--- tags: - merge - mergekit - lazymergekit - KoboldAI/LLaMA2-13B-Tiefighter - DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp base_model: - KoboldAI/LLaMA2-13B-Tiefighter - DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp --- Version 2: Attempt to use linear "retraining" to fix issues with orginal model (D_AU-Tiefighter-Giraffe-13B-32k-slerp) merge from step 1. Seems to be successful. Model is working correctly and GGUFs are also working correctly with context at 32768. Imatrix Plus GGUFs upload to follow shortly. # D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter) * [DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp](https://huggingface.co/DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp) ## 🧩 Configuration ```yaml models: - model: KoboldAI/LLaMA2-13B-Tiefighter parameters: weight: 0.8 - model: DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp parameters: weight: 0.2 merge_method: linear dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "DavidAU/D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```