--- license: creativeml-openrail-m datasets: - DarthReca/crisislandmark language: - en library_name: torchgeo tags: - remote-sensing - text-to-image-retrieval - multimodal - geospatial - SAR - multispectral - crisis-management - earth-observation - contrastive-learning --- # CLOSP CLOSP (Contrastive Language Optical SAR Pretraining) is a multimodal architecture designed for text-to-image retrieval. It creates a unified embedding space for text, Sentinel-2 (MSI), and Sentinel-1 (SAR) data. This repository contains all the separate visual encoders in PyTorch format. ## Model Details The model uses three separate encoders: one for text, one for Sentinel-1 (SAR) data, and one for Sentinel-2 (MSI) data. During training, it uses a contrastive objective to align the textual embeddings with the corresponding visual embeddings (either SAR or MSI). - **Developed by:** Daniele Rege Cambrin - **Model type:** CLOSP - **Language(s) (NLP):** english - **License:** CreativeML-OpenRAIL-M - **Repository:** [GitHub](https://github.com/DarthReca/closp) - **Paper:** [ArXiv](https://arxiv.org/abs/2507.10403) ## Citation ```bibtex @misc{cambrin2025texttoremotesensingimageretrievalrgbsources, title={Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources}, author={Daniele Rege Cambrin and Lorenzo Vaiani and Giuseppe Gallipoli and Luca Cagliero and Paolo Garza}, year={2025}, eprint={2507.10403}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2507.10403}, } ```