DarthVadar commited on
Commit
e3adcbd
·
1 Parent(s): 961b43e

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo-LunarLander-v2
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -149.95 +/- 46.69
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f48d6180290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48d6180320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48d61803b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48d6180440>", "_build": "<function ActorCriticPolicy._build at 0x7f48d61804d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f48d6180560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48d61805f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f48d6180680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48d6180710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48d61807a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48d6180830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f48d61bdbd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 500, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651678036.3659234, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABDJlz4T9UM/U315P5XPdb8jXhq/Yri5vgAAAAAAAAAAs2HcPkkwsT+DMRc/7kAGvyc2G77tU6o+AAAAAAAAAABz7lg+jHiJPyxVET/iHzq/pOOcvpF/hL4AAAAAAAAAAKadLT7vj6s/YkjtPrQUP79GNX6/GJ00vwAAAAAAAAAAAC1tvaZhqz9offS++VC2vpC5wD1l1/89AAAAAAAAAADj3We+WueIPxsxOb/rtEi/zagQP9Zz5T4AAAAAAAAAAAB4AD3Q+a8/1iNOPxzs4b5IdzW9Zk2FvgAAAAAAAAAAYH85PuXiwz6dYKc+Q6mcv6TJkb4NU4y9AAAAAAAAAADNNBk8BqyvP5K4mT6wHRC/lfkFvFZsWb0AAAAAAAAAAJoXFj0sb7Y/irABP9oIPDxGrYi8mG/2PAAAAAAAAAAANquYvnb/sz8F1mC/zKRWvk/11T6K1Xc+AAAAAAAAAADz57896nu1P/o36j1SNx6/9It+PEJbHz4AAAAAAAAAAPbiHT+/uhE/HIKJP8EQhr96+tS+SoI6vgAAAAAAAAAAgn0hv1V3rT++WkG/F44GvxQrsr4V3pC+AAAAAAAAAADj2Kw+Z3J1P0P+Oj+JCze/X7ErvjIYBbwAAAAAAAAAAHPGrr0zTaU/08Ypv6nb/r66osg9KvwoPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -31.768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH/gYrPiZdcCUhpRSlIwBbJRLUYwBdJRHQC7awQlKK511fZQoaAZoCWgPQwix/Pm2YExzwJSGlFKUaBVLcmgWR0Au7jurp7kXdX2UKGgGaAloD0MI26fjMYOwY8CUhpRSlGgVS0NoFkdALwmYBvJiiXV9lChoBmgJaA9DCNcWnpeKz1bAlIaUUpRoFUtGaBZHQC8RjnV5KOF1fZQoaAZoCWgPQwiPcFrwog9gwJSGlFKUaBVLamgWR0AvD62v0RODdX2UKGgGaAloD0MIIxRbQdNwVcCUhpRSlGgVSz1oFkdALy109yLhrHV9lChoBmgJaA9DCNuIJ7uZfnLAlIaUUpRoFUtUaBZHQC81mYjSofl1fZQoaAZoCWgPQwhTspyE0lJdwJSGlFKUaBVLg2gWR0AvUJ3PiT+vdX2UKGgGaAloD0MIgJnv4Kd3YcCUhpRSlGgVS2xoFkdAL1lxOtW+5HV9lChoBmgJaA9DCL+1EyUhNFjAlIaUUpRoFUtmaBZHQC9neDWbw0B1fZQoaAZoCWgPQwirJoi6z6RxwJSGlFKUaBVLVWgWR0AvndE9dNWVdX2UKGgGaAloD0MIkQ96NquuU8CUhpRSlGgVSzpoFkdAL7eVC5VfeHV9lChoBmgJaA9DCLvVc9L7y2rAlIaUUpRoFUtPaBZHQC+2TX8O09h1fZQoaAZoCWgPQwjeOv92mXJ8wJSGlFKUaBVLX2gWR0AvvnMdLg4wdX2UKGgGaAloD0MII2jMJCqEccCUhpRSlGgVS2VoFkdAL8DJEH+qBHV9lChoBmgJaA9DCPAyw0bZC3/AlIaUUpRoFUt4aBZHQC/MYoAn2Ix1fZQoaAZoCWgPQwiFsYUgx79ywJSGlFKUaBVLeGgWR0Av1IGyHEdedX2UKGgGaAloD0MI3+ALk6l4UsCUhpRSlGgVS01oFkdAL+kidJ8OTnV9lChoBmgJaA9DCDwXRnpR0m/AlIaUUpRoFUtjaBZHQC/0jPfKp1l1fZQoaAZoCWgPQwgWwmosYahhwJSGlFKUaBVLRWgWR0AwBbX6InBtdX2UKGgGaAloD0MIbhPulfmZdcCUhpRSlGgVS05oFkdAMAT2rXDm83V9lChoBmgJaA9DCOj0vBvLyXHAlIaUUpRoFUtfaBZHQDALqkdmxt51fZQoaAZoCWgPQwg89rNYitQswJSGlFKUaBVLbWgWR0AwET/ACW/rdX2UKGgGaAloD0MIoUrNHmjPXsCUhpRSlGgVS1VoFkdAMBE2Hck+o3V9lChoBmgJaA9DCN+LL9rjNWrAlIaUUpRoFUtdaBZHQDAnYh+vyLB1fZQoaAZoCWgPQwi9UwH3/Bh2wJSGlFKUaBVLUWgWR0AwPVafSQYDdX2UKGgGaAloD0MIG2ZoPFFSecCUhpRSlGgVS1NoFkdAMEzXz19ORHV9lChoBmgJaA9DCLeb4JumPl3AlIaUUpRoFUtzaBZHQDBQriEQGwB1fZQoaAZoCWgPQwgZV1wcVcdwwJSGlFKUaBVLVWgWR0AwU+CK77KrdX2UKGgGaAloD0MIuqKUEKygZMCUhpRSlGgVS1xoFkdAMFonrpqynnV9lChoBmgJaA9DCMAHr13a6FzAlIaUUpRoFUtLaBZHQDBg6Mir1dx1fZQoaAZoCWgPQwizRdJu9B9ywJSGlFKUaBVLYmgWR0AwcASnLq2SdX2UKGgGaAloD0MIYCFzZRBJd8CUhpRSlGgVS1BoFkdAMHMF2V3Ux3V9lChoBmgJaA9DCHJPV3csS2HAlIaUUpRoFUtKaBZHQDB3X9R77bd1fZQoaAZoCWgPQwh324Xmus1swJSGlFKUaBVLUmgWR0AwfJlrdnCgdX2UKGgGaAloD0MI5+CZ0CSIUMCUhpRSlGgVS3VoFkdAMIX6uW8h93V9lChoBmgJaA9DCAaBlUOLbA5AlIaUUpRoFUtgaBZHQDCJqIrOJLx1fZQoaAZoCWgPQwj/W8mODaxzwJSGlFKUaBVLd2gWR0AwlsY2sJY1dX2UKGgGaAloD0MIh22LMhsDVsCUhpRSlGgVSzloFkdAMKCj1wo9cXV9lChoBmgJaA9DCEYiNIINlXPAlIaUUpRoFUuTaBZHQDCoPlMh5gR1fZQoaAZoCWgPQwgrwHebtwV8wJSGlFKUaBVLdGgWR0AwsKkEcKgJdX2UKGgGaAloD0MIKjdRS3MycMCUhpRSlGgVS2toFkdAML0XpGFzuHV9lChoBmgJaA9DCODVcmcm11XAlIaUUpRoFUtaaBZHQDDTtBv73wl1fZQoaAZoCWgPQwiUwVHy6qRSwJSGlFKUaBVLQmgWR0Aw1X531SOzdX2UKGgGaAloD0MI+YbCZ+uzbcCUhpRSlGgVS3VoFkdAMN2nTAnDznV9lChoBmgJaA9DCDJWm/9XB1nAlIaUUpRoFUtMaBZHQDDerR0EHMV1fZQoaAZoCWgPQwiC4VzDjBV3wJSGlFKUaBVLbmgWR0Aw4rTpgTh6dX2UKGgGaAloD0MInBpoPmdidMCUhpRSlGgVS3xoFkdAMPk3n6l+E3V9lChoBmgJaA9DCHuDL0wmN2zAlIaUUpRoFUtSaBZHQDD5IbwSamZ1fZQoaAZoCWgPQwj5Zpsb06pWwJSGlFKUaBVLPWgWR0Aw+/8VHnU2dX2UKGgGaAloD0MI9KeN6nRKacCUhpRSlGgVS2ZoFkdAMP3F1jiGWXV9lChoBmgJaA9DCCE6BI4EhlbAlIaUUpRoFUtoaBZHQDD96dDpkf91fZQoaAZoCWgPQwhmahK8IeNqwJSGlFKUaBVLPGgWR0AxApDeCTUzdX2UKGgGaAloD0MIEFg5tMiQZ8CUhpRSlGgVS15oFkdAMQXeJpFkQXV9lChoBmgJaA9DCHszar7Kt2nAlIaUUpRoFUt8aBZHQDEJkPMB6rx1fZQoaAZoCWgPQwgOZhNgWPBqwJSGlFKUaBVLWWgWR0AxF4t6HCXQdX2UKGgGaAloD0MIUyKJXkbTYcCUhpRSlGgVS2JoFkdAMRnLJSzgM3V9lChoBmgJaA9DCI0kQbgC2kFAlIaUUpRoFUtRaBZHQDEnu0CzTnd1fZQoaAZoCWgPQwg+WwcHe/dKwJSGlFKUaBVLUGgWR0AxS4e9zwMIdX2UKGgGaAloD0MI/dgkP2LdccCUhpRSlGgVS1xoFkdAMU99H+ZPVXV9lChoBmgJaA9DCHNp/MIrOFbAlIaUUpRoFUtAaBZHQDFVHavicXp1fZQoaAZoCWgPQwi6FFeVfTlbwJSGlFKUaBVLSGgWR0AxWWaMJhOQdX2UKGgGaAloD0MIf/s6cI7ocMCUhpRSlGgVS0hoFkdAMWK//NqxknV9lChoBmgJaA9DCJymzw74InDAlIaUUpRoFUtSaBZHQDFoQkHD7651fZQoaAZoCWgPQwj59q5BX3hawJSGlFKUaBVLb2gWR0AxcPMB6rvLdX2UKGgGaAloD0MIv9alRmjhbcCUhpRSlGgVS1xoFkdAMXIcvM8oyHV9lChoBmgJaA9DCDtSfecXNmzAlIaUUpRoFUtyaBZHQDF0f8uSOip1fZQoaAZoCWgPQwgzUBn/PhFlwJSGlFKUaBVLXmgWR0AxdL9/BnBddX2UKGgGaAloD0MIe/SG+0iGYMCUhpRSlGgVS1RoFkdAMXewgTyrgnV9lChoBmgJaA9DCLGKNzKP5WLAlIaUUpRoFUuDaBZHQDGA86mwaBJ1fZQoaAZoCWgPQwgR/7ClRyZgwJSGlFKUaBVLQ2gWR0AxgOYIBzV+dX2UKGgGaAloD0MIesN95BYieMCUhpRSlGgVS1xoFkdAMZANG3F1jnV9lChoBmgJaA9DCOp29pUHPmXAlIaUUpRoFUtgaBZHQDGXC53C9AZ1fZQoaAZoCWgPQwjm5bD7jl1UwJSGlFKUaBVLQGgWR0AxoS6DoQnQdX2UKGgGaAloD0MI88ZJYd48U8CUhpRSlGgVSz9oFkdAMalz2exwAHV9lChoBmgJaA9DCA1wQbYslm7AlIaUUpRoFUuOaBZHQDG0Pd2xIJ91fZQoaAZoCWgPQwjAXmHB/YRRwJSGlFKUaBVLOmgWR0AxvcgQpWmxdX2UKGgGaAloD0MIYYvdPisxdsCUhpRSlGgVS0loFkdAMcB/iHZbp3V9lChoBmgJaA9DCBnKiXYVdl/AlIaUUpRoFUs7aBZHQDHK7GvOhTR1fZQoaAZoCWgPQwgRbjKqDNJYwJSGlFKUaBVLS2gWR0Ax0EdNnGsFdX2UKGgGaAloD0MIqgt4mWFwacCUhpRSlGgVS0ZoFkdAMc9hRZU1h3V9lChoBmgJaA9DCEyqtpvg9FjAlIaUUpRoFUtDaBZHQDHVbILgGbF1fZQoaAZoCWgPQwgMlBRYAHZywJSGlFKUaBVLdWgWR0Ax6f/WDpTudX2UKGgGaAloD0MILNZwkXveZMCUhpRSlGgVS35oFkdAMeyrHU+cIHV9lChoBmgJaA9DCHe688RzQVzAlIaUUpRoFUtNaBZHQDHyDXe3x4J1fZQoaAZoCWgPQwiKP4o68yBlwJSGlFKUaBVLZWgWR0Ax9FId2gWadX2UKGgGaAloD0MIvVErTN9IXsCUhpRSlGgVS0poFkdAMfXTy8SPEXV9lChoBmgJaA9DCAe2SrA42FnAlIaUUpRoFUtyaBZHQDH5senyd4F1fZQoaAZoCWgPQwiWQbXBCUlmwJSGlFKUaBVLTmgWR0AyBTFl05lwdX2UKGgGaAloD0MIUoAomDG/YMCUhpRSlGgVSztoFkdAMguzIFNcnnV9lChoBmgJaA9DCEVj7e+sWHbAlIaUUpRoFUtVaBZHQDIYB5ooNNJ1fZQoaAZoCWgPQwh1H4DUpkJhwJSGlFKUaBVLUmgWR0AyHu1WsA/+dX2UKGgGaAloD0MI96sA3+0yeMCUhpRSlGgVS4poFkdAMiHhOxjawnV9lChoBmgJaA9DCIcUAySaolDAlIaUUpRoFUtWaBZHQDIsTVUdaMd1fZQoaAZoCWgPQwj/PXjt0hZNwJSGlFKUaBVLRGgWR0AyLgVoHs1LdX2UKGgGaAloD0MI/YUeMXpwecCUhpRSlGgVS2JoFkdAMk5LqUu+RHV9lChoBmgJaA9DCM3IIHeR8mzAlIaUUpRoFUtgaBZHQDJRVktmL+B1fZQoaAZoCWgPQwhENpAu9vJ2wJSGlFKUaBVLZWgWR0AyVz/IbOu8dX2UKGgGaAloD0MIIEYIj7aSbcCUhpRSlGgVS0xoFkdAMlwO4G2TgXV9lChoBmgJaA9DCJzfMNEgkFjAlIaUUpRoFUtOaBZHQDJczCUHIIZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
first_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df3b958f0fc488a6d80e4bc71b23add6852731547cbfd5e5e144a0c2d8aab113
3
+ size 143896
first_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
first_model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f48d6180290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48d6180320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48d61803b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48d6180440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f48d61804d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f48d6180560>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48d61805f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f48d6180680>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48d6180710>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48d61807a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48d6180830>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f48d61bdbd0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 500,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651678036.3659234,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABDJlz4T9UM/U315P5XPdb8jXhq/Yri5vgAAAAAAAAAAs2HcPkkwsT+DMRc/7kAGvyc2G77tU6o+AAAAAAAAAABz7lg+jHiJPyxVET/iHzq/pOOcvpF/hL4AAAAAAAAAAKadLT7vj6s/YkjtPrQUP79GNX6/GJ00vwAAAAAAAAAAAC1tvaZhqz9offS++VC2vpC5wD1l1/89AAAAAAAAAADj3We+WueIPxsxOb/rtEi/zagQP9Zz5T4AAAAAAAAAAAB4AD3Q+a8/1iNOPxzs4b5IdzW9Zk2FvgAAAAAAAAAAYH85PuXiwz6dYKc+Q6mcv6TJkb4NU4y9AAAAAAAAAADNNBk8BqyvP5K4mT6wHRC/lfkFvFZsWb0AAAAAAAAAAJoXFj0sb7Y/irABP9oIPDxGrYi8mG/2PAAAAAAAAAAANquYvnb/sz8F1mC/zKRWvk/11T6K1Xc+AAAAAAAAAADz57896nu1P/o36j1SNx6/9It+PEJbHz4AAAAAAAAAAPbiHT+/uhE/HIKJP8EQhr96+tS+SoI6vgAAAAAAAAAAgn0hv1V3rT++WkG/F44GvxQrsr4V3pC+AAAAAAAAAADj2Kw+Z3J1P0P+Oj+JCze/X7ErvjIYBbwAAAAAAAAAAHPGrr0zTaU/08Ypv6nb/r66osg9KvwoPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -31.768,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH/gYrPiZdcCUhpRSlIwBbJRLUYwBdJRHQC7awQlKK511fZQoaAZoCWgPQwix/Pm2YExzwJSGlFKUaBVLcmgWR0Au7jurp7kXdX2UKGgGaAloD0MI26fjMYOwY8CUhpRSlGgVS0NoFkdALwmYBvJiiXV9lChoBmgJaA9DCNcWnpeKz1bAlIaUUpRoFUtGaBZHQC8RjnV5KOF1fZQoaAZoCWgPQwiPcFrwog9gwJSGlFKUaBVLamgWR0AvD62v0RODdX2UKGgGaAloD0MIIxRbQdNwVcCUhpRSlGgVSz1oFkdALy109yLhrHV9lChoBmgJaA9DCNuIJ7uZfnLAlIaUUpRoFUtUaBZHQC81mYjSofl1fZQoaAZoCWgPQwhTspyE0lJdwJSGlFKUaBVLg2gWR0AvUJ3PiT+vdX2UKGgGaAloD0MIgJnv4Kd3YcCUhpRSlGgVS2xoFkdAL1lxOtW+5HV9lChoBmgJaA9DCL+1EyUhNFjAlIaUUpRoFUtmaBZHQC9neDWbw0B1fZQoaAZoCWgPQwirJoi6z6RxwJSGlFKUaBVLVWgWR0AvndE9dNWVdX2UKGgGaAloD0MIkQ96NquuU8CUhpRSlGgVSzpoFkdAL7eVC5VfeHV9lChoBmgJaA9DCLvVc9L7y2rAlIaUUpRoFUtPaBZHQC+2TX8O09h1fZQoaAZoCWgPQwjeOv92mXJ8wJSGlFKUaBVLX2gWR0AvvnMdLg4wdX2UKGgGaAloD0MII2jMJCqEccCUhpRSlGgVS2VoFkdAL8DJEH+qBHV9lChoBmgJaA9DCPAyw0bZC3/AlIaUUpRoFUt4aBZHQC/MYoAn2Ix1fZQoaAZoCWgPQwiFsYUgx79ywJSGlFKUaBVLeGgWR0Av1IGyHEdedX2UKGgGaAloD0MI3+ALk6l4UsCUhpRSlGgVS01oFkdAL+kidJ8OTnV9lChoBmgJaA9DCDwXRnpR0m/AlIaUUpRoFUtjaBZHQC/0jPfKp1l1fZQoaAZoCWgPQwgWwmosYahhwJSGlFKUaBVLRWgWR0AwBbX6InBtdX2UKGgGaAloD0MIbhPulfmZdcCUhpRSlGgVS05oFkdAMAT2rXDm83V9lChoBmgJaA9DCOj0vBvLyXHAlIaUUpRoFUtfaBZHQDALqkdmxt51fZQoaAZoCWgPQwg89rNYitQswJSGlFKUaBVLbWgWR0AwET/ACW/rdX2UKGgGaAloD0MIoUrNHmjPXsCUhpRSlGgVS1VoFkdAMBE2Hck+o3V9lChoBmgJaA9DCN+LL9rjNWrAlIaUUpRoFUtdaBZHQDAnYh+vyLB1fZQoaAZoCWgPQwi9UwH3/Bh2wJSGlFKUaBVLUWgWR0AwPVafSQYDdX2UKGgGaAloD0MIG2ZoPFFSecCUhpRSlGgVS1NoFkdAMEzXz19ORHV9lChoBmgJaA9DCLeb4JumPl3AlIaUUpRoFUtzaBZHQDBQriEQGwB1fZQoaAZoCWgPQwgZV1wcVcdwwJSGlFKUaBVLVWgWR0AwU+CK77KrdX2UKGgGaAloD0MIuqKUEKygZMCUhpRSlGgVS1xoFkdAMFonrpqynnV9lChoBmgJaA9DCMAHr13a6FzAlIaUUpRoFUtLaBZHQDBg6Mir1dx1fZQoaAZoCWgPQwizRdJu9B9ywJSGlFKUaBVLYmgWR0AwcASnLq2SdX2UKGgGaAloD0MIYCFzZRBJd8CUhpRSlGgVS1BoFkdAMHMF2V3Ux3V9lChoBmgJaA9DCHJPV3csS2HAlIaUUpRoFUtKaBZHQDB3X9R77bd1fZQoaAZoCWgPQwh324Xmus1swJSGlFKUaBVLUmgWR0AwfJlrdnCgdX2UKGgGaAloD0MI5+CZ0CSIUMCUhpRSlGgVS3VoFkdAMIX6uW8h93V9lChoBmgJaA9DCAaBlUOLbA5AlIaUUpRoFUtgaBZHQDCJqIrOJLx1fZQoaAZoCWgPQwj/W8mODaxzwJSGlFKUaBVLd2gWR0AwlsY2sJY1dX2UKGgGaAloD0MIh22LMhsDVsCUhpRSlGgVSzloFkdAMKCj1wo9cXV9lChoBmgJaA9DCEYiNIINlXPAlIaUUpRoFUuTaBZHQDCoPlMh5gR1fZQoaAZoCWgPQwgrwHebtwV8wJSGlFKUaBVLdGgWR0AwsKkEcKgJdX2UKGgGaAloD0MIKjdRS3MycMCUhpRSlGgVS2toFkdAML0XpGFzuHV9lChoBmgJaA9DCODVcmcm11XAlIaUUpRoFUtaaBZHQDDTtBv73wl1fZQoaAZoCWgPQwiUwVHy6qRSwJSGlFKUaBVLQmgWR0Aw1X531SOzdX2UKGgGaAloD0MI+YbCZ+uzbcCUhpRSlGgVS3VoFkdAMN2nTAnDznV9lChoBmgJaA9DCDJWm/9XB1nAlIaUUpRoFUtMaBZHQDDerR0EHMV1fZQoaAZoCWgPQwiC4VzDjBV3wJSGlFKUaBVLbmgWR0Aw4rTpgTh6dX2UKGgGaAloD0MInBpoPmdidMCUhpRSlGgVS3xoFkdAMPk3n6l+E3V9lChoBmgJaA9DCHuDL0wmN2zAlIaUUpRoFUtSaBZHQDD5IbwSamZ1fZQoaAZoCWgPQwj5Zpsb06pWwJSGlFKUaBVLPWgWR0Aw+/8VHnU2dX2UKGgGaAloD0MI9KeN6nRKacCUhpRSlGgVS2ZoFkdAMP3F1jiGWXV9lChoBmgJaA9DCCE6BI4EhlbAlIaUUpRoFUtoaBZHQDD96dDpkf91fZQoaAZoCWgPQwhmahK8IeNqwJSGlFKUaBVLPGgWR0AxApDeCTUzdX2UKGgGaAloD0MIEFg5tMiQZ8CUhpRSlGgVS15oFkdAMQXeJpFkQXV9lChoBmgJaA9DCHszar7Kt2nAlIaUUpRoFUt8aBZHQDEJkPMB6rx1fZQoaAZoCWgPQwgOZhNgWPBqwJSGlFKUaBVLWWgWR0AxF4t6HCXQdX2UKGgGaAloD0MIUyKJXkbTYcCUhpRSlGgVS2JoFkdAMRnLJSzgM3V9lChoBmgJaA9DCI0kQbgC2kFAlIaUUpRoFUtRaBZHQDEnu0CzTnd1fZQoaAZoCWgPQwg+WwcHe/dKwJSGlFKUaBVLUGgWR0AxS4e9zwMIdX2UKGgGaAloD0MI/dgkP2LdccCUhpRSlGgVS1xoFkdAMU99H+ZPVXV9lChoBmgJaA9DCHNp/MIrOFbAlIaUUpRoFUtAaBZHQDFVHavicXp1fZQoaAZoCWgPQwi6FFeVfTlbwJSGlFKUaBVLSGgWR0AxWWaMJhOQdX2UKGgGaAloD0MIf/s6cI7ocMCUhpRSlGgVS0hoFkdAMWK//NqxknV9lChoBmgJaA9DCJymzw74InDAlIaUUpRoFUtSaBZHQDFoQkHD7651fZQoaAZoCWgPQwj59q5BX3hawJSGlFKUaBVLb2gWR0AxcPMB6rvLdX2UKGgGaAloD0MIv9alRmjhbcCUhpRSlGgVS1xoFkdAMXIcvM8oyHV9lChoBmgJaA9DCDtSfecXNmzAlIaUUpRoFUtyaBZHQDF0f8uSOip1fZQoaAZoCWgPQwgzUBn/PhFlwJSGlFKUaBVLXmgWR0AxdL9/BnBddX2UKGgGaAloD0MIe/SG+0iGYMCUhpRSlGgVS1RoFkdAMXewgTyrgnV9lChoBmgJaA9DCLGKNzKP5WLAlIaUUpRoFUuDaBZHQDGA86mwaBJ1fZQoaAZoCWgPQwgR/7ClRyZgwJSGlFKUaBVLQ2gWR0AxgOYIBzV+dX2UKGgGaAloD0MIesN95BYieMCUhpRSlGgVS1xoFkdAMZANG3F1jnV9lChoBmgJaA9DCOp29pUHPmXAlIaUUpRoFUtgaBZHQDGXC53C9AZ1fZQoaAZoCWgPQwjm5bD7jl1UwJSGlFKUaBVLQGgWR0AxoS6DoQnQdX2UKGgGaAloD0MI88ZJYd48U8CUhpRSlGgVSz9oFkdAMalz2exwAHV9lChoBmgJaA9DCA1wQbYslm7AlIaUUpRoFUuOaBZHQDG0Pd2xIJ91fZQoaAZoCWgPQwjAXmHB/YRRwJSGlFKUaBVLOmgWR0AxvcgQpWmxdX2UKGgGaAloD0MIYYvdPisxdsCUhpRSlGgVS0loFkdAMcB/iHZbp3V9lChoBmgJaA9DCBnKiXYVdl/AlIaUUpRoFUs7aBZHQDHK7GvOhTR1fZQoaAZoCWgPQwgRbjKqDNJYwJSGlFKUaBVLS2gWR0Ax0EdNnGsFdX2UKGgGaAloD0MIqgt4mWFwacCUhpRSlGgVS0ZoFkdAMc9hRZU1h3V9lChoBmgJaA9DCEyqtpvg9FjAlIaUUpRoFUtDaBZHQDHVbILgGbF1fZQoaAZoCWgPQwgMlBRYAHZywJSGlFKUaBVLdWgWR0Ax6f/WDpTudX2UKGgGaAloD0MILNZwkXveZMCUhpRSlGgVS35oFkdAMeyrHU+cIHV9lChoBmgJaA9DCHe688RzQVzAlIaUUpRoFUtNaBZHQDHyDXe3x4J1fZQoaAZoCWgPQwiKP4o68yBlwJSGlFKUaBVLZWgWR0Ax9FId2gWadX2UKGgGaAloD0MIvVErTN9IXsCUhpRSlGgVS0poFkdAMfXTy8SPEXV9lChoBmgJaA9DCAe2SrA42FnAlIaUUpRoFUtyaBZHQDH5senyd4F1fZQoaAZoCWgPQwiWQbXBCUlmwJSGlFKUaBVLTmgWR0AyBTFl05lwdX2UKGgGaAloD0MIUoAomDG/YMCUhpRSlGgVSztoFkdAMguzIFNcnnV9lChoBmgJaA9DCEVj7e+sWHbAlIaUUpRoFUtVaBZHQDIYB5ooNNJ1fZQoaAZoCWgPQwh1H4DUpkJhwJSGlFKUaBVLUmgWR0AyHu1WsA/+dX2UKGgGaAloD0MI96sA3+0yeMCUhpRSlGgVS4poFkdAMiHhOxjawnV9lChoBmgJaA9DCIcUAySaolDAlIaUUpRoFUtWaBZHQDIsTVUdaMd1fZQoaAZoCWgPQwj/PXjt0hZNwJSGlFKUaBVLRGgWR0AyLgVoHs1LdX2UKGgGaAloD0MI/YUeMXpwecCUhpRSlGgVS2JoFkdAMk5LqUu+RHV9lChoBmgJaA9DCM3IIHeR8mzAlIaUUpRoFUtgaBZHQDJRVktmL+B1fZQoaAZoCWgPQwhENpAu9vJ2wJSGlFKUaBVLZWgWR0AyVz/IbOu8dX2UKGgGaAloD0MIIEYIj7aSbcCUhpRSlGgVS0xoFkdAMlwO4G2TgXV9lChoBmgJaA9DCJzfMNEgkFjAlIaUUpRoFUtOaBZHQDJczCUHIIZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
first_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fa4eecdeace5ded53ee8e67e0c253c738857d335bb3d31028c53970ffe6595e
3
+ size 84829
first_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5345d378b0786cf9f62384dd6711d87e40718aaaf838b49d9dc575ebc41e45a5
3
+ size 43201
first_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ddc510745e175d8f8cea29702cda51b8309b5206828eef8b741c2eb31fdd0ed
3
+ size 193810
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -149.9539720240049, "std_reward": 46.69392746173957, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T15:30:04.430902"}