countbits(uint32_t v) { #if SLANG_GCC_FAMILY && !defined(SLANG_LLVM) return __builtin_popcount(v); #elif SLANG_PROCESSOR_X86_64 && SLANG_VC return __popcnt(v); #else uint32_t c = 0; while (v) { c++; v &= v - 1; } return c; #endif } // ----------------------------- U64 ----------------------------------------- SLANG_FORCE_INLINE uint64_t U64_abs(uint64_t f) { return f; } SLANG_FORCE_INLINE uint64_t U64_min(uint64_t a, uint64_t b) { return a < b ? a : b; } SLANG_FORCE_INLINE uint64_t U64_max(uint64_t a, uint64_t b) { return a > b ? a : b; } // TODO(JS): We don't define countbits for 64bit in stdlib currently. // It's not clear from documentation if it should return 32 or 64 bits, if it exists. // 32 bits can always hold the result, and will be implicitly promoted. SLANG_FORCE_INLINE uint32_t U64_countbits(uint64_t v) { #if SLANG_GCC_FAMILY && !defined(SLANG_LLVM) return uint32_t(__builtin_popcountl(v)); #elif SLANG_PROCESSOR_X86_64 && SLANG_VC return uint32_t(__popcnt64(v)); #else uint32_t c = 0; while (v) { c++; v &= v - 1; } return c; #endif } // ----------------------------- I64 ----------------------------------------- SLANG_FORCE_INLINE int64_t I64_abs(int64_t f) { return (f < 0) ? -f : f; } SLANG_FORCE_INLINE int64_t I64_min(int64_t a, int64_t b) { return a < b ? a : b; } SLANG_FORCE_INLINE int64_t I64_max(int64_t a, int64_t b) { return a > b ? a : b; } // ----------------------------- Interlocked --------------------------------- #if SLANG_LLVM #else // SLANG_LLVM # ifdef _WIN32 # include # endif SLANG_FORCE_INLINE void InterlockedAdd(uint32_t* dest, uint32_t value, uint32_t* oldValue) { # ifdef _WIN32 *oldValue = _InterlockedExchangeAdd((long*)dest, (long)value); # else *oldValue = __sync_fetch_and_add(dest, value); # endif } #endif // SLANG_LLVM // ----------------------- fmod -------------------------- SLANG_FORCE_INLINE float _slang_fmod(float x, float y) { return F32_fmod(x, y); } SLANG_FORCE_INLINE double _slang_fmod(double x, double y) { return F64_fmod(x, y); } #ifdef SLANG_PRELUDE_NAMESPACE } #endif #endif