update model card README.md
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss:
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -38,34 +38,26 @@ More information needed
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate:
|
42 |
-
- train_batch_size:
|
43 |
-
- eval_batch_size:
|
44 |
- seed: 42
|
|
|
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
-
- num_epochs:
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
-
| 2.
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
| 0.55 | 6.0 | 450 | 0.7138 | 0.81 |
|
60 |
-
| 0.3267 | 7.0 | 525 | 0.7121 | 0.84 |
|
61 |
-
| 0.3366 | 8.0 | 600 | 0.7213 | 0.81 |
|
62 |
-
| 0.2463 | 9.0 | 675 | 0.7768 | 0.79 |
|
63 |
-
| 0.1388 | 10.0 | 750 | 0.8165 | 0.79 |
|
64 |
-
| 0.1413 | 11.0 | 825 | 0.7713 | 0.82 |
|
65 |
-
| 0.0578 | 12.0 | 900 | 0.7860 | 0.8 |
|
66 |
-
| 0.0329 | 13.0 | 975 | 0.7821 | 0.82 |
|
67 |
-
| 0.0287 | 14.0 | 1050 | 0.8172 | 0.82 |
|
68 |
-
| 0.0277 | 15.0 | 1125 | 0.8078 | 0.81 |
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 2.2122
|
22 |
+
- Accuracy: 0.46
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 1.9710604668225084e-06
|
42 |
+
- train_batch_size: 4
|
43 |
+
- eval_batch_size: 4
|
44 |
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 8
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 5
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
56 |
+
| 2.2805 | 1.0 | 112 | 2.2812 | 0.25 |
|
57 |
+
| 2.2618 | 2.0 | 225 | 2.2510 | 0.32 |
|
58 |
+
| 2.24 | 3.0 | 337 | 2.2299 | 0.42 |
|
59 |
+
| 2.2191 | 4.0 | 450 | 2.2166 | 0.44 |
|
60 |
+
| 2.2425 | 4.98 | 560 | 2.2122 | 0.46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|