File size: 1,726 Bytes
156b71a 70420e5 27bafa1 156b71a 70420e5 156b71a 27bafa1 70420e5 156b71a 70420e5 156b71a 70420e5 156b71a 70420e5 27bafa1 70420e5 156b71a 27bafa1 70420e5 156b71a 70420e5 156b71a 70420e5 156b71a 27bafa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
language: ko
datasets: naver-finance-news
tags:
- sentiment-analysis
- korean
- finance
- finbert
- transformers
license: mit
model-index:
- name: finbert-sentiment-ko
results:
- task:
name: Sentiment Analysis
type: text-classification
metrics:
- type: accuracy
value: 0.93
---
# FinBERT Sentiment Analysis (Korean, Finance Domain)
μ΄ λͺ¨λΈμ **νκ΅μ΄ νμ¨(κΈμ΅) λ΄μ€ μμ½λ¬Έ**μ λμμΌλ‘ κ°μ μ λΆλ₯νκΈ° μν΄ νμΈνλλ BERT κΈ°λ° λͺ¨λΈμ
λλ€.
κ°μ λΆλ₯λ λ€μ μΈ κ°μ§ ν΄λμ€ μ€ νλλ‘ μνλ©λλ€:
- `0`: λΆμ
- `1`: μ€λ¦½
- `2`: κΈμ
## π§ νμ΅ μ 보
- κΈ°λ° λͺ¨λΈ: [`snunlp/KR-FinBERT-SC`](https://huggingface.co/snunlp/KR-FinBERT-SC)
- λ°μ΄ν°: μ§μ μμ§ν **λ€μ΄λ² νμ¨(κΈμ΅) λ΄μ€** μμ½ + κ°μ μμμ
λΌλ²¨λ§
- μ΄ μν μ: μ½ 200
- Optimizer: AdamW
- Epochs: 4
- μ΅λ κΈΈμ΄: 128
- νκ° μ§ν: Accuracy, F1 Score
## π μ±λ₯ νκ°
| κ°μ ν΄λμ€ | Precision | Recall | F1-score | Support |
|-------------|-----------|--------|----------|---------|
| λΆμ | 0.89 | 1.00 | 0.94 | 17 |
| μ€λ¦½ | 1.00 | 0.82 | 0.90 | 11 |
| κΈμ | 0.93 | 0.93 | 0.93 | 14 |
| **μ νλ** | | | **0.93** | 42 |
> μ 체 μ νλ: **93%**
> Macro F1-score: **0.92**
---
## π μ¬μ© λ°©λ²
```python
from transformers import pipeline
pipe = pipeline("text-classification", model="DataWizardd/finbert-sentiment-ko")
pipe("νμ¨μ΄ κΈλ±νλ©° μμ₯ λΆμμ΄ μ»€μ§κ³ μλ€.")
# μΆλ ₯: [{'label': 'λΆμ ', 'score': 0.95}]
|