David0702 commited on
Commit
21e2156
·
1 Parent(s): f65829b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 197.61 +/- 97.52
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 250.18 +/- 49.22
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3ce2c841f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3ce2c84280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3ce2c84310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3ce2c843a0>", "_build": "<function ActorCriticPolicy._build at 0x7a3ce2c84430>", "forward": "<function ActorCriticPolicy.forward at 0x7a3ce2c844c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3ce2c84550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3ce2c845e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a3ce2c84670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3ce2c84700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3ce2c84790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3ce2c84820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a3ce2c1eac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714412107404587575, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1jb76U5eO8trjsty8DVLegJE4+MrcYNwAAgD8AAIA/XrqNvjX7Az8mDpu84AKnvqrmWr22GY09AAAAAAAAAADtLz++P7FzP6/Tl75BtsW+g/ldvjuGsLwAAAAAAAAAALNCZD7kGOM+QvfMvVo7c75eU1M9CsilvAAAAAAAAAAA4/VXvoVkvTzJU8y6Nz9qOWoBUr4v/gk6AACAPwAAgD+aJLy8g2Z0Pcbudz0fHiO+zvDRPFLCNT0AAAAAAAAAAPPh/T2AhtA+o+huPcJfpr6NdCw9ItZOvAAAAAAAAAAAmvU5vnUqLT5V1KA9/pQDvpFCpzxWvEC9AAAAAAAAAAAmXts9FByyuts1djpPsV01v1nkuSnbjLkAAAAAAACAP2ZYRz5PJ2i8M6c2O6pESLluWtC92P9hugAAgD8AAIA/rfdcPj1NiT4itB2+PHJIvlXi0blJfz29AAAAAAAAAACGYUI+/LA0PtoHRb5VnFi+SM3QvNJvPj0AAAAAAAAAALP3XT0RE5E9QqzHvReaPr4d8I+8TdZRPAAAAAAAAAAAukhQvq+Lyj5L9l09XA1wvmKfybtaDJ+5AAAAAAAAAADzWvW9oi9XPpun2T13SXW+AvCvulXaOD0AAAAAAAAAAI0Jgr4F3/s8vROtOVzVi7g8Ioi+KwwGuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF93AD7qIJuMAWyUTegDjAF0lEdAo03J3s5XEXV9lChoBkdAcQnZvDP4VWgHTTkBaAhHQKNOBUy57PZ1fZQoaAZHQHCpkmQbMotoB00UAWgIR0CjTkK8tf5UdX2UKGgGR0BfmNbor4FiaAdN6ANoCEdAo056FoL5RHV9lChoBkdAbZGFcpsoD2gHTSUBaAhHQKNPa/WUbDN1fZQoaAZHQHAFBdUsFt9oB01VAWgIR0CjT3VDa4+bdX2UKGgGR0BujDYGt6omaAdNFwFoCEdAo38gubqhUXV9lChoBkdAcG9N0/4ZdmgHTSMBaAhHQKN/N4eLehx1fZQoaAZHQG7MbVz6rNpoB00eAWgIR0Cjf0U1ZTybdX2UKGgGR0BwA95xBE8aaAdNJgFoCEdAo39Jt+CsfnV9lChoBkdAcU4Bi1Aqu2gHTRQBaAhHQKN/fLlmvnt1fZQoaAZHQHEMi+6Ae7toB006AWgIR0Cjf+qK508vdX2UKGgGR0BwLZoTPBznaAdNIAFoCEdAo4Amj9GZu3V9lChoBkdAPasbzbvgFWgHS/NoCEdAo4BnJ3gUDnV9lChoBkdAYXrc6eXiSGgHTegDaAhHQKOAqgA6uGN1fZQoaAZHQHBM3AAQxvhoB00pAWgIR0CjggLbHp8ndX2UKGgGR0BtC5YgaFVUaAdNFgFoCEdAo4KmszVMEnV9lChoBkdAbl81n/T9bWgHTRoBaAhHQKOCwzsyBTZ1fZQoaAZHQG7nDVpbliloB00KAWgIR0CjhAYjjaPCdX2UKGgGR0BxbymQ8wHraAdNvgFoCEdAo4RyUaAFxHV9lChoBkdAcHKZBcAzYWgHTSEBaAhHQKOElaaCtih1fZQoaAZHQHE2sG1QZXNoB008AWgIR0CjhTEb5uZUdX2UKGgGR0BwcevhZQpGaAdNTQFoCEdAo4VlPznRs3V9lChoBkdAcBqh8IAwPGgHTT4BaAhHQKOFfJcxCY11fZQoaAZHQG+Tgi3XqaBoB00NAWgIR0CjhZYUnG83dX2UKGgGR0BwxHPKMefaaAdNIwFoCEdAo4Wx7CzkZXV9lChoBkdAalljtoi9qWgHTWADaAhHQKOGc0Z3s5Z1fZQoaAZHQG/wnYxtYSxoB013AWgIR0CjhuhC2MKkdX2UKGgGR0Bwe9jurp7kaAdNAAFoCEdAo4cEjAzpHXV9lChoBkdAcWzYdQwbl2gHTRcBaAhHQKOIWBun/DN1fZQoaAZHQHIJdbX6InBoB00SAWgIR0CjiclnRLK3dX2UKGgGR0BsKzXHzYmLaAdN1QFoCEdAo4ovm1YyPHV9lChoBkdAayh7fHggo2gHTQkBaAhHQKOKPJq7Acl1fZQoaAZHwCe4ISlFc6hoB00CAWgIR0CjiwILofSydX2UKGgGR0BuahXlr/KhaAdNBgFoCEdAo4s+pXIU8HV9lChoBkdAYQdWI42jwmgHTegDaAhHQKOLVK4hEBt1fZQoaAZHQGvnbaIvalFoB02RAWgIR0Cji2P+XJHRdX2UKGgGR0BsacMkQf6oaAdNBgFoCEdAo4wwIMSbpnV9lChoBkdAcBi8Hv+fiGgHTUcBaAhHQKOMfTuv2Xd1fZQoaAZHQHFNak2xY7toB01TAWgIR0CjjMwUQCjldX2UKGgGR0Bw0sW0qpcYaAdNCQFoCEdAo4zYbOu7pXV9lChoBkdAbHR4rSVnmWgHTQsBaAhHQKON+Q9RrJt1fZQoaAZHQG8ket8uzyBoB02ZAWgIR0Cjj24/3WWhdX2UKGgGR0BtldDIBBAwaAdNGwFoCEdAo49wxcmjTXV9lChoBkdAbt38stkFwGgHTRcBaAhHQKOPs4Qz1sd1fZQoaAZHQHAkZtFa0QdoB00aAWgIR0Cjj7lbeMyadX2UKGgGR0Bg17i4rjHXaAdN6ANoCEdAo5AHNke6qnV9lChoBkdAbaU+UyHmBGgHTQwBaAhHQKOQC/nGKht1fZQoaAZHQG8TKFyq+8JoB00LAWgIR0CjkDqmsNlRdX2UKGgGR0Budz0th/iHaAdNGQFoCEdAo5B/ChvitXV9lChoBkdAcEqYfnwG4mgHTTUBaAhHQKOQ2ow22oh1fZQoaAZHQG7dRuCPIXFoB00AAWgIR0CjkR+XJHRUdX2UKGgGR0A/FLB9Cu2aaAdNBAFoCEdAo5F/jlxOtXV9lChoBkdAcBeVYp2ECmgHTSkBaAhHQKOSBSQYDT11fZQoaAZHQHBVtX5nDixoB01SAWgIR0CjkhnU+cH4dX2UKGgGR0Bvbqsjmjj8aAdNFgFoCEdAo5K+MqBmPHV9lChoBkdAPxg+IMz/ImgHS+doCEdAo5Mp9uxbCHV9lChoBkdAbWXmW+oLomgHTREBaAhHQKOT5Tw2ETR1fZQoaAZHQHDl2CyyD7JoB00+AWgIR0CjlRoYm9g4dX2UKGgGR0Bv+XgR9PUKaAdNLAFoCEdAo5VVSwW30HV9lChoBkdAcOYEOy3TeGgHTSEBaAhHQKOVbs54nnd1fZQoaAZHQHC/6ifxtpFoB00MAWgIR0CjlXl2V3UydX2UKGgGR0BvHELSeAd5aAdNFgFoCEdAo5aB+z+m33V9lChoBkdAb8ipeeFtbmgHTYYBaAhHQKOW5NtZV4p1fZQoaAZHQG/lCgCfYjBoB01HAWgIR0CjlvqM3qA0dX2UKGgGR0BqHZmVZ9uxaAdNEAFoCEdAo5ch+jM3ZXV9lChoBkdAB79Wp6yB1GgHS/doCEdAo5dozFdcB3V9lChoBkdAbbNWf9P1tmgHTSwBaAhHQKOXfpSJj2B1fZQoaAZHQFp7/20zCUJoB03oA2gIR0Cjl5RwZOzqdX2UKGgGR0Bxk/t0FKTTaAdL9mgIR0Cjl80gSvkjdX2UKGgGR0Bds8ju8brDaAdN6ANoCEdAo5gV5le4TnV9lChoBkdAcSFpVCHARGgHTdcBaAhHQKOYK1qnFYN1fZQoaAZHQHBU59RaX8hoB00VAWgIR0CjmNP+fh/BdX2UKGgGR0BxGNAJLM9saAdL8mgIR0CjmS4G2TgVdX2UKGgGR0BwBHbWVeKLaAdL6WgIR0CjmUHlGPPtdX2UKGgGR0Bxio0Jng5zaAdNCQFoCEdAo5m+LP2PDHV9lChoBkdAcKDHymQ8wGgHTRgBaAhHQKOZ3J4B3id1fZQoaAZHQCBMZ9/jKgZoB0vsaAhHQKOac03Ov+x1fZQoaAZHwCXyLuQZGaxoB0vzaAhHQKOauslLOA11fZQoaAZHQHCy4U8FINFoB00xAWgIR0CjnE/kFOfvdX2UKGgGR0Bsk8sYl6Z6aAdNFAFoCEdAo5yHwCr923V9lChoBkdAcbp/XGwRoWgHTTcBaAhHQKOcjs0pEx91fZQoaAZHQHAcbIgeRxNoB00oAWgIR0CjnI3XAdn1dX2UKGgGR0BxlSEBbOeKaAdNewFoCEdAo5yu4mTkhnV9lChoBkdAblZ8D0UXYWgHTRkBaAhHQKOcwKKHfuV1fZQoaAZHQHAqoyO7xutoB01kAWgIR0CjnSrytmthdX2UKGgGR0Btaid1+y7gaAdNDwFoCEdAo53IkTpPh3V9lChoBkdAcCbV/c32mGgHTTgBaAhHQKOeEiSJTER1fZQoaAZHQHJwqdtl7MRoB00sAWgIR0Cjnym1hLGrdX2UKGgGR0BwnA65oXbeaAdNeAFoCEdAo6EinFYMfHV9lChoBkdAZAF+QU5+6WgHTegDaAhHQKOh07o0Q9R1fZQoaAZHQCmOymhufmNoB0v4aAhHQKOiHZQHiWF1fZQoaAZHQG+fsQd0aIhoB0v/aAhHQKOiUCT2WY51fZQoaAZHQG/vq02LpA5oB00XAWgIR0Cjor7CiyprdX2UKGgGR0Bx/ILG7z06aAdNFAFoCEdAo6L/nuAqeHV9lChoBkdAcZCZb6guiGgHTRwBaAhHQKOjeRlpXZJ1fZQoaAZHQGt+GQbMottoB02MAWgIR0Cjo6f9YOlPdX2UKGgGR0Bv2TOcDr7gaAdNLAFoCEdAo6PS88La3HV9lChoBkdAa89LMcIZ62gHTQQBaAhHQKOkKRuCPIZ1fZQoaAZHQG9FoCMglnhoB00wAWgIR0CjpSzcAR02dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e092846d040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e092846d0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e092846d160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e092846d1f0>", "_build": "<function ActorCriticPolicy._build at 0x7e092846d280>", "forward": "<function ActorCriticPolicy.forward at 0x7e092846d310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e092846d3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e092846d430>", "_predict": "<function ActorCriticPolicy._predict at 0x7e092846d4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e092846d550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e092846d5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e092846d670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7e0928468480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714477529914229117, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACGMTzP7he83BqPvHDGI72iDg+9s6bYvgAAgD8AAIA/gLGqvVCa5D7zsQ8+yveGvh4neL3uEQE+AAAAAAAAAACzFmC9Hh2FP1ba4bxXiby+c+/gvZmsuj0AAAAAAAAAAABvzT096Bq7Lf8lvkvYi72rkTG7YeiOPAAAgD8AAIA/GmQJvbgsujz64nU9pEb1vZ65cD24DiM9AAAAAAAAAAAAqQg9vFIaPy2m3L1yEHu+U9nEvKU1AbwAAAAAAAAAAOYgUL6MXoU/EeRGvPGyw74b8Tq+FfCDPgAAAAAAAAAAGkpSPR9l+7kbnEszIna4KhAP3Lt1o9SzAACAPwAAgD/zmoO9HqP7PSLF9zz3ZGC+vq4Qu99otj0AAAAAAAAAAKB0Xz6DqUY/wFInPj6Hsr6Mqy8+Os5gvQAAAAAAAAAAM+mSvHHbN7ueMAQ7ZBWNPMIzhLwtMnM9AACAPwAAgD+2Q1q+r/cAP5BFTD4vx62+ih34PCZInD0AAAAAAAAAAACn/TwFOVg+Ok3cPI3Ll76HdaY8pv8DPgAAAAAAAAAAGlaIvfZsALpC9Nw68zbkNU1/ULq+4gC6AAAAAAAAgD+zaL69wz0EupNrQjRsbiOuWSD8utFSqLMAAIA/AACAP8sPjr5gsJk/1npkvgqhlr6TV9m+jOamPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAumAbyYomMAWyUTS4BjAF0lEdAfMsK64Ds+nV9lChoBkdAcNIhmoR7JGgHTU8BaAhHQHzLoVIqbz91fZQoaAZHQGu1mQjlgc9oB01ZAWgIR0B8zWjfvWpZdX2UKGgGR0BszsOkLx7RaAdNOAFoCEdAfM9KfFrEcnV9lChoBkdAbQbUJfICEGgHTSMBaAhHQHzQjbWVeKN1fZQoaAZHQG9UvLPldTpoB03VAmgIR0B80LVhCtzTdX2UKGgGR0BuqEnuy/sWaAdNOAFoCEdAfNHPn0TURXV9lChoBkdAbph0lJHy3GgHTTABaAhHQHzSmcOLBKt1fZQoaAZHQG/uAKneiztoB002AWgIR0B8/Gqp97WvdX2UKGgGR0BvIcxXXAdoaAdNGAFoCEdAfPyt7KJVKnV9lChoBkdAcczcXFcY7GgHTUIBaAhHQHz9SFXaJyh1fZQoaAZHQHCj+oLofSxoB00PAWgIR0B8/0oLG7z1dX2UKGgGR0BxQW2tuDSPaAdNTgFoCEdAfQB32VVxTHV9lChoBkdAcX+Lsa86FWgHTRUCaAhHQH0CcTviLl51fZQoaAZHQHIA1/YrauhoB01yAWgIR0B9BJPwd8zAdX2UKGgGR0ByCa3PRiPRaAdNMwFoCEdAfQWhQFcIJXV9lChoBkdAcXcU5+6RQ2gHTSIBaAhHQH0GKreZXuF1fZQoaAZHQHCsSXlbNbFoB01hAWgIR0B9Bktbs4T9dX2UKGgGR0Bx+0Sh8IAwaAdNvAFoCEdAfQhtMfzSTnV9lChoBkdAcT1HOKO1fGgHTWcBaAhHQH0JxpHqeK91fZQoaAZHQHK2vepGWldoB01VAWgIR0B9CjufEn9fdX2UKGgGR0Busj/GVAzIaAdNTAFoCEdAfQqgydnTRnV9lChoBkdAb4AV1Oj7AWgHTRIBaAhHQH0MgG0NSZV1fZQoaAZHQHCKQjY7JXBoB00QAWgIR0B9DO13MY/FdX2UKGgGR0BrSoemvW6LaAdNWwFoCEdAfRBWe6I3znV9lChoBkdAcOVBuXNTtWgHTS0BaAhHQH0RkxREWqN1fZQoaAZHQG5m9E1EVnFoB00RAWgIR0B9Ed1uBMBZdX2UKGgGR0BzNUM2FWXDaAdNVAFoCEdAfRKXLeQ+2XV9lChoBkdAcgiLeANG3GgHTQMBaAhHQH0S9qL0jC51fZQoaAZHQF5ZUbT+ee5oB03oA2gIR0B9F6p5u63BdX2UKGgGR0BxOPUZvUBoaAdNTAFoCEdAfRvP1tfoinV9lChoBkdAcFMKdhAnlWgHTRcBaAhHQH0dcXrMTvl1fZQoaAZHQG4SWx6fJ3hoB00jAWgIR0B9Hur0aqCIdX2UKGgGR0BsQ8riEQGwaAdNVAFoCEdAfR9IMz/IbXV9lChoBkdAcOkSvkili2gHTWUBaAhHQH0fayjYZl51fZQoaAZHQF+UO0LMLWtoB03oA2gIR0B9IDbpNbkfdX2UKGgGR0Bw/aPyTY/WaAdNDQFoCEdAfSRkT6BRRHV9lChoBkdAcRB0/4ZdfWgHTTgBaAhHQH0lh1oxpL51fZQoaAZHQGzGtfgJkXloB007AWgIR0B9JvjzZpSKdX2UKGgGR0BvImkadc0MaAdN6gFoCEdAfShjawljVnV9lChoBkdAcEDQDmr8zmgHTX0BaAhHQH0ok8vEjxF1fZQoaAZHQG/FSNfgJkZoB010AWgIR0B9KYp8WsRydX2UKGgGR0BsmYJb+tKaaAdNHAFoCEdAfSpCZF5OanV9lChoBkdAbeaOEM9bHWgHTX4CaAhHQH0sVMdtEXt1fZQoaAZHQHDjDjFQ2uRoB00dAWgIR0B9L6QuEmICdX2UKGgGR0BsUOqYJE6UaAdNGQFoCEdAfS+yuZCv5nV9lChoBkdAcQtovzvqkmgHTU4BaAhHQH0v/W1+iJx1fZQoaAZHQHL3Zw0fozNoB00WAWgIR0B9MEophF3IdX2UKGgGR0ByPM50bLlnaAdNLQFoCEdAfTC938n/k3V9lChoBkdAb30G1QZXMmgHTYEBaAhHQH0zloHs1Kp1fZQoaAZHQG9Dta6jFhpoB00mAWgIR0B9XcSOBDohdX2UKGgGR0BwWeKekHlfaAdNQQFoCEdAfV4PszEaVHV9lChoBkdAcTeWCVbA12gHTSwBaAhHQH1fmD6Fds11fZQoaAZHQG7FGZuyeI5oB000AWgIR0B9X99ORDCxdX2UKGgGR0BwkeQ6p5u7aAdNNwFoCEdAfWEX3xnWa3V9lChoBkdAcAyUY8+zMWgHTZgBaAhHQH1h4NI9TxZ1fZQoaAZHQG6xVcdHUc5oB00nAWgIR0B9Ywy9EkSmdX2UKGgGR0BxKDKnvUjLaAdNUwFoCEdAfWNAp8WsR3V9lChoBkdAccdlsP8Q7WgHTRIBaAhHQH1lZemelKt1fZQoaAZHQG8Uk7W/ag5oB00UAWgIR0B9Zc7ihnJ1dX2UKGgGR0Bi7MLH+6y0aAdN6ANoCEdAfWXcoYvWYnV9lChoBkdAWfgr4FiazGgHTegDaAhHQH1mYw/PgNx1fZQoaAZHQG5e40VJtixoB01DAWgIR0B9Z2PDHfdidX2UKGgGR0BsCk8s+V1PaAdNQwFoCEdAfWdwaBI4EXV9lChoBkdAbs8zl90A92gHTRsBaAhHQH1pCA6Mir11fZQoaAZHQGzMZ6+nIhhoB01cAWgIR0B9aWMBIWgwdX2UKGgGR0Bw8CBClabGaAdNCgFoCEdAfWwrTpgTiHV9lChoBkdAbdNZKWcBl2gHTTkBaAhHQH1tOR1X/5t1fZQoaAZHQG/nblaKUFBoB00WAWgIR0B9bkzeoDPodX2UKGgGR0Bx+4OJ+DvmaAdNYAFoCEdAfW8OFQEZBXV9lChoBkdAcC3d8zAN5WgHTTgBaAhHQH1xB5kbxVh1fZQoaAZHQHHlAbIcR15oB01BAWgIR0B9cy3QUpNLdX2UKGgGR0Bv42z2OAAiaAdNSQFoCEdAfXNvtMPBi3V9lChoBkdAb4DxgAp8W2gHTYcBaAhHQH1zf2Xb/Ot1fZQoaAZHQHAOCrDIikhoB00mAWgIR0B9dJlDneSCdX2UKGgGR0BuY9Kujh1laAdNLgFoCEdAfXUP+n62v3V9lChoBkdAcCt2rGR3eWgHTQ4BaAhHQH11HfEXLvF1fZQoaAZHQHEJKTKT0QNoB00oAWgIR0B9dUrmQr+YdX2UKGgGR0BwEX0HyEteaAdNVAFoCEdAfXZU0Nz8xnV9lChoBkdAbzMDMeOn22gHTUEBaAhHQH13WZ7Xxvx1fZQoaAZHQGwncl5WzWxoB00mAWgIR0B9d9axHG0edX2UKGgGR0Bw//UBnzxxaAdNEgFoCEdAfXnkFwDNhXV9lChoBkdAcf51RLsa9GgHTVgBaAhHQH16SX2M85l1fZQoaAZHQHI9gGGEf1ZoB00lAWgIR0B9fJWQwK0EdX2UKGgGR0BxBwfHPu5SaAdNHAFoCEdAfXzZa3ZwoHV9lChoBkdAcBA+S8rZrmgHTUUBaAhHQH19MRUWEbp1fZQoaAZHQG+ruL74zrNoB00+AWgIR0B9gHocJdB0dX2UKGgGR0BxTI8RtgrpaAdNKAFoCEdAfYGci4axYHV9lChoBkdAcO6XQtz0YmgHTSYBaAhHQH2DX2qT8pF1fZQoaAZHQG+OFM7EHdJoB00oAWgIR0B9g4v6CUX6dX2UKGgGR0Bxv2C4BmwraAdNNQFoCEdAfYO1stTUAnV9lChoBkdAcZAWxhUip2gHTS8BaAhHQH2EKhYeT3Z1fZQoaAZHQHF1Xv2GqPxoB00zAWgIR0B9haOLiuMddX2UKGgGR0BwDdOXVsk6aAdNnQFoCEdAfYhNd7fHgnV9lChoBkdAcmH4c3l0YGgHTREBaAhHQH2IlDv3JxN1fZQoaAZHQG+km51/2CdoB01zAWgIR0B9iq9vjwQUdX2UKGgGR0BwQeKwY+B6aAdN6wFoCEdAfYySBK+SKXV9lChoBkdAbSL0hePaMGgHTScBaAhHQH2NQCKaXrt1fZQoaAZHQHBGQccU/OdoB00oAWgIR0B9jZGlQ/HHdX2UKGgGR0Bwg9mwqy4XaAdNaQFoCEdAfY4WS2Yv4HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.8.0-31-generic-x86_64-with-glibc2.10 # 31-Ubuntu SMP PREEMPT_DYNAMIC Sat Apr 20 00:40:06 UTC 2024", "Python": "3.8.19", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.24.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:01720b11ef7a93570eaf44c6f66eaa1b341cb188c2a319f2e0d58b9ab60df1fc
3
- size 148071
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b784865045039ccb5e972c97d78eda25cdb47992b95f6bcd538b59550e6cd1e3
3
+ size 148094
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3ce2c841f0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3ce2c84280>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3ce2c84310>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3ce2c843a0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7a3ce2c84430>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7a3ce2c844c0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3ce2c84550>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3ce2c845e0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7a3ce2c84670>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3ce2c84700>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3ce2c84790>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3ce2c84820>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7a3ce2c1eac0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1714412107404587575,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1jb76U5eO8trjsty8DVLegJE4+MrcYNwAAgD8AAIA/XrqNvjX7Az8mDpu84AKnvqrmWr22GY09AAAAAAAAAADtLz++P7FzP6/Tl75BtsW+g/ldvjuGsLwAAAAAAAAAALNCZD7kGOM+QvfMvVo7c75eU1M9CsilvAAAAAAAAAAA4/VXvoVkvTzJU8y6Nz9qOWoBUr4v/gk6AACAPwAAgD+aJLy8g2Z0Pcbudz0fHiO+zvDRPFLCNT0AAAAAAAAAAPPh/T2AhtA+o+huPcJfpr6NdCw9ItZOvAAAAAAAAAAAmvU5vnUqLT5V1KA9/pQDvpFCpzxWvEC9AAAAAAAAAAAmXts9FByyuts1djpPsV01v1nkuSnbjLkAAAAAAACAP2ZYRz5PJ2i8M6c2O6pESLluWtC92P9hugAAgD8AAIA/rfdcPj1NiT4itB2+PHJIvlXi0blJfz29AAAAAAAAAACGYUI+/LA0PtoHRb5VnFi+SM3QvNJvPj0AAAAAAAAAALP3XT0RE5E9QqzHvReaPr4d8I+8TdZRPAAAAAAAAAAAukhQvq+Lyj5L9l09XA1wvmKfybtaDJ+5AAAAAAAAAADzWvW9oi9XPpun2T13SXW+AvCvulXaOD0AAAAAAAAAAI0Jgr4F3/s8vROtOVzVi7g8Ioi+KwwGuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,16 +45,16 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF93AD7qIJuMAWyUTegDjAF0lEdAo03J3s5XEXV9lChoBkdAcQnZvDP4VWgHTTkBaAhHQKNOBUy57PZ1fZQoaAZHQHCpkmQbMotoB00UAWgIR0CjTkK8tf5UdX2UKGgGR0BfmNbor4FiaAdN6ANoCEdAo056FoL5RHV9lChoBkdAbZGFcpsoD2gHTSUBaAhHQKNPa/WUbDN1fZQoaAZHQHAFBdUsFt9oB01VAWgIR0CjT3VDa4+bdX2UKGgGR0BujDYGt6omaAdNFwFoCEdAo38gubqhUXV9lChoBkdAcG9N0/4ZdmgHTSMBaAhHQKN/N4eLehx1fZQoaAZHQG7MbVz6rNpoB00eAWgIR0Cjf0U1ZTybdX2UKGgGR0BwA95xBE8aaAdNJgFoCEdAo39Jt+CsfnV9lChoBkdAcU4Bi1Aqu2gHTRQBaAhHQKN/fLlmvnt1fZQoaAZHQHEMi+6Ae7toB006AWgIR0Cjf+qK508vdX2UKGgGR0BwLZoTPBznaAdNIAFoCEdAo4Amj9GZu3V9lChoBkdAPasbzbvgFWgHS/NoCEdAo4BnJ3gUDnV9lChoBkdAYXrc6eXiSGgHTegDaAhHQKOAqgA6uGN1fZQoaAZHQHBM3AAQxvhoB00pAWgIR0CjggLbHp8ndX2UKGgGR0BtC5YgaFVUaAdNFgFoCEdAo4KmszVMEnV9lChoBkdAbl81n/T9bWgHTRoBaAhHQKOCwzsyBTZ1fZQoaAZHQG7nDVpbliloB00KAWgIR0CjhAYjjaPCdX2UKGgGR0BxbymQ8wHraAdNvgFoCEdAo4RyUaAFxHV9lChoBkdAcHKZBcAzYWgHTSEBaAhHQKOElaaCtih1fZQoaAZHQHE2sG1QZXNoB008AWgIR0CjhTEb5uZUdX2UKGgGR0BwcevhZQpGaAdNTQFoCEdAo4VlPznRs3V9lChoBkdAcBqh8IAwPGgHTT4BaAhHQKOFfJcxCY11fZQoaAZHQG+Tgi3XqaBoB00NAWgIR0CjhZYUnG83dX2UKGgGR0BwxHPKMefaaAdNIwFoCEdAo4Wx7CzkZXV9lChoBkdAalljtoi9qWgHTWADaAhHQKOGc0Z3s5Z1fZQoaAZHQG/wnYxtYSxoB013AWgIR0CjhuhC2MKkdX2UKGgGR0Bwe9jurp7kaAdNAAFoCEdAo4cEjAzpHXV9lChoBkdAcWzYdQwbl2gHTRcBaAhHQKOIWBun/DN1fZQoaAZHQHIJdbX6InBoB00SAWgIR0CjiclnRLK3dX2UKGgGR0BsKzXHzYmLaAdN1QFoCEdAo4ovm1YyPHV9lChoBkdAayh7fHggo2gHTQkBaAhHQKOKPJq7Acl1fZQoaAZHwCe4ISlFc6hoB00CAWgIR0CjiwILofSydX2UKGgGR0BuahXlr/KhaAdNBgFoCEdAo4s+pXIU8HV9lChoBkdAYQdWI42jwmgHTegDaAhHQKOLVK4hEBt1fZQoaAZHQGvnbaIvalFoB02RAWgIR0Cji2P+XJHRdX2UKGgGR0BsacMkQf6oaAdNBgFoCEdAo4wwIMSbpnV9lChoBkdAcBi8Hv+fiGgHTUcBaAhHQKOMfTuv2Xd1fZQoaAZHQHFNak2xY7toB01TAWgIR0CjjMwUQCjldX2UKGgGR0Bw0sW0qpcYaAdNCQFoCEdAo4zYbOu7pXV9lChoBkdAbHR4rSVnmWgHTQsBaAhHQKON+Q9RrJt1fZQoaAZHQG8ket8uzyBoB02ZAWgIR0Cjj24/3WWhdX2UKGgGR0BtldDIBBAwaAdNGwFoCEdAo49wxcmjTXV9lChoBkdAbt38stkFwGgHTRcBaAhHQKOPs4Qz1sd1fZQoaAZHQHAkZtFa0QdoB00aAWgIR0Cjj7lbeMyadX2UKGgGR0Bg17i4rjHXaAdN6ANoCEdAo5AHNke6qnV9lChoBkdAbaU+UyHmBGgHTQwBaAhHQKOQC/nGKht1fZQoaAZHQG8TKFyq+8JoB00LAWgIR0CjkDqmsNlRdX2UKGgGR0Budz0th/iHaAdNGQFoCEdAo5B/ChvitXV9lChoBkdAcEqYfnwG4mgHTTUBaAhHQKOQ2ow22oh1fZQoaAZHQG7dRuCPIXFoB00AAWgIR0CjkR+XJHRUdX2UKGgGR0A/FLB9Cu2aaAdNBAFoCEdAo5F/jlxOtXV9lChoBkdAcBeVYp2ECmgHTSkBaAhHQKOSBSQYDT11fZQoaAZHQHBVtX5nDixoB01SAWgIR0CjkhnU+cH4dX2UKGgGR0Bvbqsjmjj8aAdNFgFoCEdAo5K+MqBmPHV9lChoBkdAPxg+IMz/ImgHS+doCEdAo5Mp9uxbCHV9lChoBkdAbWXmW+oLomgHTREBaAhHQKOT5Tw2ETR1fZQoaAZHQHDl2CyyD7JoB00+AWgIR0CjlRoYm9g4dX2UKGgGR0Bv+XgR9PUKaAdNLAFoCEdAo5VVSwW30HV9lChoBkdAcOYEOy3TeGgHTSEBaAhHQKOVbs54nnd1fZQoaAZHQHC/6ifxtpFoB00MAWgIR0CjlXl2V3UydX2UKGgGR0BvHELSeAd5aAdNFgFoCEdAo5aB+z+m33V9lChoBkdAb8ipeeFtbmgHTYYBaAhHQKOW5NtZV4p1fZQoaAZHQG/lCgCfYjBoB01HAWgIR0CjlvqM3qA0dX2UKGgGR0BqHZmVZ9uxaAdNEAFoCEdAo5ch+jM3ZXV9lChoBkdAB79Wp6yB1GgHS/doCEdAo5dozFdcB3V9lChoBkdAbbNWf9P1tmgHTSwBaAhHQKOXfpSJj2B1fZQoaAZHQFp7/20zCUJoB03oA2gIR0Cjl5RwZOzqdX2UKGgGR0Bxk/t0FKTTaAdL9mgIR0Cjl80gSvkjdX2UKGgGR0Bds8ju8brDaAdN6ANoCEdAo5gV5le4TnV9lChoBkdAcSFpVCHARGgHTdcBaAhHQKOYK1qnFYN1fZQoaAZHQHBU59RaX8hoB00VAWgIR0CjmNP+fh/BdX2UKGgGR0BxGNAJLM9saAdL8mgIR0CjmS4G2TgVdX2UKGgGR0BwBHbWVeKLaAdL6WgIR0CjmUHlGPPtdX2UKGgGR0Bxio0Jng5zaAdNCQFoCEdAo5m+LP2PDHV9lChoBkdAcKDHymQ8wGgHTRgBaAhHQKOZ3J4B3id1fZQoaAZHQCBMZ9/jKgZoB0vsaAhHQKOac03Ov+x1fZQoaAZHwCXyLuQZGaxoB0vzaAhHQKOauslLOA11fZQoaAZHQHCy4U8FINFoB00xAWgIR0CjnE/kFOfvdX2UKGgGR0Bsk8sYl6Z6aAdNFAFoCEdAo5yHwCr923V9lChoBkdAcbp/XGwRoWgHTTcBaAhHQKOcjs0pEx91fZQoaAZHQHAcbIgeRxNoB00oAWgIR0CjnI3XAdn1dX2UKGgGR0BxlSEBbOeKaAdNewFoCEdAo5yu4mTkhnV9lChoBkdAblZ8D0UXYWgHTRkBaAhHQKOcwKKHfuV1fZQoaAZHQHAqoyO7xutoB01kAWgIR0CjnSrytmthdX2UKGgGR0Btaid1+y7gaAdNDwFoCEdAo53IkTpPh3V9lChoBkdAcCbV/c32mGgHTTgBaAhHQKOeEiSJTER1fZQoaAZHQHJwqdtl7MRoB00sAWgIR0Cjnym1hLGrdX2UKGgGR0BwnA65oXbeaAdNeAFoCEdAo6EinFYMfHV9lChoBkdAZAF+QU5+6WgHTegDaAhHQKOh07o0Q9R1fZQoaAZHQCmOymhufmNoB0v4aAhHQKOiHZQHiWF1fZQoaAZHQG+fsQd0aIhoB0v/aAhHQKOiUCT2WY51fZQoaAZHQG/vq02LpA5oB00XAWgIR0Cjor7CiyprdX2UKGgGR0Bx/ILG7z06aAdNFAFoCEdAo6L/nuAqeHV9lChoBkdAcZCZb6guiGgHTRwBaAhHQKOjeRlpXZJ1fZQoaAZHQGt+GQbMottoB02MAWgIR0Cjo6f9YOlPdX2UKGgGR0Bv2TOcDr7gaAdNLAFoCEdAo6PS88La3HV9lChoBkdAa89LMcIZ62gHTQQBaAhHQKOkKRuCPIZ1fZQoaAZHQG9FoCMglnhoB00wAWgIR0CjpSzcAR02dWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 310,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
- ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
@@ -69,7 +69,7 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
@@ -77,23 +77,23 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 2048,
81
- "gamma": 0.99,
82
- "gae_lambda": 0.95,
83
- "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e092846d040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e092846d0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e092846d160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e092846d1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e092846d280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e092846d310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e092846d3a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e092846d430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e092846d4c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e092846d550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e092846d5e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e092846d670>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7e0928468480>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1714477529914229117,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACGMTzP7he83BqPvHDGI72iDg+9s6bYvgAAgD8AAIA/gLGqvVCa5D7zsQ8+yveGvh4neL3uEQE+AAAAAAAAAACzFmC9Hh2FP1ba4bxXiby+c+/gvZmsuj0AAAAAAAAAAABvzT096Bq7Lf8lvkvYi72rkTG7YeiOPAAAgD8AAIA/GmQJvbgsujz64nU9pEb1vZ65cD24DiM9AAAAAAAAAAAAqQg9vFIaPy2m3L1yEHu+U9nEvKU1AbwAAAAAAAAAAOYgUL6MXoU/EeRGvPGyw74b8Tq+FfCDPgAAAAAAAAAAGkpSPR9l+7kbnEszIna4KhAP3Lt1o9SzAACAPwAAgD/zmoO9HqP7PSLF9zz3ZGC+vq4Qu99otj0AAAAAAAAAAKB0Xz6DqUY/wFInPj6Hsr6Mqy8+Os5gvQAAAAAAAAAAM+mSvHHbN7ueMAQ7ZBWNPMIzhLwtMnM9AACAPwAAgD+2Q1q+r/cAP5BFTD4vx62+ih34PCZInD0AAAAAAAAAAACn/TwFOVg+Ok3cPI3Ll76HdaY8pv8DPgAAAAAAAAAAGlaIvfZsALpC9Nw68zbkNU1/ULq+4gC6AAAAAAAAgD+zaL69wz0EupNrQjRsbiOuWSD8utFSqLMAAIA/AACAP8sPjr5gsJk/1npkvgqhlr6TV9m+jOamPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAumAbyYomMAWyUTS4BjAF0lEdAfMsK64Ds+nV9lChoBkdAcNIhmoR7JGgHTU8BaAhHQHzLoVIqbz91fZQoaAZHQGu1mQjlgc9oB01ZAWgIR0B8zWjfvWpZdX2UKGgGR0BszsOkLx7RaAdNOAFoCEdAfM9KfFrEcnV9lChoBkdAbQbUJfICEGgHTSMBaAhHQHzQjbWVeKN1fZQoaAZHQG9UvLPldTpoB03VAmgIR0B80LVhCtzTdX2UKGgGR0BuqEnuy/sWaAdNOAFoCEdAfNHPn0TURXV9lChoBkdAbph0lJHy3GgHTTABaAhHQHzSmcOLBKt1fZQoaAZHQG/uAKneiztoB002AWgIR0B8/Gqp97WvdX2UKGgGR0BvIcxXXAdoaAdNGAFoCEdAfPyt7KJVKnV9lChoBkdAcczcXFcY7GgHTUIBaAhHQHz9SFXaJyh1fZQoaAZHQHCj+oLofSxoB00PAWgIR0B8/0oLG7z1dX2UKGgGR0BxQW2tuDSPaAdNTgFoCEdAfQB32VVxTHV9lChoBkdAcX+Lsa86FWgHTRUCaAhHQH0CcTviLl51fZQoaAZHQHIA1/YrauhoB01yAWgIR0B9BJPwd8zAdX2UKGgGR0ByCa3PRiPRaAdNMwFoCEdAfQWhQFcIJXV9lChoBkdAcXcU5+6RQ2gHTSIBaAhHQH0GKreZXuF1fZQoaAZHQHCsSXlbNbFoB01hAWgIR0B9Bktbs4T9dX2UKGgGR0Bx+0Sh8IAwaAdNvAFoCEdAfQhtMfzSTnV9lChoBkdAcT1HOKO1fGgHTWcBaAhHQH0JxpHqeK91fZQoaAZHQHK2vepGWldoB01VAWgIR0B9CjufEn9fdX2UKGgGR0Busj/GVAzIaAdNTAFoCEdAfQqgydnTRnV9lChoBkdAb4AV1Oj7AWgHTRIBaAhHQH0MgG0NSZV1fZQoaAZHQHCKQjY7JXBoB00QAWgIR0B9DO13MY/FdX2UKGgGR0BrSoemvW6LaAdNWwFoCEdAfRBWe6I3znV9lChoBkdAcOVBuXNTtWgHTS0BaAhHQH0RkxREWqN1fZQoaAZHQG5m9E1EVnFoB00RAWgIR0B9Ed1uBMBZdX2UKGgGR0BzNUM2FWXDaAdNVAFoCEdAfRKXLeQ+2XV9lChoBkdAcgiLeANG3GgHTQMBaAhHQH0S9qL0jC51fZQoaAZHQF5ZUbT+ee5oB03oA2gIR0B9F6p5u63BdX2UKGgGR0BxOPUZvUBoaAdNTAFoCEdAfRvP1tfoinV9lChoBkdAcFMKdhAnlWgHTRcBaAhHQH0dcXrMTvl1fZQoaAZHQG4SWx6fJ3hoB00jAWgIR0B9Hur0aqCIdX2UKGgGR0BsQ8riEQGwaAdNVAFoCEdAfR9IMz/IbXV9lChoBkdAcOkSvkili2gHTWUBaAhHQH0fayjYZl51fZQoaAZHQF+UO0LMLWtoB03oA2gIR0B9IDbpNbkfdX2UKGgGR0Bw/aPyTY/WaAdNDQFoCEdAfSRkT6BRRHV9lChoBkdAcRB0/4ZdfWgHTTgBaAhHQH0lh1oxpL51fZQoaAZHQGzGtfgJkXloB007AWgIR0B9JvjzZpSKdX2UKGgGR0BvImkadc0MaAdN6gFoCEdAfShjawljVnV9lChoBkdAcEDQDmr8zmgHTX0BaAhHQH0ok8vEjxF1fZQoaAZHQG/FSNfgJkZoB010AWgIR0B9KYp8WsRydX2UKGgGR0BsmYJb+tKaaAdNHAFoCEdAfSpCZF5OanV9lChoBkdAbeaOEM9bHWgHTX4CaAhHQH0sVMdtEXt1fZQoaAZHQHDjDjFQ2uRoB00dAWgIR0B9L6QuEmICdX2UKGgGR0BsUOqYJE6UaAdNGQFoCEdAfS+yuZCv5nV9lChoBkdAcQtovzvqkmgHTU4BaAhHQH0v/W1+iJx1fZQoaAZHQHL3Zw0fozNoB00WAWgIR0B9MEophF3IdX2UKGgGR0ByPM50bLlnaAdNLQFoCEdAfTC938n/k3V9lChoBkdAb30G1QZXMmgHTYEBaAhHQH0zloHs1Kp1fZQoaAZHQG9Dta6jFhpoB00mAWgIR0B9XcSOBDohdX2UKGgGR0BwWeKekHlfaAdNQQFoCEdAfV4PszEaVHV9lChoBkdAcTeWCVbA12gHTSwBaAhHQH1fmD6Fds11fZQoaAZHQG7FGZuyeI5oB000AWgIR0B9X99ORDCxdX2UKGgGR0BwkeQ6p5u7aAdNNwFoCEdAfWEX3xnWa3V9lChoBkdAcAyUY8+zMWgHTZgBaAhHQH1h4NI9TxZ1fZQoaAZHQG6xVcdHUc5oB00nAWgIR0B9Ywy9EkSmdX2UKGgGR0BxKDKnvUjLaAdNUwFoCEdAfWNAp8WsR3V9lChoBkdAccdlsP8Q7WgHTRIBaAhHQH1lZemelKt1fZQoaAZHQG8Uk7W/ag5oB00UAWgIR0B9Zc7ihnJ1dX2UKGgGR0Bi7MLH+6y0aAdN6ANoCEdAfWXcoYvWYnV9lChoBkdAWfgr4FiazGgHTegDaAhHQH1mYw/PgNx1fZQoaAZHQG5e40VJtixoB01DAWgIR0B9Z2PDHfdidX2UKGgGR0BsCk8s+V1PaAdNQwFoCEdAfWdwaBI4EXV9lChoBkdAbs8zl90A92gHTRsBaAhHQH1pCA6Mir11fZQoaAZHQGzMZ6+nIhhoB01cAWgIR0B9aWMBIWgwdX2UKGgGR0Bw8CBClabGaAdNCgFoCEdAfWwrTpgTiHV9lChoBkdAbdNZKWcBl2gHTTkBaAhHQH1tOR1X/5t1fZQoaAZHQG/nblaKUFBoB00WAWgIR0B9bkzeoDPodX2UKGgGR0Bx+4OJ+DvmaAdNYAFoCEdAfW8OFQEZBXV9lChoBkdAcC3d8zAN5WgHTTgBaAhHQH1xB5kbxVh1fZQoaAZHQHHlAbIcR15oB01BAWgIR0B9cy3QUpNLdX2UKGgGR0Bv42z2OAAiaAdNSQFoCEdAfXNvtMPBi3V9lChoBkdAb4DxgAp8W2gHTYcBaAhHQH1zf2Xb/Ot1fZQoaAZHQHAOCrDIikhoB00mAWgIR0B9dJlDneSCdX2UKGgGR0BuY9Kujh1laAdNLgFoCEdAfXUP+n62v3V9lChoBkdAcCt2rGR3eWgHTQ4BaAhHQH11HfEXLvF1fZQoaAZHQHEJKTKT0QNoB00oAWgIR0B9dUrmQr+YdX2UKGgGR0BwEX0HyEteaAdNVAFoCEdAfXZU0Nz8xnV9lChoBkdAbzMDMeOn22gHTUEBaAhHQH13WZ7Xxvx1fZQoaAZHQGwncl5WzWxoB00mAWgIR0B9d9axHG0edX2UKGgGR0Bw//UBnzxxaAdNEgFoCEdAfXnkFwDNhXV9lChoBkdAcf51RLsa9GgHTVgBaAhHQH16SX2M85l1fZQoaAZHQHI9gGGEf1ZoB00lAWgIR0B9fJWQwK0EdX2UKGgGR0BxBwfHPu5SaAdNHAFoCEdAfXzZa3ZwoHV9lChoBkdAcBA+S8rZrmgHTUUBaAhHQH19MRUWEbp1fZQoaAZHQG+ruL74zrNoB00+AWgIR0B9gHocJdB0dX2UKGgGR0BxTI8RtgrpaAdNKAFoCEdAfYGci4axYHV9lChoBkdAcO6XQtz0YmgHTSYBaAhHQH2DX2qT8pF1fZQoaAZHQG+OFM7EHdJoB00oAWgIR0B9g4v6CUX6dX2UKGgGR0Bxv2C4BmwraAdNNQFoCEdAfYO1stTUAnV9lChoBkdAcZAWxhUip2gHTS8BaAhHQH2EKhYeT3Z1fZQoaAZHQHF1Xv2GqPxoB00zAWgIR0B9haOLiuMddX2UKGgGR0BwDdOXVsk6aAdNnQFoCEdAfYhNd7fHgnV9lChoBkdAcmH4c3l0YGgHTREBaAhHQH2IlDv3JxN1fZQoaAZHQG+km51/2CdoB01zAWgIR0B9iq9vjwQUdX2UKGgGR0BwQeKwY+B6aAdN6wFoCEdAfYySBK+SKXV9lChoBkdAbSL0hePaMGgHTScBaAhHQH2NQCKaXrt1fZQoaAZHQHBGQccU/OdoB00oAWgIR0B9jZGlQ/HHdX2UKGgGR0Bwg9mwqy4XaAdNaQFoCEdAfY4WS2Yv4HVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
 
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:61abf67cf74934c355d3352af61a9686a466c7ec0a39b3274c2e71ca8b4b7d70
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c5e3ea0cf5672aff806b11d14f731e3085ff02b95f1139ccbec0a744cd99e67
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5f91e9cb20e80986aed4431eff24ae2dff0f947c610f241056de5ccb5fca414
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b91b379d975b22d69c0ad38d74ef8cc9ce68ea07a93f148fcbdd70d1661156
3
  size 43762
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,8 @@
1
- - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
- - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.2.1+cu121
5
  - GPU Enabled: True
6
- - Numpy: 1.25.2
7
- - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
- - OpenAI Gym: 0.25.2
 
1
+ - OS: Linux-6.8.0-31-generic-x86_64-with-glibc2.10 # 31-Ubuntu SMP PREEMPT_DYNAMIC Sat Apr 20 00:40:06 UTC 2024
2
+ - Python: 3.8.19
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
  - GPU Enabled: True
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.28.1
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 197.6081836168741, "std_reward": 97.51706068510339, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-29T18:05:00.849618"}
 
1
+ {"mean_reward": 250.1803351, "std_reward": 49.21955174603466, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-30T20:13:29.863946"}