DarsiniRam commited on
Commit
bf90398
1 Parent(s): c2cd61c

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - FrozenLake-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: FrozenLake-v1
16
+ type: FrozenLake-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 0.50 +/- 0.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **FrozenLake-v1**
25
+ This is a trained model of a **DQN** agent playing **FrozenLake-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo dqn --env FrozenLake-v1 -orga DarsiniRam -f logs/
47
+ python -m rl_zoo3.enjoy --algo dqn --env FrozenLake-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo dqn --env FrozenLake-v1 -orga DarsiniRam -f logs/
53
+ python -m rl_zoo3.enjoy --algo dqn --env FrozenLake-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo dqn --env FrozenLake-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo dqn --env FrozenLake-v1 -f logs/ -orga DarsiniRam
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 32),
66
+ ('buffer_size', 100000),
67
+ ('exploration_final_eps', 0.01),
68
+ ('exploration_fraction', 0.1),
69
+ ('gradient_steps', 1),
70
+ ('learning_rate', 0.0001),
71
+ ('learning_starts', 1000),
72
+ ('n_timesteps', 100000.0),
73
+ ('optimize_memory_usage', False),
74
+ ('policy', 'MlpPolicy'),
75
+ ('target_update_interval', 1000),
76
+ ('train_freq', 4),
77
+ ('normalize', False)])
78
+ ```
79
+
80
+ # Environment Arguments
81
+ ```python
82
+ {'render_mode': 'rgb_array'}
83
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - dqn
4
+ - - conf_file
5
+ - fl_dqn.yml
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - FrozenLake-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - fl_logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - -1
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 363105297
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - ''
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 32
4
+ - - buffer_size
5
+ - 100000
6
+ - - exploration_final_eps
7
+ - 0.01
8
+ - - exploration_fraction
9
+ - 0.1
10
+ - - gradient_steps
11
+ - 1
12
+ - - learning_rate
13
+ - 0.0001
14
+ - - learning_starts
15
+ - 1000
16
+ - - n_timesteps
17
+ - 100000.0
18
+ - - optimize_memory_usage
19
+ - false
20
+ - - policy
21
+ - MlpPolicy
22
+ - - target_update_interval
23
+ - 1000
24
+ - - train_freq
25
+ - 4
dqn-FrozenLake-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08fe51fb44171399f49981e3a6e150458e64959293da1d37b4a3c0b94248e020
3
+ size 115453
dqn-FrozenLake-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.4.0a7
dqn-FrozenLake-v1/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x785671403910>",
9
+ "_build": "<function DQNPolicy._build at 0x7856714039a0>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x785671403a30>",
11
+ "forward": "<function DQNPolicy.forward at 0x785671403ac0>",
12
+ "_predict": "<function DQNPolicy._predict at 0x785671403b50>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x785671403be0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x785671403c70>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x78567141c740>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "num_timesteps": 100000,
21
+ "_total_timesteps": 100000,
22
+ "_num_timesteps_at_start": 0,
23
+ "seed": 0,
24
+ "action_noise": null,
25
+ "start_time": 1728008909333600695,
26
+ "learning_rate": {
27
+ ":type:": "<class 'function'>",
28
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
29
+ },
30
+ "tensorboard_log": null,
31
+ "_last_obs": null,
32
+ "_last_episode_starts": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_original_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
39
+ },
40
+ "_episode_num": 2993,
41
+ "use_sde": false,
42
+ "sde_sample_freq": -1,
43
+ "_current_progress_remaining": 0.0,
44
+ "_stats_window_size": 100,
45
+ "ep_info_buffer": {
46
+ ":type:": "<class 'collections.deque'>",
47
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSwmMAXSUR0Bg4uHYYixFdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0Bg41fJFLFodX2UKGgGRz/wAAAAAAAAaAdLG2gIR0Bg5HIhhYvGdX2UKGgGRz/wAAAAAAAAaAdLGWgIR0Bg5W9zwMH9dX2UKGgGRz/wAAAAAAAAaAdLDWgIR0Bg5fN1QqI8dX2UKGgGRz/wAAAAAAAAaAdLIWgIR0Bg5123azu4dX2UKGgGRz/wAAAAAAAAaAdLDWgIR0Bg5+T3Zf2LdX2UKGgGRz/wAAAAAAAAaAdLCmgIR0Bg6Fe0G/vfdX2UKGgGRwAAAAAAAAAAaAdLB2gIR0Bg6KNZNfw7dX2UKGgGRz/wAAAAAAAAaAdLI2gIR0Bg6iTfR/mUdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0Bg644jrzGxdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0Bg7+/nGKhtdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0Bg8MAaNuLrdX2UKGgGRwAAAAAAAAAAaAdLDWgIR0Bg8Tw+dK/VdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0Bg9VX7tRekdX2UKGgGRz/wAAAAAAAAaAdLWGgIR0Bg+Otr9EThdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0Bg+izNUwSKdX2UKGgGRz/wAAAAAAAAaAdLWGgIR0Bg/biXIEKWdX2UKGgGRwAAAAAAAAAAaAdLMWgIR0Bg/+b9ZRsNdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BhADrNW2gGdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0BhAhUWEbo9dX2UKGgGRz/wAAAAAAAAaAdLOmgIR0BhBINkOI69dX2UKGgGRwAAAAAAAAAAaAdLWGgIR0BhCBnL7oB8dX2UKGgGRz/wAAAAAAAAaAdLHmgIR0BhCXSjQAuJdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BhChEx7AtWdX2UKGgGRz/wAAAAAAAAaAdLKGgIR0BhC6be/Ho6dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0BhD4sZpBX0dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BhEBL/S6UadX2UKGgGRz/wAAAAAAAAaAdLK2gIR0BhEfq5byH3dX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BhEp6yB06pdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0BhE51ie/YbdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0BhFKij+JgtdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0BhFYhOgxrSdX2UKGgGRz/wAAAAAAAAaAdLVmgIR0BhGO/pMYdidX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BhGZQ+EAYIdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BhGjsjVx0ddX2UKGgGRz/wAAAAAAAAaAdLI2gIR0BhG9uHerMldX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BhHKHO8kD7dX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0BhHiDAaef7dX2UKGgGRz/wAAAAAAAAaAdLYmgIR0BhIlkauOjqdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0BhI5GlQ/HHdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0BhJzIT4+KTdX2UKGgGRwAAAAAAAAAAaAdLCGgIR0BhJ4MhHLA6dX2UKGgGRwAAAAAAAAAAaAdLKmgIR0BhKV7BwdbQdX2UKGgGRwAAAAAAAAAAaAdLMGgIR0BhKzsa86FNdX2UKGgGRz/wAAAAAAAAaAdLJmgIR0BhLLXlKbrkdX2UKGgGRwAAAAAAAAAAaAdLDWgIR0BhLTH2h7E6dX2UKGgGRz/wAAAAAAAAaAdLHmgIR0BhLnBi1AqvdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0BhLzHp8neBdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0BhM4QYk3S8dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BhNAYNy5qedX2UKGgGRz/wAAAAAAAAaAdLEWgIR0BhNLU1AJLNdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BhNTufEn9fdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0BhNh7PY4ACdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0BhN/y08eS0dX2UKGgGRz/wAAAAAAAAaAdLH2gIR0BhOSq6vq1PdX2UKGgGRwAAAAAAAAAAaAdLOGgIR0BhO3VG0/nodX2UKGgGRz/wAAAAAAAAaAdLI2gIR0BhPNa0QbuMdX2UKGgGRwAAAAAAAAAAaAdLW2gIR0BhQHVoYekpdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0BhQXLTx5LRdX2UKGgGRz/wAAAAAAAAaAdLKmgIR0BhQzurp7kXdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0BhRh3kgfU4dX2UKGgGRz/wAAAAAAAAaAdLUmgIR0BhSX5tWMjvdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BhSdJL/S6UdX2UKGgGRwAAAAAAAAAAaAdLDWgIR0BhSlK02LpBdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0BhTF+I/JNkdX2UKGgGRz/wAAAAAAAAaAdLPGgIR0BhTtZq20AtdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BhT1Tzd1uBdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0BhURQP7N0OdX2UKGgGRz/wAAAAAAAAaAdLKGgIR0BhUsuWa+ewdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BhU0l5WzWxdX2UKGgGRwAAAAAAAAAAaAdLHWgIR0BhVIZflZHNdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0BhVfp0OmSAdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0BhV31J17pndX2UKGgGRwAAAAAAAAAAaAdLKWgIR0BhWhttQ9A5dX2UKGgGRwAAAAAAAAAAaAdLNmgIR0BhXNbHIZIhdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BhXYnfEXLvdX2UKGgGRz/wAAAAAAAAaAdLNWgIR0BhYFF8XvYwdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BhYO4NI9TxdX2UKGgGRz/wAAAAAAAAaAdLLWgIR0BhYzTMJQchdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0BhZD1M/QjVdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0BhZQ5aNdZ8dX2UKGgGRz/wAAAAAAAAaAdLVmgIR0BhaYOOKfnPdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0Bhaij59E1EdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0Bha3ikwevIdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0BhbSq4pc5bdX2UKGgGRz/wAAAAAAAAaAdLM2gIR0Bhb8/KQq7RdX2UKGgGRwAAAAAAAAAAaAdLDGgIR0BhcGVC5VfedX2UKGgGRz/wAAAAAAAAaAdLGWgIR0Bhccmnfl6rdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0Bhdsb5uZTidX2UKGgGRwAAAAAAAAAAaAdLZGgIR0BhfCB3A2ycdX2UKGgGRwAAAAAAAAAAaAdLN2gIR0BhfxiPQv6CdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0BhgPxFy7wsdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0Bhgj7hvR7adX2UKGgGRz/wAAAAAAAAaAdLGGgIR0Bhg6iAUcn3dX2UKGgGRz/wAAAAAAAAaAdLH2gIR0BhhX9xZMcqdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0Bhhq33Hq/udX2UKGgGRz/wAAAAAAAAaAdLEGgIR0Bhh5GnXNC7dX2UKGgGRz/wAAAAAAAAaAdLMWgIR0BhihlrdnCgdX2UKGgGRwAAAAAAAAAAaAdLQmgIR0Bhjek1uR9xdWUu"
48
+ },
49
+ "ep_success_buffer": {
50
+ ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
52
+ },
53
+ "_n_updates": 24750,
54
+ "observation_space": {
55
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
56
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
57
+ "n": "16",
58
+ "start": "0",
59
+ "_shape": [],
60
+ "dtype": "int64",
61
+ "_np_random": null
62
+ },
63
+ "action_space": {
64
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
65
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
66
+ "n": "4",
67
+ "start": "0",
68
+ "_shape": [],
69
+ "dtype": "int64",
70
+ "_np_random": "Generator(PCG64)"
71
+ },
72
+ "n_envs": 1,
73
+ "buffer_size": 1,
74
+ "batch_size": 32,
75
+ "learning_starts": 1000,
76
+ "tau": 1.0,
77
+ "gamma": 0.99,
78
+ "gradient_steps": 1,
79
+ "optimize_memory_usage": false,
80
+ "replay_buffer_class": {
81
+ ":type:": "<class 'abc.ABCMeta'>",
82
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
83
+ "__module__": "stable_baselines3.common.buffers",
84
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
85
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
86
+ "__init__": "<function ReplayBuffer.__init__ at 0x785671549120>",
87
+ "add": "<function ReplayBuffer.add at 0x7856715491b0>",
88
+ "sample": "<function ReplayBuffer.sample at 0x785671549240>",
89
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7856715492d0>",
90
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x785671549360>)>",
91
+ "__abstractmethods__": "frozenset()",
92
+ "_abc_impl": "<_abc._abc_data object at 0x7856716c96c0>"
93
+ },
94
+ "replay_buffer_kwargs": {},
95
+ "train_freq": {
96
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
97
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
98
+ },
99
+ "use_sde_at_warmup": false,
100
+ "exploration_initial_eps": 1.0,
101
+ "exploration_final_eps": 0.01,
102
+ "exploration_fraction": 0.1,
103
+ "target_update_interval": 1000,
104
+ "_n_calls": 100000,
105
+ "max_grad_norm": 10,
106
+ "exploration_rate": 0.01,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVewQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCRoRH2UfZQoaBhoN2gnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWg/aC5OaC9oMUc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaExdlGhOfZR1hpSGUjAu"
110
+ },
111
+ "batch_norm_stats": [],
112
+ "batch_norm_stats_target": [],
113
+ "exploration_schedule": {
114
+ ":type:": "<class 'function'>",
115
+ ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLc0MGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/hHrhR64Ue4WUUpRoN0c/uZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
116
+ }
117
+ }
dqn-FrozenLake-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0256e76e451e899885619af010ad087b03f3a9fb1c11685225164074c55f8902
3
+ size 49504
dqn-FrozenLake-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b664bc4cc58066583a4c0e9c8756cba231b8771b8c5f376fc654c286f0f99184
3
+ size 48562
dqn-FrozenLake-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
dqn-FrozenLake-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.4.0a7
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
Binary file (394 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 0.5, "std_reward": 0.5, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-04T02:34:53.648940"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f7a043d46411856481100e9ed4a77ff0c7ede12d8e7ed1aebeae80161731a1f
3
+ size 54564