DavidFM43 commited on
Commit
5dee4a4
·
1 Parent(s): 2e4fda0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: wav2vec2-base-finetuned-gtzan
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # wav2vec2-base-finetuned-gtzan
18
+
19
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.8270
22
+ - Accuracy: 0.83
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 3e-05
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 2
46
+ - total_train_batch_size: 16
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 10
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
56
+ | 2.0547 | 0.99 | 56 | 2.0066 | 0.45 |
57
+ | 1.7392 | 2.0 | 113 | 1.5974 | 0.57 |
58
+ | 1.5689 | 2.99 | 169 | 1.4470 | 0.59 |
59
+ | 1.2626 | 4.0 | 226 | 1.2541 | 0.66 |
60
+ | 1.1188 | 4.99 | 282 | 1.2458 | 0.65 |
61
+ | 0.9776 | 6.0 | 339 | 0.9830 | 0.75 |
62
+ | 0.9396 | 6.99 | 395 | 0.8980 | 0.74 |
63
+ | 0.8677 | 8.0 | 452 | 0.8398 | 0.8 |
64
+ | 0.8194 | 8.99 | 508 | 0.7868 | 0.82 |
65
+ | 0.7274 | 9.91 | 560 | 0.8270 | 0.83 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.30.2
71
+ - Pytorch 2.0.0
72
+ - Datasets 2.1.0
73
+ - Tokenizers 0.13.3