Image Classification
Keras
English
art
File size: 3,801 Bytes
a44aa14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a1db8
 
a44aa14
 
 
 
 
 
 
 
 
 
 
45a1db8
a44aa14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
"""
Created on Fri May 24 14:31:20 2024

@author: beni
"""

###test on art 30 epoches
###Test Loss: 0.7387489676475525
#Test Accuracy: 0.8525179624557495  ELA_CNN_ART.h5
####



#####test on objects 
###ELA_CNN_OBJ.h5
#Test Loss: 1.260271430015564
#Test Accuracy: 0.5509259104728699


from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Dropout, Flatten, Dense
from project_cnn_ela import convert_to_ela_image, shuffle_and_split_data, labeling
import pandas as pd
import numpy as np
from PIL import Image
import os
from pylab import *
import re
from PIL import Image, ImageChops, ImageEnhance
import tensorflow as tf
import itertools
from tensorflow.keras.utils import to_categorical 
from tensorflow.keras.optimizers.legacy import RMSprop
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
from copy import deepcopy

model = Sequential()

model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid', 
                     activation ='relu', input_shape = (128,128,3)))
print("Input: ", model.input_shape)
print("Output: ", model.output_shape)

model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid', 
                     activation ='relu'))
print("Input: ", model.input_shape)
print("Output: ", model.output_shape)

model.add(MaxPool2D(pool_size=(2,2)))

model.add(Dropout(0.25))
print("Input: ", model.input_shape)
print("Output: ", model.output_shape)

model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(2, activation = "softmax"))

model.summary()


# Load saved weights
model.load_weights("ELA_CNN_ART_V2.h5")

optimizer = RMSprop(lr=0.0005, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])




test_real_folder = 'datasets/test_set/real/'
test_fake_folder = 'datasets/test_set/fake/'



test_ela_output = 'datasets/training_set/ela_output/'




test_set = labeling(test_real_folder, test_fake_folder)
X_test = []
Y_test = []



# Preprocess test set
for index, row in test_set.iterrows():
    X_test.append(array(convert_to_ela_image(row[0], 90, test_ela_output).resize((128, 128))).flatten() / 255.0)
    Y_test.append(row[1])

# Convert to numpy arrays
X_test = np.array(X_test)
Y_test = to_categorical(Y_test, 2)

# Reshape images
X_test = X_test.reshape(-1, 128, 128, 3)

# Evaluate the model on test set
test_loss, test_accuracy = model.evaluate(X_test, Y_test)
print()
print("~~~~~art Dataset~~~~")
print()
print("Test Loss:", test_loss)
print("Test Accuracy:", test_accuracy)

#######################################################

def calculate_acc(y_true, y_pred):
    

    # Calculate precision
    precision = precision_score(y_true, y_pred)

    # Calculate recall
    recall = recall_score(y_true, y_pred)

    # Calculate F1 score
    f1 = f1_score(y_true, y_pred)
    
    # Calculate confusion matrix
    conf_matrix = confusion_matrix(y_true, y_pred)


    print("Precision:", precision)
    print("Recall:", recall)
    print("F1 Score:", f1)
    print("Confusion Matrix:")

    # Plot confusion matrix
    plt.figure(figsize=(8, 6))
    sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False)
    plt.xlabel('Predicted Label')
    plt.ylabel('True Label')
    plt.title('Confusion Matrix')
    plt.show()
    


# Get predicted probabilities
Y_pred_prob = model.predict(X_test)

# Convert predicted probabilities to class labels
Y_pred = np.argmax(Y_pred_prob, axis=1)

Y_true = np.argmax(Y_test, axis=1)

# Calculate accuracies
calculate_acc(Y_true, Y_pred)

model.summary()