DarthReca commited on
Commit
f838de3
·
verified ·
1 Parent(s): 90d500a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -3
README.md CHANGED
@@ -1,3 +1,60 @@
1
- ---
2
- license: openrail
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ datasets:
4
+ - DarthReca/crisislandmark
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ tags:
9
+ - remote-sensing
10
+ - text-to-image-retrieval
11
+ - multimodal
12
+ - geospatial
13
+ - SAR
14
+ - multispectral
15
+ - crisis-management
16
+ - earth-observation
17
+ - contrastive-learning
18
+ base_model:
19
+ - sentence-transformers/all-MiniLM-L6-v2
20
+ ---
21
+ # CLOSP-VL
22
+
23
+ CLOSP (Contrastive Language Optical SAR Pretraining) is a multimodal architecture designed for text-to-image retrieval.
24
+ It creates a unified embedding space for text, Sentinel-2 (MSI), and Sentinel-1 (SAR) data.
25
+ The CLOSP-VL variant uses a ViT-large vision backbone.
26
+
27
+ ## Model Details
28
+ The model uses three separate encoders: one for text, one for Sentinel-1 (SAR) data, and one for Sentinel-2 (MSI) data.
29
+ During training, it uses a contrastive objective to align the textual embeddings with the corresponding visual embeddings (either SAR or MSI).
30
+
31
+
32
+ - **Developed by:** Daniele Rege Cambrin
33
+ - **Model type:** CLOSP
34
+ - **Language(s) (NLP):** english
35
+ - **License:** OpenRAIL
36
+ - **Finetuned from model:** [More Information Needed]
37
+ - **Repository:** [GitHub](https://github.com/DarthReca/closp)
38
+ - **Paper:** [ArXiv](https://arxiv.org/abs/2507.10403)
39
+
40
+ ## How to Get Started with the Model
41
+
42
+ Use the code below to get started with the model.
43
+
44
+ ```python
45
+ model = AutoModel.from_pretrained("DarthReca/CLOSP-VL", trust_remote_code=True)
46
+ ```
47
+
48
+ ## Citation
49
+
50
+ ```bibtex
51
+ @misc{cambrin2025texttoremotesensingimageretrievalrgbsources,
52
+ title={Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources},
53
+ author={Daniele Rege Cambrin and Lorenzo Vaiani and Giuseppe Gallipoli and Luca Cagliero and Paolo Garza},
54
+ year={2025},
55
+ eprint={2507.10403},
56
+ archivePrefix={arXiv},
57
+ primaryClass={cs.CV},
58
+ url={https://arxiv.org/abs/2507.10403},
59
+ }
60
+ ```