--- base_model: DeepPavlov/rubert-base-cased-conversational tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: rubert-base-cased-conversational_ner-v2 results: [] --- # rubert-base-cased-conversational_ner-v2 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1045 - Precision: 0.9259 - Recall: 0.9375 - F1: 0.9317 - Accuracy: 0.9781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 40 | 0.3025 | 0.6627 | 0.6875 | 0.6748 | 0.9103 | | No log | 2.0 | 80 | 0.1169 | 0.8276 | 0.9 | 0.8623 | 0.9694 | | No log | 3.0 | 120 | 0.1045 | 0.9259 | 0.9375 | 0.9317 | 0.9781 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3