--- base_model: intfloat/multilingual-e5-base license: mit metrics: - accuracy - precision - recall - f1 tags: - generated_from_trainer model-index: - name: multilingual-e5-base_censor_v0.1 results: [] --- # multilingual-e5-base_censor_v0.1 This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5077 - Accuracy: 0.7695 - Precision: 0.7729 - Recall: 0.7695 - F1: 0.7708 - Roc Auc: 0.8424 - Per Class F1: [0.8104358705451601, 0.7061407261629732] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | Per Class F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|:----------------------------------------:| | 0.5485 | 1.0 | 2795 | 0.5249 | 0.7349 | 0.7498 | 0.7349 | 0.7383 | 0.8169 | [0.7723692804179954, 0.6827648980028912] | | 0.4871 | 2.0 | 5590 | 0.5059 | 0.7610 | 0.7667 | 0.7610 | 0.7629 | 0.8362 | [0.8013980033834657, 0.7000926419808541] | | 0.4392 | 3.0 | 8385 | 0.5077 | 0.7695 | 0.7729 | 0.7695 | 0.7708 | 0.8424 | [0.8104358705451601, 0.7061407261629732] | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1