File size: 7,630 Bytes
8521669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import random
import numpy as np
import os
import pandas as pd
import cv2
import warnings
from sklearn.model_selection import KFold
import tensorflow as tf
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
# Ensure h5py is installed
import h5py
# Set the random seed for numpy, tensorflow, and python built-in random module
np.random.seed(42)
tf.random.set_seed(42)
random.seed(42)
warnings.filterwarnings("ignore", category=UserWarning, message=".*iCCP:.*")
# Define data paths
train_real_folder = 'datasets/training_set/real/'
train_fake_folder = 'datasets/training_set/fake/'
test_real_folder = 'datasets/test_set/real/'
test_fake_folder = 'datasets/test_set/fake/'
# Load train image paths and labels
train_image_paths = []
train_labels = []
# Load train_real image paths and labels
for filename in os.listdir(train_real_folder):
image_path = os.path.join(train_real_folder, filename)
label = 0 # Real images have label 0
train_image_paths.append(image_path)
train_labels.append(label)
# Load train_fake image paths and labels
for filename in os.listdir(train_fake_folder):
image_path = os.path.join(train_fake_folder, filename)
label = 1 # Fake images have label 1
train_image_paths.append(image_path)
train_labels.append(label)
# Load test image paths and labels
test_image_paths = []
test_labels = []
# Load test_real image paths and labels
for filename in os.listdir(test_real_folder):
image_path = os.path.join(test_real_folder, filename)
label = 0 # Assuming test real images are all real (label 0)
test_image_paths.append(image_path)
test_labels.append(label)
# Load test_fake image paths and labels
for filename in os.listdir(test_fake_folder):
image_path = os.path.join(test_fake_folder, filename)
label = 1 # Assuming test fake images are all fake (label 1)
test_image_paths.append(image_path)
test_labels.append(label)
# Create DataFrames
train_dataset = pd.DataFrame({'image_path': train_image_paths, 'label': train_labels})
test_dataset = pd.DataFrame({'image_path': test_image_paths, 'label': test_labels})
# Function to preprocess images
def preprocess_image(image_path):
"""Loads, resizes, and normalizes an image."""
image = cv2.imread(image_path)
resized_image = cv2.resize(image, (224, 224)) # Target size defined here
normalized_image = resized_image.astype(np.float32) / 255.0
return normalized_image
# Preprocess all images and convert labels to numpy arrays
X = np.array([preprocess_image(path) for path in train_image_paths])
Y = np.array(train_labels)
# Define ResNet50 model
resnet_model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# Freeze all layers except the last one
for layer in resnet_model.layers[:-1]:
layer.trainable = False
# Modify final layer
x = resnet_model.output
x = tf.keras.layers.Flatten()(x)
predictions = tf.keras.layers.Dense(1, activation='sigmoid')(x) # Binary classification
# Create new model with modified top
new_model = tf.keras.models.Model(inputs=resnet_model.input, outputs=predictions)
# Compile the new model
new_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Set parameters for cross-validation
kf = KFold(n_splits=4, shuffle=True, random_state=42)
batch_size = 32
epochs = 5
weights_file = 'model_2.weights.h5'
# Lists to store accuracy and loss for each fold
accuracy_per_fold = []
loss_per_fold = []
# Perform K-Fold Cross-Validation
for train_index, val_index in kf.split(X):
X_train, X_val = X[train_index], X[val_index]
Y_train, Y_val = Y[train_index], Y[val_index]
# Load weights if they exist
if os.path.exists(weights_file):
new_model.load_weights(weights_file)
print(f"Loaded weights from {weights_file}")
# Train only the last layer
history = new_model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=1, validation_data=(X_val, Y_val))
# Save weights after training
new_model.save_weights(weights_file)
print(f"Saved weights to {weights_file}")
# Evaluate the model on the validation data
val_loss, val_accuracy = new_model.evaluate(X_val, Y_val)
# Store the accuracy score for this fold
accuracy_per_fold.append(val_accuracy)
loss_per_fold.append(val_loss)
print(f'Fold accuracy: {val_accuracy*100:.2f}%')
print(f'Fold loss: {val_loss:.4f}')
# Print average accuracy and loss across all folds
print(f'\nAverage accuracy across all folds: {np.mean(accuracy_per_fold)*100:.2f}%')
print(f'Average loss across all folds: {np.mean(loss_per_fold):.4f}')
# Evaluate the preprocessed test images using the final model
test_loss, test_accuracy = new_model.evaluate(np.array([preprocess_image(path) for path in test_image_paths]), np.array(test_labels))
print(f"\nTest Loss: {test_loss}, Test Accuracy: {test_accuracy}")
# Predict labels for the test set
predictions = new_model.predict(np.array([preprocess_image(path) for path in test_image_paths]))
predicted_labels = (predictions > 0.5).astype(int).flatten()
# Summarize the classification results
true_real_correct = np.sum((np.array(test_labels) == 0) & (predicted_labels == 0))
true_real_incorrect = np.sum((np.array(test_labels) == 0) & (predicted_labels == 1))
true_fake_correct = np.sum((np.array(test_labels) == 1) & (predicted_labels == 1))
true_fake_incorrect = np.sum((np.array(test_labels) == 1) & (predicted_labels == 0))
print("\nClassification Summary:")
print(f"Real images correctly classified: {true_real_correct}")
print(f"Real images incorrectly classified: {true_real_incorrect}")
print(f"Fake images correctly classified: {true_fake_correct}")
print(f"Fake images incorrectly classified: {true_fake_incorrect}")
# Print detailed classification report
print("\nClassification Report:")
print(classification_report(test_labels, predicted_labels, target_names=['Real', 'Fake']))
# Plot confusion matrix
cm = confusion_matrix(test_labels, predicted_labels)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Real', 'Fake'])
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
plt.show()
# Plot training & validation accuracy values
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.xticks(np.arange(0, len(history.history['accuracy']), step=1), np.arange(1, len(history.history['accuracy']) + 1, step=1))
# Plot training & validation loss values
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.xticks(np.arange(0, len(history.history['loss']), step=1), np.arange(1, len(history.history['loss']) + 1, step=1))
plt.tight_layout()
plt.show()
# Plot validation accuracy and loss per fold
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(1, kf.get_n_splits() + 1), accuracy_per_fold, marker='o')
plt.title('Validation Accuracy per Fold')
plt.xlabel('Fold')
plt.ylabel('Accuracy')
plt.subplot(1, 2, 2)
plt.plot(range(1, kf.get_n_splits() + 1), loss_per_fold, marker='o')
plt.title('Validation Loss per Fold')
plt.xlabel('Fold')
plt.ylabel('Loss')
plt.tight_layout()
plt.show()
|