DarthVadar
commited on
Commit
·
e3adcbd
1
Parent(s):
961b43e
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- first_model.zip +3 -0
- first_model/_stable_baselines3_version +1 -0
- first_model/data +94 -0
- first_model/policy.optimizer.pth +3 -0
- first_model/policy.pth +3 -0
- first_model/pytorch_variables.pth +3 -0
- first_model/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo-LunarLander-v2
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -149.95 +/- 46.69
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f48d6180290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48d6180320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48d61803b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48d6180440>", "_build": "<function ActorCriticPolicy._build at 0x7f48d61804d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f48d6180560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48d61805f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f48d6180680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48d6180710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48d61807a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48d6180830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f48d61bdbd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 500, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651678036.3659234, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABDJlz4T9UM/U315P5XPdb8jXhq/Yri5vgAAAAAAAAAAs2HcPkkwsT+DMRc/7kAGvyc2G77tU6o+AAAAAAAAAABz7lg+jHiJPyxVET/iHzq/pOOcvpF/hL4AAAAAAAAAAKadLT7vj6s/YkjtPrQUP79GNX6/GJ00vwAAAAAAAAAAAC1tvaZhqz9offS++VC2vpC5wD1l1/89AAAAAAAAAADj3We+WueIPxsxOb/rtEi/zagQP9Zz5T4AAAAAAAAAAAB4AD3Q+a8/1iNOPxzs4b5IdzW9Zk2FvgAAAAAAAAAAYH85PuXiwz6dYKc+Q6mcv6TJkb4NU4y9AAAAAAAAAADNNBk8BqyvP5K4mT6wHRC/lfkFvFZsWb0AAAAAAAAAAJoXFj0sb7Y/irABP9oIPDxGrYi8mG/2PAAAAAAAAAAANquYvnb/sz8F1mC/zKRWvk/11T6K1Xc+AAAAAAAAAADz57896nu1P/o36j1SNx6/9It+PEJbHz4AAAAAAAAAAPbiHT+/uhE/HIKJP8EQhr96+tS+SoI6vgAAAAAAAAAAgn0hv1V3rT++WkG/F44GvxQrsr4V3pC+AAAAAAAAAADj2Kw+Z3J1P0P+Oj+JCze/X7ErvjIYBbwAAAAAAAAAAHPGrr0zTaU/08Ypv6nb/r66osg9KvwoPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -31.768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH/gYrPiZdcCUhpRSlIwBbJRLUYwBdJRHQC7awQlKK511fZQoaAZoCWgPQwix/Pm2YExzwJSGlFKUaBVLcmgWR0Au7jurp7kXdX2UKGgGaAloD0MI26fjMYOwY8CUhpRSlGgVS0NoFkdALwmYBvJiiXV9lChoBmgJaA9DCNcWnpeKz1bAlIaUUpRoFUtGaBZHQC8RjnV5KOF1fZQoaAZoCWgPQwiPcFrwog9gwJSGlFKUaBVLamgWR0AvD62v0RODdX2UKGgGaAloD0MIIxRbQdNwVcCUhpRSlGgVSz1oFkdALy109yLhrHV9lChoBmgJaA9DCNuIJ7uZfnLAlIaUUpRoFUtUaBZHQC81mYjSofl1fZQoaAZoCWgPQwhTspyE0lJdwJSGlFKUaBVLg2gWR0AvUJ3PiT+vdX2UKGgGaAloD0MIgJnv4Kd3YcCUhpRSlGgVS2xoFkdAL1lxOtW+5HV9lChoBmgJaA9DCL+1EyUhNFjAlIaUUpRoFUtmaBZHQC9neDWbw0B1fZQoaAZoCWgPQwirJoi6z6RxwJSGlFKUaBVLVWgWR0AvndE9dNWVdX2UKGgGaAloD0MIkQ96NquuU8CUhpRSlGgVSzpoFkdAL7eVC5VfeHV9lChoBmgJaA9DCLvVc9L7y2rAlIaUUpRoFUtPaBZHQC+2TX8O09h1fZQoaAZoCWgPQwjeOv92mXJ8wJSGlFKUaBVLX2gWR0AvvnMdLg4wdX2UKGgGaAloD0MII2jMJCqEccCUhpRSlGgVS2VoFkdAL8DJEH+qBHV9lChoBmgJaA9DCPAyw0bZC3/AlIaUUpRoFUt4aBZHQC/MYoAn2Ix1fZQoaAZoCWgPQwiFsYUgx79ywJSGlFKUaBVLeGgWR0Av1IGyHEdedX2UKGgGaAloD0MI3+ALk6l4UsCUhpRSlGgVS01oFkdAL+kidJ8OTnV9lChoBmgJaA9DCDwXRnpR0m/AlIaUUpRoFUtjaBZHQC/0jPfKp1l1fZQoaAZoCWgPQwgWwmosYahhwJSGlFKUaBVLRWgWR0AwBbX6InBtdX2UKGgGaAloD0MIbhPulfmZdcCUhpRSlGgVS05oFkdAMAT2rXDm83V9lChoBmgJaA9DCOj0vBvLyXHAlIaUUpRoFUtfaBZHQDALqkdmxt51fZQoaAZoCWgPQwg89rNYitQswJSGlFKUaBVLbWgWR0AwET/ACW/rdX2UKGgGaAloD0MIoUrNHmjPXsCUhpRSlGgVS1VoFkdAMBE2Hck+o3V9lChoBmgJaA9DCN+LL9rjNWrAlIaUUpRoFUtdaBZHQDAnYh+vyLB1fZQoaAZoCWgPQwi9UwH3/Bh2wJSGlFKUaBVLUWgWR0AwPVafSQYDdX2UKGgGaAloD0MIG2ZoPFFSecCUhpRSlGgVS1NoFkdAMEzXz19ORHV9lChoBmgJaA9DCLeb4JumPl3AlIaUUpRoFUtzaBZHQDBQriEQGwB1fZQoaAZoCWgPQwgZV1wcVcdwwJSGlFKUaBVLVWgWR0AwU+CK77KrdX2UKGgGaAloD0MIuqKUEKygZMCUhpRSlGgVS1xoFkdAMFonrpqynnV9lChoBmgJaA9DCMAHr13a6FzAlIaUUpRoFUtLaBZHQDBg6Mir1dx1fZQoaAZoCWgPQwizRdJu9B9ywJSGlFKUaBVLYmgWR0AwcASnLq2SdX2UKGgGaAloD0MIYCFzZRBJd8CUhpRSlGgVS1BoFkdAMHMF2V3Ux3V9lChoBmgJaA9DCHJPV3csS2HAlIaUUpRoFUtKaBZHQDB3X9R77bd1fZQoaAZoCWgPQwh324Xmus1swJSGlFKUaBVLUmgWR0AwfJlrdnCgdX2UKGgGaAloD0MI5+CZ0CSIUMCUhpRSlGgVS3VoFkdAMIX6uW8h93V9lChoBmgJaA9DCAaBlUOLbA5AlIaUUpRoFUtgaBZHQDCJqIrOJLx1fZQoaAZoCWgPQwj/W8mODaxzwJSGlFKUaBVLd2gWR0AwlsY2sJY1dX2UKGgGaAloD0MIh22LMhsDVsCUhpRSlGgVSzloFkdAMKCj1wo9cXV9lChoBmgJaA9DCEYiNIINlXPAlIaUUpRoFUuTaBZHQDCoPlMh5gR1fZQoaAZoCWgPQwgrwHebtwV8wJSGlFKUaBVLdGgWR0AwsKkEcKgJdX2UKGgGaAloD0MIKjdRS3MycMCUhpRSlGgVS2toFkdAML0XpGFzuHV9lChoBmgJaA9DCODVcmcm11XAlIaUUpRoFUtaaBZHQDDTtBv73wl1fZQoaAZoCWgPQwiUwVHy6qRSwJSGlFKUaBVLQmgWR0Aw1X531SOzdX2UKGgGaAloD0MI+YbCZ+uzbcCUhpRSlGgVS3VoFkdAMN2nTAnDznV9lChoBmgJaA9DCDJWm/9XB1nAlIaUUpRoFUtMaBZHQDDerR0EHMV1fZQoaAZoCWgPQwiC4VzDjBV3wJSGlFKUaBVLbmgWR0Aw4rTpgTh6dX2UKGgGaAloD0MInBpoPmdidMCUhpRSlGgVS3xoFkdAMPk3n6l+E3V9lChoBmgJaA9DCHuDL0wmN2zAlIaUUpRoFUtSaBZHQDD5IbwSamZ1fZQoaAZoCWgPQwj5Zpsb06pWwJSGlFKUaBVLPWgWR0Aw+/8VHnU2dX2UKGgGaAloD0MI9KeN6nRKacCUhpRSlGgVS2ZoFkdAMP3F1jiGWXV9lChoBmgJaA9DCCE6BI4EhlbAlIaUUpRoFUtoaBZHQDD96dDpkf91fZQoaAZoCWgPQwhmahK8IeNqwJSGlFKUaBVLPGgWR0AxApDeCTUzdX2UKGgGaAloD0MIEFg5tMiQZ8CUhpRSlGgVS15oFkdAMQXeJpFkQXV9lChoBmgJaA9DCHszar7Kt2nAlIaUUpRoFUt8aBZHQDEJkPMB6rx1fZQoaAZoCWgPQwgOZhNgWPBqwJSGlFKUaBVLWWgWR0AxF4t6HCXQdX2UKGgGaAloD0MIUyKJXkbTYcCUhpRSlGgVS2JoFkdAMRnLJSzgM3V9lChoBmgJaA9DCI0kQbgC2kFAlIaUUpRoFUtRaBZHQDEnu0CzTnd1fZQoaAZoCWgPQwg+WwcHe/dKwJSGlFKUaBVLUGgWR0AxS4e9zwMIdX2UKGgGaAloD0MI/dgkP2LdccCUhpRSlGgVS1xoFkdAMU99H+ZPVXV9lChoBmgJaA9DCHNp/MIrOFbAlIaUUpRoFUtAaBZHQDFVHavicXp1fZQoaAZoCWgPQwi6FFeVfTlbwJSGlFKUaBVLSGgWR0AxWWaMJhOQdX2UKGgGaAloD0MIf/s6cI7ocMCUhpRSlGgVS0hoFkdAMWK//NqxknV9lChoBmgJaA9DCJymzw74InDAlIaUUpRoFUtSaBZHQDFoQkHD7651fZQoaAZoCWgPQwj59q5BX3hawJSGlFKUaBVLb2gWR0AxcPMB6rvLdX2UKGgGaAloD0MIv9alRmjhbcCUhpRSlGgVS1xoFkdAMXIcvM8oyHV9lChoBmgJaA9DCDtSfecXNmzAlIaUUpRoFUtyaBZHQDF0f8uSOip1fZQoaAZoCWgPQwgzUBn/PhFlwJSGlFKUaBVLXmgWR0AxdL9/BnBddX2UKGgGaAloD0MIe/SG+0iGYMCUhpRSlGgVS1RoFkdAMXewgTyrgnV9lChoBmgJaA9DCLGKNzKP5WLAlIaUUpRoFUuDaBZHQDGA86mwaBJ1fZQoaAZoCWgPQwgR/7ClRyZgwJSGlFKUaBVLQ2gWR0AxgOYIBzV+dX2UKGgGaAloD0MIesN95BYieMCUhpRSlGgVS1xoFkdAMZANG3F1jnV9lChoBmgJaA9DCOp29pUHPmXAlIaUUpRoFUtgaBZHQDGXC53C9AZ1fZQoaAZoCWgPQwjm5bD7jl1UwJSGlFKUaBVLQGgWR0AxoS6DoQnQdX2UKGgGaAloD0MI88ZJYd48U8CUhpRSlGgVSz9oFkdAMalz2exwAHV9lChoBmgJaA9DCA1wQbYslm7AlIaUUpRoFUuOaBZHQDG0Pd2xIJ91fZQoaAZoCWgPQwjAXmHB/YRRwJSGlFKUaBVLOmgWR0AxvcgQpWmxdX2UKGgGaAloD0MIYYvdPisxdsCUhpRSlGgVS0loFkdAMcB/iHZbp3V9lChoBmgJaA9DCBnKiXYVdl/AlIaUUpRoFUs7aBZHQDHK7GvOhTR1fZQoaAZoCWgPQwgRbjKqDNJYwJSGlFKUaBVLS2gWR0Ax0EdNnGsFdX2UKGgGaAloD0MIqgt4mWFwacCUhpRSlGgVS0ZoFkdAMc9hRZU1h3V9lChoBmgJaA9DCEyqtpvg9FjAlIaUUpRoFUtDaBZHQDHVbILgGbF1fZQoaAZoCWgPQwgMlBRYAHZywJSGlFKUaBVLdWgWR0Ax6f/WDpTudX2UKGgGaAloD0MILNZwkXveZMCUhpRSlGgVS35oFkdAMeyrHU+cIHV9lChoBmgJaA9DCHe688RzQVzAlIaUUpRoFUtNaBZHQDHyDXe3x4J1fZQoaAZoCWgPQwiKP4o68yBlwJSGlFKUaBVLZWgWR0Ax9FId2gWadX2UKGgGaAloD0MIvVErTN9IXsCUhpRSlGgVS0poFkdAMfXTy8SPEXV9lChoBmgJaA9DCAe2SrA42FnAlIaUUpRoFUtyaBZHQDH5senyd4F1fZQoaAZoCWgPQwiWQbXBCUlmwJSGlFKUaBVLTmgWR0AyBTFl05lwdX2UKGgGaAloD0MIUoAomDG/YMCUhpRSlGgVSztoFkdAMguzIFNcnnV9lChoBmgJaA9DCEVj7e+sWHbAlIaUUpRoFUtVaBZHQDIYB5ooNNJ1fZQoaAZoCWgPQwh1H4DUpkJhwJSGlFKUaBVLUmgWR0AyHu1WsA/+dX2UKGgGaAloD0MI96sA3+0yeMCUhpRSlGgVS4poFkdAMiHhOxjawnV9lChoBmgJaA9DCIcUAySaolDAlIaUUpRoFUtWaBZHQDIsTVUdaMd1fZQoaAZoCWgPQwj/PXjt0hZNwJSGlFKUaBVLRGgWR0AyLgVoHs1LdX2UKGgGaAloD0MI/YUeMXpwecCUhpRSlGgVS2JoFkdAMk5LqUu+RHV9lChoBmgJaA9DCM3IIHeR8mzAlIaUUpRoFUtgaBZHQDJRVktmL+B1fZQoaAZoCWgPQwhENpAu9vJ2wJSGlFKUaBVLZWgWR0AyVz/IbOu8dX2UKGgGaAloD0MIIEYIj7aSbcCUhpRSlGgVS0xoFkdAMlwO4G2TgXV9lChoBmgJaA9DCJzfMNEgkFjAlIaUUpRoFUtOaBZHQDJczCUHIIZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
first_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df3b958f0fc488a6d80e4bc71b23add6852731547cbfd5e5e144a0c2d8aab113
|
3 |
+
size 143896
|
first_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
first_model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f48d6180290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48d6180320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48d61803b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48d6180440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f48d61804d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f48d6180560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48d61805f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f48d6180680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48d6180710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48d61807a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48d6180830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f48d61bdbd0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 16384,
|
46 |
+
"_total_timesteps": 500,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651678036.3659234,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABDJlz4T9UM/U315P5XPdb8jXhq/Yri5vgAAAAAAAAAAs2HcPkkwsT+DMRc/7kAGvyc2G77tU6o+AAAAAAAAAABz7lg+jHiJPyxVET/iHzq/pOOcvpF/hL4AAAAAAAAAAKadLT7vj6s/YkjtPrQUP79GNX6/GJ00vwAAAAAAAAAAAC1tvaZhqz9offS++VC2vpC5wD1l1/89AAAAAAAAAADj3We+WueIPxsxOb/rtEi/zagQP9Zz5T4AAAAAAAAAAAB4AD3Q+a8/1iNOPxzs4b5IdzW9Zk2FvgAAAAAAAAAAYH85PuXiwz6dYKc+Q6mcv6TJkb4NU4y9AAAAAAAAAADNNBk8BqyvP5K4mT6wHRC/lfkFvFZsWb0AAAAAAAAAAJoXFj0sb7Y/irABP9oIPDxGrYi8mG/2PAAAAAAAAAAANquYvnb/sz8F1mC/zKRWvk/11T6K1Xc+AAAAAAAAAADz57896nu1P/o36j1SNx6/9It+PEJbHz4AAAAAAAAAAPbiHT+/uhE/HIKJP8EQhr96+tS+SoI6vgAAAAAAAAAAgn0hv1V3rT++WkG/F44GvxQrsr4V3pC+AAAAAAAAAADj2Kw+Z3J1P0P+Oj+JCze/X7ErvjIYBbwAAAAAAAAAAHPGrr0zTaU/08Ypv6nb/r66osg9KvwoPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -31.768,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH/gYrPiZdcCUhpRSlIwBbJRLUYwBdJRHQC7awQlKK511fZQoaAZoCWgPQwix/Pm2YExzwJSGlFKUaBVLcmgWR0Au7jurp7kXdX2UKGgGaAloD0MI26fjMYOwY8CUhpRSlGgVS0NoFkdALwmYBvJiiXV9lChoBmgJaA9DCNcWnpeKz1bAlIaUUpRoFUtGaBZHQC8RjnV5KOF1fZQoaAZoCWgPQwiPcFrwog9gwJSGlFKUaBVLamgWR0AvD62v0RODdX2UKGgGaAloD0MIIxRbQdNwVcCUhpRSlGgVSz1oFkdALy109yLhrHV9lChoBmgJaA9DCNuIJ7uZfnLAlIaUUpRoFUtUaBZHQC81mYjSofl1fZQoaAZoCWgPQwhTspyE0lJdwJSGlFKUaBVLg2gWR0AvUJ3PiT+vdX2UKGgGaAloD0MIgJnv4Kd3YcCUhpRSlGgVS2xoFkdAL1lxOtW+5HV9lChoBmgJaA9DCL+1EyUhNFjAlIaUUpRoFUtmaBZHQC9neDWbw0B1fZQoaAZoCWgPQwirJoi6z6RxwJSGlFKUaBVLVWgWR0AvndE9dNWVdX2UKGgGaAloD0MIkQ96NquuU8CUhpRSlGgVSzpoFkdAL7eVC5VfeHV9lChoBmgJaA9DCLvVc9L7y2rAlIaUUpRoFUtPaBZHQC+2TX8O09h1fZQoaAZoCWgPQwjeOv92mXJ8wJSGlFKUaBVLX2gWR0AvvnMdLg4wdX2UKGgGaAloD0MII2jMJCqEccCUhpRSlGgVS2VoFkdAL8DJEH+qBHV9lChoBmgJaA9DCPAyw0bZC3/AlIaUUpRoFUt4aBZHQC/MYoAn2Ix1fZQoaAZoCWgPQwiFsYUgx79ywJSGlFKUaBVLeGgWR0Av1IGyHEdedX2UKGgGaAloD0MI3+ALk6l4UsCUhpRSlGgVS01oFkdAL+kidJ8OTnV9lChoBmgJaA9DCDwXRnpR0m/AlIaUUpRoFUtjaBZHQC/0jPfKp1l1fZQoaAZoCWgPQwgWwmosYahhwJSGlFKUaBVLRWgWR0AwBbX6InBtdX2UKGgGaAloD0MIbhPulfmZdcCUhpRSlGgVS05oFkdAMAT2rXDm83V9lChoBmgJaA9DCOj0vBvLyXHAlIaUUpRoFUtfaBZHQDALqkdmxt51fZQoaAZoCWgPQwg89rNYitQswJSGlFKUaBVLbWgWR0AwET/ACW/rdX2UKGgGaAloD0MIoUrNHmjPXsCUhpRSlGgVS1VoFkdAMBE2Hck+o3V9lChoBmgJaA9DCN+LL9rjNWrAlIaUUpRoFUtdaBZHQDAnYh+vyLB1fZQoaAZoCWgPQwi9UwH3/Bh2wJSGlFKUaBVLUWgWR0AwPVafSQYDdX2UKGgGaAloD0MIG2ZoPFFSecCUhpRSlGgVS1NoFkdAMEzXz19ORHV9lChoBmgJaA9DCLeb4JumPl3AlIaUUpRoFUtzaBZHQDBQriEQGwB1fZQoaAZoCWgPQwgZV1wcVcdwwJSGlFKUaBVLVWgWR0AwU+CK77KrdX2UKGgGaAloD0MIuqKUEKygZMCUhpRSlGgVS1xoFkdAMFonrpqynnV9lChoBmgJaA9DCMAHr13a6FzAlIaUUpRoFUtLaBZHQDBg6Mir1dx1fZQoaAZoCWgPQwizRdJu9B9ywJSGlFKUaBVLYmgWR0AwcASnLq2SdX2UKGgGaAloD0MIYCFzZRBJd8CUhpRSlGgVS1BoFkdAMHMF2V3Ux3V9lChoBmgJaA9DCHJPV3csS2HAlIaUUpRoFUtKaBZHQDB3X9R77bd1fZQoaAZoCWgPQwh324Xmus1swJSGlFKUaBVLUmgWR0AwfJlrdnCgdX2UKGgGaAloD0MI5+CZ0CSIUMCUhpRSlGgVS3VoFkdAMIX6uW8h93V9lChoBmgJaA9DCAaBlUOLbA5AlIaUUpRoFUtgaBZHQDCJqIrOJLx1fZQoaAZoCWgPQwj/W8mODaxzwJSGlFKUaBVLd2gWR0AwlsY2sJY1dX2UKGgGaAloD0MIh22LMhsDVsCUhpRSlGgVSzloFkdAMKCj1wo9cXV9lChoBmgJaA9DCEYiNIINlXPAlIaUUpRoFUuTaBZHQDCoPlMh5gR1fZQoaAZoCWgPQwgrwHebtwV8wJSGlFKUaBVLdGgWR0AwsKkEcKgJdX2UKGgGaAloD0MIKjdRS3MycMCUhpRSlGgVS2toFkdAML0XpGFzuHV9lChoBmgJaA9DCODVcmcm11XAlIaUUpRoFUtaaBZHQDDTtBv73wl1fZQoaAZoCWgPQwiUwVHy6qRSwJSGlFKUaBVLQmgWR0Aw1X531SOzdX2UKGgGaAloD0MI+YbCZ+uzbcCUhpRSlGgVS3VoFkdAMN2nTAnDznV9lChoBmgJaA9DCDJWm/9XB1nAlIaUUpRoFUtMaBZHQDDerR0EHMV1fZQoaAZoCWgPQwiC4VzDjBV3wJSGlFKUaBVLbmgWR0Aw4rTpgTh6dX2UKGgGaAloD0MInBpoPmdidMCUhpRSlGgVS3xoFkdAMPk3n6l+E3V9lChoBmgJaA9DCHuDL0wmN2zAlIaUUpRoFUtSaBZHQDD5IbwSamZ1fZQoaAZoCWgPQwj5Zpsb06pWwJSGlFKUaBVLPWgWR0Aw+/8VHnU2dX2UKGgGaAloD0MI9KeN6nRKacCUhpRSlGgVS2ZoFkdAMP3F1jiGWXV9lChoBmgJaA9DCCE6BI4EhlbAlIaUUpRoFUtoaBZHQDD96dDpkf91fZQoaAZoCWgPQwhmahK8IeNqwJSGlFKUaBVLPGgWR0AxApDeCTUzdX2UKGgGaAloD0MIEFg5tMiQZ8CUhpRSlGgVS15oFkdAMQXeJpFkQXV9lChoBmgJaA9DCHszar7Kt2nAlIaUUpRoFUt8aBZHQDEJkPMB6rx1fZQoaAZoCWgPQwgOZhNgWPBqwJSGlFKUaBVLWWgWR0AxF4t6HCXQdX2UKGgGaAloD0MIUyKJXkbTYcCUhpRSlGgVS2JoFkdAMRnLJSzgM3V9lChoBmgJaA9DCI0kQbgC2kFAlIaUUpRoFUtRaBZHQDEnu0CzTnd1fZQoaAZoCWgPQwg+WwcHe/dKwJSGlFKUaBVLUGgWR0AxS4e9zwMIdX2UKGgGaAloD0MI/dgkP2LdccCUhpRSlGgVS1xoFkdAMU99H+ZPVXV9lChoBmgJaA9DCHNp/MIrOFbAlIaUUpRoFUtAaBZHQDFVHavicXp1fZQoaAZoCWgPQwi6FFeVfTlbwJSGlFKUaBVLSGgWR0AxWWaMJhOQdX2UKGgGaAloD0MIf/s6cI7ocMCUhpRSlGgVS0hoFkdAMWK//NqxknV9lChoBmgJaA9DCJymzw74InDAlIaUUpRoFUtSaBZHQDFoQkHD7651fZQoaAZoCWgPQwj59q5BX3hawJSGlFKUaBVLb2gWR0AxcPMB6rvLdX2UKGgGaAloD0MIv9alRmjhbcCUhpRSlGgVS1xoFkdAMXIcvM8oyHV9lChoBmgJaA9DCDtSfecXNmzAlIaUUpRoFUtyaBZHQDF0f8uSOip1fZQoaAZoCWgPQwgzUBn/PhFlwJSGlFKUaBVLXmgWR0AxdL9/BnBddX2UKGgGaAloD0MIe/SG+0iGYMCUhpRSlGgVS1RoFkdAMXewgTyrgnV9lChoBmgJaA9DCLGKNzKP5WLAlIaUUpRoFUuDaBZHQDGA86mwaBJ1fZQoaAZoCWgPQwgR/7ClRyZgwJSGlFKUaBVLQ2gWR0AxgOYIBzV+dX2UKGgGaAloD0MIesN95BYieMCUhpRSlGgVS1xoFkdAMZANG3F1jnV9lChoBmgJaA9DCOp29pUHPmXAlIaUUpRoFUtgaBZHQDGXC53C9AZ1fZQoaAZoCWgPQwjm5bD7jl1UwJSGlFKUaBVLQGgWR0AxoS6DoQnQdX2UKGgGaAloD0MI88ZJYd48U8CUhpRSlGgVSz9oFkdAMalz2exwAHV9lChoBmgJaA9DCA1wQbYslm7AlIaUUpRoFUuOaBZHQDG0Pd2xIJ91fZQoaAZoCWgPQwjAXmHB/YRRwJSGlFKUaBVLOmgWR0AxvcgQpWmxdX2UKGgGaAloD0MIYYvdPisxdsCUhpRSlGgVS0loFkdAMcB/iHZbp3V9lChoBmgJaA9DCBnKiXYVdl/AlIaUUpRoFUs7aBZHQDHK7GvOhTR1fZQoaAZoCWgPQwgRbjKqDNJYwJSGlFKUaBVLS2gWR0Ax0EdNnGsFdX2UKGgGaAloD0MIqgt4mWFwacCUhpRSlGgVS0ZoFkdAMc9hRZU1h3V9lChoBmgJaA9DCEyqtpvg9FjAlIaUUpRoFUtDaBZHQDHVbILgGbF1fZQoaAZoCWgPQwgMlBRYAHZywJSGlFKUaBVLdWgWR0Ax6f/WDpTudX2UKGgGaAloD0MILNZwkXveZMCUhpRSlGgVS35oFkdAMeyrHU+cIHV9lChoBmgJaA9DCHe688RzQVzAlIaUUpRoFUtNaBZHQDHyDXe3x4J1fZQoaAZoCWgPQwiKP4o68yBlwJSGlFKUaBVLZWgWR0Ax9FId2gWadX2UKGgGaAloD0MIvVErTN9IXsCUhpRSlGgVS0poFkdAMfXTy8SPEXV9lChoBmgJaA9DCAe2SrA42FnAlIaUUpRoFUtyaBZHQDH5senyd4F1fZQoaAZoCWgPQwiWQbXBCUlmwJSGlFKUaBVLTmgWR0AyBTFl05lwdX2UKGgGaAloD0MIUoAomDG/YMCUhpRSlGgVSztoFkdAMguzIFNcnnV9lChoBmgJaA9DCEVj7e+sWHbAlIaUUpRoFUtVaBZHQDIYB5ooNNJ1fZQoaAZoCWgPQwh1H4DUpkJhwJSGlFKUaBVLUmgWR0AyHu1WsA/+dX2UKGgGaAloD0MI96sA3+0yeMCUhpRSlGgVS4poFkdAMiHhOxjawnV9lChoBmgJaA9DCIcUAySaolDAlIaUUpRoFUtWaBZHQDIsTVUdaMd1fZQoaAZoCWgPQwj/PXjt0hZNwJSGlFKUaBVLRGgWR0AyLgVoHs1LdX2UKGgGaAloD0MI/YUeMXpwecCUhpRSlGgVS2JoFkdAMk5LqUu+RHV9lChoBmgJaA9DCM3IIHeR8mzAlIaUUpRoFUtgaBZHQDJRVktmL+B1fZQoaAZoCWgPQwhENpAu9vJ2wJSGlFKUaBVLZWgWR0AyVz/IbOu8dX2UKGgGaAloD0MIIEYIj7aSbcCUhpRSlGgVS0xoFkdAMlwO4G2TgXV9lChoBmgJaA9DCJzfMNEgkFjAlIaUUpRoFUtOaBZHQDJczCUHIIZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 4,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
first_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fa4eecdeace5ded53ee8e67e0c253c738857d335bb3d31028c53970ffe6595e
|
3 |
+
size 84829
|
first_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5345d378b0786cf9f62384dd6711d87e40718aaaf838b49d9dc575ebc41e45a5
|
3 |
+
size 43201
|
first_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
first_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ddc510745e175d8f8cea29702cda51b8309b5206828eef8b741c2eb31fdd0ed
|
3 |
+
size 193810
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -149.9539720240049, "std_reward": 46.69392746173957, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T15:30:04.430902"}
|