Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,50 @@
|
|
1 |
-
---
|
2 |
-
license: openrail
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: openrail
|
3 |
+
datasets:
|
4 |
+
- DarthReca/crisislandmark
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: torchgeo
|
8 |
+
tags:
|
9 |
+
- remote-sensing
|
10 |
+
- text-to-image-retrieval
|
11 |
+
- multimodal
|
12 |
+
- geospatial
|
13 |
+
- SAR
|
14 |
+
- multispectral
|
15 |
+
- crisis-management
|
16 |
+
- earth-observation
|
17 |
+
- contrastive-learning
|
18 |
+
---
|
19 |
+
# CLOSP
|
20 |
+
|
21 |
+
CLOSP (Contrastive Language Optical SAR Pretraining) is a multimodal architecture designed for text-to-image retrieval.
|
22 |
+
It creates a unified embedding space for text, Sentinel-2 (MSI), and Sentinel-1 (SAR) data.
|
23 |
+
|
24 |
+
This repository contains all the separate visual encoders in PyTorch format.
|
25 |
+
|
26 |
+
## Model Details
|
27 |
+
The model uses three separate encoders: one for text, one for Sentinel-1 (SAR) data, and one for Sentinel-2 (MSI) data.
|
28 |
+
During training, it uses a contrastive objective to align the textual embeddings with the corresponding visual embeddings (either SAR or MSI).
|
29 |
+
|
30 |
+
|
31 |
+
- **Developed by:** Daniele Rege Cambrin
|
32 |
+
- **Model type:** CLOSP
|
33 |
+
- **Language(s) (NLP):** english
|
34 |
+
- **License:** OpenRAIL
|
35 |
+
- **Repository:** [GitHub](https://github.com/DarthReca/closp)
|
36 |
+
- **Paper:** [ArXiv](https://arxiv.org/abs/2507.10403)
|
37 |
+
|
38 |
+
## Citation
|
39 |
+
|
40 |
+
```bibtex
|
41 |
+
@misc{cambrin2025texttoremotesensingimageretrievalrgbsources,
|
42 |
+
title={Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources},
|
43 |
+
author={Daniele Rege Cambrin and Lorenzo Vaiani and Giuseppe Gallipoli and Luca Cagliero and Paolo Garza},
|
44 |
+
year={2025},
|
45 |
+
eprint={2507.10403},
|
46 |
+
archivePrefix={arXiv},
|
47 |
+
primaryClass={cs.CV},
|
48 |
+
url={https://arxiv.org/abs/2507.10403},
|
49 |
+
}
|
50 |
+
```
|