DashReza7 commited on
Commit
a287af5
·
verified ·
1 Parent(s): 2583b31

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - cosine_accuracy_threshold
9
+ - cosine_f1
10
+ - cosine_f1_threshold
11
+ - cosine_precision
12
+ - cosine_recall
13
+ - cosine_ap
14
+ - dot_accuracy
15
+ - dot_accuracy_threshold
16
+ - dot_f1
17
+ - dot_f1_threshold
18
+ - dot_precision
19
+ - dot_recall
20
+ - dot_ap
21
+ - manhattan_accuracy
22
+ - manhattan_accuracy_threshold
23
+ - manhattan_f1
24
+ - manhattan_f1_threshold
25
+ - manhattan_precision
26
+ - manhattan_recall
27
+ - manhattan_ap
28
+ - euclidean_accuracy
29
+ - euclidean_accuracy_threshold
30
+ - euclidean_f1
31
+ - euclidean_f1_threshold
32
+ - euclidean_precision
33
+ - euclidean_recall
34
+ - euclidean_ap
35
+ - max_accuracy
36
+ - max_accuracy_threshold
37
+ - max_f1
38
+ - max_f1_threshold
39
+ - max_precision
40
+ - max_recall
41
+ - max_ap
42
+ pipeline_tag: sentence-similarity
43
+ tags:
44
+ - sentence-transformers
45
+ - sentence-similarity
46
+ - feature-extraction
47
+ - generated_from_trainer
48
+ - dataset_size:64116
49
+ - loss:ContrastiveLoss
50
+ widget:
51
+ - source_sentence: مبل سلتان
52
+ sentences:
53
+ - روسری جین شش عددی عمده نخی
54
+ - مبل راحتی چستر سالوادور مبل راحتی چستر مبل راحتی چستر مکانیزم
55
+ - پاور سانروف فابریک برلیانس
56
+ - source_sentence: لباس پلیسی
57
+ sentences:
58
+ - جا عودی
59
+ - لباس خواب کاستوم فانتزی پلیسی زنانه
60
+ - روغن حنا (پرپشت کننده مو ریزش مو تقویت مو تقویت ابرو جلوگیری از سفیدی مو شوره
61
+ مو خشکی پوست سر خارش پوست سر)
62
+ - source_sentence: قابلمه سنگی
63
+ sentences:
64
+ - قابلمه سنگی آقای سنگی 10 نفره
65
+ - گاز مبرد R134a پوکا (POKKA R134)
66
+ - کفش فوتبال بچه گانه آدیداس طرح اصلی مشکی سفید Adidas
67
+ - source_sentence: لوازم آرایشی
68
+ sentences:
69
+ - جعبه لوازم آرایشی قابل حمل سازمان‌دهنده لوازم آرایش مسافرتی با روکش آینه چراغ‌دار
70
+ LED لوازم آرایشی
71
+ - کفش پاشنه بلند مجلسی دخترانه
72
+ - وکتور بنر فارسی جشن تولد با کیک و جعبه کادو
73
+ - source_sentence: پوست مصنوعی
74
+ sentences:
75
+ - دستگیره حیاطی تک پیچ سرباز دستگیره تک پیچ درب حیاطی سرباز
76
+ - مبل سلطنتی
77
+ - کیف پوست ماری مستطیل جنس چرم مصنوعی کیف پوست ماری مستطیل
78
+ model-index:
79
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
80
+ results:
81
+ - task:
82
+ type: binary-classification
83
+ name: Binary Classification
84
+ dataset:
85
+ name: Unknown
86
+ type: unknown
87
+ metrics:
88
+ - type: cosine_accuracy
89
+ value: 0.7607017543859649
90
+ name: Cosine Accuracy
91
+ - type: cosine_accuracy_threshold
92
+ value: 0.7412481904029846
93
+ name: Cosine Accuracy Threshold
94
+ - type: cosine_f1
95
+ value: 0.834358186010761
96
+ name: Cosine F1
97
+ - type: cosine_f1_threshold
98
+ value: 0.7125277519226074
99
+ name: Cosine F1 Threshold
100
+ - type: cosine_precision
101
+ value: 0.7491373360938578
102
+ name: Cosine Precision
103
+ - type: cosine_recall
104
+ value: 0.9414570685169124
105
+ name: Cosine Recall
106
+ - type: cosine_ap
107
+ value: 0.8461870777524143
108
+ name: Cosine Ap
109
+ - type: dot_accuracy
110
+ value: 0.7104561403508772
111
+ name: Dot Accuracy
112
+ - type: dot_accuracy_threshold
113
+ value: 14.821020126342773
114
+ name: Dot Accuracy Threshold
115
+ - type: dot_f1
116
+ value: 0.8054054054054054
117
+ name: Dot F1
118
+ - type: dot_f1_threshold
119
+ value: 14.108308792114258
120
+ name: Dot F1 Threshold
121
+ - type: dot_precision
122
+ value: 0.7062765609676365
123
+ name: Dot Precision
124
+ - type: dot_recall
125
+ value: 0.9369037294015612
126
+ name: Dot Recall
127
+ - type: dot_ap
128
+ value: 0.8122928586516915
129
+ name: Dot Ap
130
+ - type: manhattan_accuracy
131
+ value: 0.7528421052631579
132
+ name: Manhattan Accuracy
133
+ - type: manhattan_accuracy_threshold
134
+ value: 53.40993118286133
135
+ name: Manhattan Accuracy Threshold
136
+ - type: manhattan_f1
137
+ value: 0.828743211792087
138
+ name: Manhattan F1
139
+ - type: manhattan_f1_threshold
140
+ value: 55.60980987548828
141
+ name: Manhattan F1 Threshold
142
+ - type: manhattan_precision
143
+ value: 0.7496491228070176
144
+ name: Manhattan Precision
145
+ - type: manhattan_recall
146
+ value: 0.9264960971379012
147
+ name: Manhattan Recall
148
+ - type: manhattan_ap
149
+ value: 0.8423084093127031
150
+ name: Manhattan Ap
151
+ - type: euclidean_accuracy
152
+ value: 0.7536842105263157
153
+ name: Euclidean Accuracy
154
+ - type: euclidean_accuracy_threshold
155
+ value: 3.543578863143921
156
+ name: Euclidean Accuracy Threshold
157
+ - type: euclidean_f1
158
+ value: 0.829423689545323
159
+ name: Euclidean F1
160
+ - type: euclidean_f1_threshold
161
+ value: 3.609351396560669
162
+ name: Euclidean F1 Threshold
163
+ - type: euclidean_precision
164
+ value: 0.7475204454497999
165
+ name: Euclidean Precision
166
+ - type: euclidean_recall
167
+ value: 0.9314830875975716
168
+ name: Euclidean Recall
169
+ - type: euclidean_ap
170
+ value: 0.8422044822515327
171
+ name: Euclidean Ap
172
+ - type: max_accuracy
173
+ value: 0.7607017543859649
174
+ name: Max Accuracy
175
+ - type: max_accuracy_threshold
176
+ value: 53.40993118286133
177
+ name: Max Accuracy Threshold
178
+ - type: max_f1
179
+ value: 0.834358186010761
180
+ name: Max F1
181
+ - type: max_f1_threshold
182
+ value: 55.60980987548828
183
+ name: Max F1 Threshold
184
+ - type: max_precision
185
+ value: 0.7496491228070176
186
+ name: Max Precision
187
+ - type: max_recall
188
+ value: 0.9414570685169124
189
+ name: Max Recall
190
+ - type: max_ap
191
+ value: 0.8461870777524143
192
+ name: Max Ap
193
+ ---
194
+
195
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
196
+
197
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
198
+
199
+ ## Model Details
200
+
201
+ ### Model Description
202
+ - **Model Type:** Sentence Transformer
203
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
204
+ - **Maximum Sequence Length:** 128 tokens
205
+ - **Output Dimensionality:** 384 tokens
206
+ - **Similarity Function:** Cosine Similarity
207
+ <!-- - **Training Dataset:** Unknown -->
208
+ <!-- - **Language:** Unknown -->
209
+ <!-- - **License:** Unknown -->
210
+
211
+ ### Model Sources
212
+
213
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
214
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
215
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
216
+
217
+ ### Full Model Architecture
218
+
219
+ ```
220
+ SentenceTransformer(
221
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
222
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
223
+ )
224
+ ```
225
+
226
+ ## Usage
227
+
228
+ ### Direct Usage (Sentence Transformers)
229
+
230
+ First install the Sentence Transformers library:
231
+
232
+ ```bash
233
+ pip install -U sentence-transformers
234
+ ```
235
+
236
+ Then you can load this model and run inference.
237
+ ```python
238
+ from sentence_transformers import SentenceTransformer
239
+
240
+ # Download from the 🤗 Hub
241
+ model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v6")
242
+ # Run inference
243
+ sentences = [
244
+ 'پوست مصنوعی',
245
+ 'کیف پوست ماری مستطیل جنس چرم مصنوعی کیف پوست ماری مستطیل',
246
+ 'مبل سلطنتی',
247
+ ]
248
+ embeddings = model.encode(sentences)
249
+ print(embeddings.shape)
250
+ # [3, 384]
251
+
252
+ # Get the similarity scores for the embeddings
253
+ similarities = model.similarity(embeddings, embeddings)
254
+ print(similarities.shape)
255
+ # [3, 3]
256
+ ```
257
+
258
+ <!--
259
+ ### Direct Usage (Transformers)
260
+
261
+ <details><summary>Click to see the direct usage in Transformers</summary>
262
+
263
+ </details>
264
+ -->
265
+
266
+ <!--
267
+ ### Downstream Usage (Sentence Transformers)
268
+
269
+ You can finetune this model on your own dataset.
270
+
271
+ <details><summary>Click to expand</summary>
272
+
273
+ </details>
274
+ -->
275
+
276
+ <!--
277
+ ### Out-of-Scope Use
278
+
279
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
280
+ -->
281
+
282
+ ## Evaluation
283
+
284
+ ### Metrics
285
+
286
+ #### Binary Classification
287
+
288
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
289
+
290
+ | Metric | Value |
291
+ |:-----------------------------|:-----------|
292
+ | cosine_accuracy | 0.7607 |
293
+ | cosine_accuracy_threshold | 0.7412 |
294
+ | cosine_f1 | 0.8344 |
295
+ | cosine_f1_threshold | 0.7125 |
296
+ | cosine_precision | 0.7491 |
297
+ | cosine_recall | 0.9415 |
298
+ | cosine_ap | 0.8462 |
299
+ | dot_accuracy | 0.7105 |
300
+ | dot_accuracy_threshold | 14.821 |
301
+ | dot_f1 | 0.8054 |
302
+ | dot_f1_threshold | 14.1083 |
303
+ | dot_precision | 0.7063 |
304
+ | dot_recall | 0.9369 |
305
+ | dot_ap | 0.8123 |
306
+ | manhattan_accuracy | 0.7528 |
307
+ | manhattan_accuracy_threshold | 53.4099 |
308
+ | manhattan_f1 | 0.8287 |
309
+ | manhattan_f1_threshold | 55.6098 |
310
+ | manhattan_precision | 0.7496 |
311
+ | manhattan_recall | 0.9265 |
312
+ | manhattan_ap | 0.8423 |
313
+ | euclidean_accuracy | 0.7537 |
314
+ | euclidean_accuracy_threshold | 3.5436 |
315
+ | euclidean_f1 | 0.8294 |
316
+ | euclidean_f1_threshold | 3.6094 |
317
+ | euclidean_precision | 0.7475 |
318
+ | euclidean_recall | 0.9315 |
319
+ | euclidean_ap | 0.8422 |
320
+ | max_accuracy | 0.7607 |
321
+ | max_accuracy_threshold | 53.4099 |
322
+ | max_f1 | 0.8344 |
323
+ | max_f1_threshold | 55.6098 |
324
+ | max_precision | 0.7496 |
325
+ | max_recall | 0.9415 |
326
+ | **max_ap** | **0.8462** |
327
+
328
+ <!--
329
+ ## Bias, Risks and Limitations
330
+
331
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
332
+ -->
333
+
334
+ <!--
335
+ ### Recommendations
336
+
337
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
338
+ -->
339
+
340
+ ## Training Details
341
+
342
+ ### Training Hyperparameters
343
+ #### Non-Default Hyperparameters
344
+
345
+ - `eval_strategy`: steps
346
+ - `per_device_train_batch_size`: 256
347
+ - `per_device_eval_batch_size`: 256
348
+ - `learning_rate`: 2e-05
349
+ - `num_train_epochs`: 2
350
+ - `warmup_ratio`: 0.1
351
+ - `fp16`: True
352
+
353
+ #### All Hyperparameters
354
+ <details><summary>Click to expand</summary>
355
+
356
+ - `overwrite_output_dir`: False
357
+ - `do_predict`: False
358
+ - `eval_strategy`: steps
359
+ - `prediction_loss_only`: True
360
+ - `per_device_train_batch_size`: 256
361
+ - `per_device_eval_batch_size`: 256
362
+ - `per_gpu_train_batch_size`: None
363
+ - `per_gpu_eval_batch_size`: None
364
+ - `gradient_accumulation_steps`: 1
365
+ - `eval_accumulation_steps`: None
366
+ - `learning_rate`: 2e-05
367
+ - `weight_decay`: 0.0
368
+ - `adam_beta1`: 0.9
369
+ - `adam_beta2`: 0.999
370
+ - `adam_epsilon`: 1e-08
371
+ - `max_grad_norm`: 1.0
372
+ - `num_train_epochs`: 2
373
+ - `max_steps`: -1
374
+ - `lr_scheduler_type`: linear
375
+ - `lr_scheduler_kwargs`: {}
376
+ - `warmup_ratio`: 0.1
377
+ - `warmup_steps`: 0
378
+ - `log_level`: passive
379
+ - `log_level_replica`: warning
380
+ - `log_on_each_node`: True
381
+ - `logging_nan_inf_filter`: True
382
+ - `save_safetensors`: True
383
+ - `save_on_each_node`: False
384
+ - `save_only_model`: False
385
+ - `restore_callback_states_from_checkpoint`: False
386
+ - `no_cuda`: False
387
+ - `use_cpu`: False
388
+ - `use_mps_device`: False
389
+ - `seed`: 42
390
+ - `data_seed`: None
391
+ - `jit_mode_eval`: False
392
+ - `use_ipex`: False
393
+ - `bf16`: False
394
+ - `fp16`: True
395
+ - `fp16_opt_level`: O1
396
+ - `half_precision_backend`: auto
397
+ - `bf16_full_eval`: False
398
+ - `fp16_full_eval`: False
399
+ - `tf32`: None
400
+ - `local_rank`: 0
401
+ - `ddp_backend`: None
402
+ - `tpu_num_cores`: None
403
+ - `tpu_metrics_debug`: False
404
+ - `debug`: []
405
+ - `dataloader_drop_last`: False
406
+ - `dataloader_num_workers`: 0
407
+ - `dataloader_prefetch_factor`: None
408
+ - `past_index`: -1
409
+ - `disable_tqdm`: False
410
+ - `remove_unused_columns`: True
411
+ - `label_names`: None
412
+ - `load_best_model_at_end`: False
413
+ - `ignore_data_skip`: False
414
+ - `fsdp`: []
415
+ - `fsdp_min_num_params`: 0
416
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
417
+ - `fsdp_transformer_layer_cls_to_wrap`: None
418
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
419
+ - `deepspeed`: None
420
+ - `label_smoothing_factor`: 0.0
421
+ - `optim`: adamw_torch
422
+ - `optim_args`: None
423
+ - `adafactor`: False
424
+ - `group_by_length`: False
425
+ - `length_column_name`: length
426
+ - `ddp_find_unused_parameters`: None
427
+ - `ddp_bucket_cap_mb`: None
428
+ - `ddp_broadcast_buffers`: False
429
+ - `dataloader_pin_memory`: True
430
+ - `dataloader_persistent_workers`: False
431
+ - `skip_memory_metrics`: True
432
+ - `use_legacy_prediction_loop`: False
433
+ - `push_to_hub`: False
434
+ - `resume_from_checkpoint`: None
435
+ - `hub_model_id`: None
436
+ - `hub_strategy`: every_save
437
+ - `hub_private_repo`: False
438
+ - `hub_always_push`: False
439
+ - `gradient_checkpointing`: False
440
+ - `gradient_checkpointing_kwargs`: None
441
+ - `include_inputs_for_metrics`: False
442
+ - `eval_do_concat_batches`: True
443
+ - `fp16_backend`: auto
444
+ - `push_to_hub_model_id`: None
445
+ - `push_to_hub_organization`: None
446
+ - `mp_parameters`:
447
+ - `auto_find_batch_size`: False
448
+ - `full_determinism`: False
449
+ - `torchdynamo`: None
450
+ - `ray_scope`: last
451
+ - `ddp_timeout`: 1800
452
+ - `torch_compile`: False
453
+ - `torch_compile_backend`: None
454
+ - `torch_compile_mode`: None
455
+ - `dispatch_batches`: None
456
+ - `split_batches`: None
457
+ - `include_tokens_per_second`: False
458
+ - `include_num_input_tokens_seen`: False
459
+ - `neftune_noise_alpha`: None
460
+ - `optim_target_modules`: None
461
+ - `batch_eval_metrics`: False
462
+ - `eval_on_start`: False
463
+ - `batch_sampler`: batch_sampler
464
+ - `multi_dataset_batch_sampler`: proportional
465
+
466
+ </details>
467
+
468
+ ### Training Logs
469
+ | Epoch | Step | Training Loss | max_ap |
470
+ |:------:|:----:|:-------------:|:------:|
471
+ | None | 0 | - | 0.7365 |
472
+ | 1.9920 | 500 | 0.0242 | - |
473
+ | 2.0 | 502 | - | 0.8462 |
474
+
475
+
476
+ ### Framework Versions
477
+ - Python: 3.10.12
478
+ - Sentence Transformers: 3.0.1
479
+ - Transformers: 4.42.4
480
+ - PyTorch: 2.4.0+cu121
481
+ - Accelerate: 0.32.1
482
+ - Datasets: 2.21.0
483
+ - Tokenizers: 0.19.1
484
+
485
+ ## Citation
486
+
487
+ ### BibTeX
488
+
489
+ #### Sentence Transformers
490
+ ```bibtex
491
+ @inproceedings{reimers-2019-sentence-bert,
492
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
493
+ author = "Reimers, Nils and Gurevych, Iryna",
494
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
495
+ month = "11",
496
+ year = "2019",
497
+ publisher = "Association for Computational Linguistics",
498
+ url = "https://arxiv.org/abs/1908.10084",
499
+ }
500
+ ```
501
+
502
+ #### ContrastiveLoss
503
+ ```bibtex
504
+ @inproceedings{hadsell2006dimensionality,
505
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
506
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
507
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
508
+ year={2006},
509
+ volume={2},
510
+ number={},
511
+ pages={1735-1742},
512
+ doi={10.1109/CVPR.2006.100}
513
+ }
514
+ ```
515
+
516
+ <!--
517
+ ## Glossary
518
+
519
+ *Clearly define terms in order to be accessible across audiences.*
520
+ -->
521
+
522
+ <!--
523
+ ## Model Card Authors
524
+
525
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
526
+ -->
527
+
528
+ <!--
529
+ ## Model Card Contact
530
+
531
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
532
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25a5207982e8a1b0ff38f3ba4775c52c5d9a77f408b49c90cbb6087856f3fce7
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260