File size: 2,255 Bytes
4ad45b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- trl
- reward-trainer
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert_social_reasoning_reward_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_social_reasoning_reward_model
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6145
- Accuracy: 0.6871
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6733 | 0.24 | 10 | 0.6564 | 0.6725 |
| 0.6475 | 0.48 | 20 | 0.6191 | 0.6708 |
| 0.655 | 0.72 | 30 | 0.6216 | 0.6708 |
| 0.6489 | 0.96 | 40 | 0.6311 | 0.6708 |
| 0.6204 | 1.2 | 50 | 0.6837 | 0.6147 |
| 0.5924 | 1.44 | 60 | 0.6329 | 0.6988 |
| 0.6124 | 1.68 | 70 | 0.6220 | 0.6620 |
| 0.6123 | 1.92 | 80 | 0.6366 | 0.6515 |
| 0.562 | 2.16 | 90 | 0.6584 | 0.6532 |
| 0.5169 | 2.4 | 100 | 0.6956 | 0.6410 |
| 0.5045 | 2.63 | 110 | 0.6823 | 0.6392 |
| 0.4712 | 2.87 | 120 | 0.6927 | 0.6375 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|