File size: 16,632 Bytes
57af4be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------

import json
from argparse import ArgumentParser

import onnx
from onnx import TensorProto, helper


class QnnTensorStruct:
    def __init__(self):
        self.name = ""
        self.onnx_data_type = TensorProto.FLOAT
        self.is_quantized = False
        self.scale = 0.0
        self.offset = 0
        self.dim = []


def is_quantized_data_type(qnn_data_type, is_converter_json):
    if is_converter_json:
        # QNN_DATATYPE_UFIXED_POINT_8 QNN_DATATYPE_UFIXED_POINT_16 QNN_DATATYPE_FIXED_POINT_8 QNN_DATATYPE_FIXED_POINT_16
        return qnn_data_type == 0x0408 or qnn_data_type == 0x0416 or qnn_data_type == 0x0308 or qnn_data_type == 0x0316
    else:
        return (
            qnn_data_type == "QNN_DATATYPE_UFIXED_POINT_8"
            or qnn_data_type == "QNN_DATATYPE_UFIXED_POINT_16"
            or qnn_data_type == "QNN_DATATYPE_FIXED_POINT_8"
            or qnn_data_type == "QNN_DATATYPE_FIXED_POINT_16"
        )


def qnn_data_type_to_onnx_data_type(qnn_data_type, is_converter_json):
    if is_converter_json:
        # QNN_DATATYPE_UFIXED_POINT_8 QNN_DATATYPE_UINT_8
        if qnn_data_type == 0x0408 or qnn_data_type == 0x0108:
            return TensorProto.UINT8
        # QNN_DATATYPE_UFIXED_POINT_16 QNN_DATATYPE_UINT_16
        elif qnn_data_type == 0x0416 or qnn_data_type == 0x0116:
            return TensorProto.UINT16
        # QNN_DATATYPE_UFIXED_POINT_32 QNN_DATATYPE_UINT_32
        elif qnn_data_type == 0x0432 or qnn_data_type == 0x0132:
            return TensorProto.UINT32
        # QNN_DATATYPE_UINT_64
        elif qnn_data_type == 0x0164:
            return TensorProto.UINT64
        # QNN_DATATYPE_FIXED_POINT_8 QNN_DATATYPE_INT_8
        elif qnn_data_type == 0x0308 or qnn_data_type == 0x0008:
            return TensorProto.INT8
        # QNN_DATATYPE_FIXED_POINT_16 QNN_DATATYPE_INT_16
        elif qnn_data_type == 0x0316 or qnn_data_type == 0x0016:
            return TensorProto.INT16
        # QNN_DATATYPE_FIXED_POINT_32 QNN_DATATYPE_INT_32
        elif qnn_data_type == 0x0332 or qnn_data_type == 0x0032:
            return TensorProto.INT32
        # QNN_DATATYPE_INT_64
        elif qnn_data_type == 0x0064:
            return TensorProto.INT64
        # QNN_DATATYPE_FLOAT_16
        elif qnn_data_type == 0x0216:
            return TensorProto.FLOAT16
        # QNN_DATATYPE_FLOAT_32
        elif qnn_data_type == 0x0232:
            return TensorProto.FLOAT
        # QNN_DATATYPE_BOOL_8
        elif qnn_data_type == 0x0508:
            return TensorProto.BOOL
        else:
            return TensorProto.UNDEFINED
    else:
        # QNN_DATATYPE_UFIXED_POINT_8 QNN_DATATYPE_UINT_8
        if qnn_data_type == "QNN_DATATYPE_UFIXED_POINT_8" or qnn_data_type == "QNN_DATATYPE_UINT_8":
            return TensorProto.UINT8
        # QNN_DATATYPE_UFIXED_POINT_16 QNN_DATATYPE_UINT_16
        elif qnn_data_type == "QNN_DATATYPE_UFIXED_POINT_16" or qnn_data_type == "QNN_DATATYPE_UINT_16":
            return TensorProto.UINT16
        # QNN_DATATYPE_UFIXED_POINT_32 QNN_DATATYPE_UINT_32
        elif qnn_data_type == "QNN_DATATYPE_UFIXED_POINT_32" or qnn_data_type == "QNN_DATATYPE_UINT_32":
            return TensorProto.UINT32
        # QNN_DATATYPE_UINT_64
        elif qnn_data_type == "QNN_DATATYPE_UINT_64":
            return TensorProto.UINT64
        # QNN_DATATYPE_FIXED_POINT_8 QNN_DATATYPE_INT_8
        elif qnn_data_type == "QNN_DATATYPE_FIXED_POINT_8" or qnn_data_type == "QNN_DATATYPE_INT_8":
            return TensorProto.INT8
        # QNN_DATATYPE_FIXED_POINT_16 QNN_DATATYPE_INT_16
        elif qnn_data_type == "QNN_DATATYPE_FIXED_POINT_16" or qnn_data_type == "QNN_DATATYPE_INT_16":
            return TensorProto.INT16
        # QNN_DATATYPE_FIXED_POINT_32 QNN_DATATYPE_INT_32
        elif qnn_data_type == "QNN_DATATYPE_FIXED_POINT_32" or qnn_data_type == "QNN_DATATYPE_INT_32":
            return TensorProto.INT32
        # QNN_DATATYPE_INT_64
        elif qnn_data_type == "QNN_DATATYPE_INT_64":
            return TensorProto.INT64
        # QNN_DATATYPE_FLOAT_16
        elif qnn_data_type == "QNN_DATATYPE_FLOAT_16":
            return TensorProto.FLOAT16
        # QNN_DATATYPE_FLOAT_32
        elif qnn_data_type == "QNN_DATATYPE_FLOAT_32":
            return TensorProto.FLOAT
        # QNN_DATATYPE_BOOL_8
        elif qnn_data_type == "QNN_DATATYPE_BOOL_8":
            return TensorProto.BOOL
        else:
            return TensorProto.UNDEFINED


def parse_qnn_converter_json_file(qnn_convert_json, qnn_input_tensor_dic, qnn_output_tensor_dic):
    is_qnn_converter_json = True
    for qnn_tensor_name, qnn_tensor_attribute in qnn_convert_json["graph"]["tensors"].items():
        # type:0 - QNN input tensor, type:1 - QNN output tensor
        assert (
            "type" in qnn_tensor_attribute and "data_type" in qnn_tensor_attribute and "dims" in qnn_tensor_attribute
        ), "QNN converted json file not valid. Can't find some keys from tensors"

        # Get all graph inputs
        if qnn_tensor_attribute["type"] == 0:
            qnn_tensor = QnnTensorStruct()
            qnn_tensor.name = qnn_tensor_name
            qnn_tensor.onnx_data_type = qnn_data_type_to_onnx_data_type(
                qnn_tensor_attribute["data_type"], is_qnn_converter_json
            )
            qnn_tensor.is_quantized = is_quantized_data_type(qnn_tensor_attribute["data_type"], is_qnn_converter_json)
            qnn_tensor.dim = qnn_tensor_attribute["dims"]
            if (
                qnn_tensor_attribute["quant_params"]["definition"] == 1
                and qnn_tensor_attribute["quant_params"]["encoding"] == 0
            ):
                qnn_tensor.scale = qnn_tensor_attribute["quant_params"]["scale_offset"]["scale"]
                qnn_tensor.offset = 0 - qnn_tensor_attribute["quant_params"]["scale_offset"]["offset"]
            qnn_input_tensor_dic[qnn_tensor_name] = qnn_tensor

        # Get all graph outputs
        if qnn_tensor_attribute["type"] == 1:
            qnn_tensor = QnnTensorStruct()
            qnn_tensor.name = qnn_tensor_name
            qnn_tensor.onnx_data_type = qnn_data_type_to_onnx_data_type(
                qnn_tensor_attribute["data_type"], is_qnn_converter_json
            )
            qnn_tensor.is_quantized = is_quantized_data_type(qnn_tensor_attribute["data_type"], is_qnn_converter_json)
            qnn_tensor.dim = qnn_tensor_attribute["dims"]
            if (
                qnn_tensor_attribute["quant_params"]["definition"] == 1
                and qnn_tensor_attribute["quant_params"]["encoding"] == 0
            ):
                qnn_tensor.scale = qnn_tensor_attribute["quant_params"]["scale_offset"]["scale"]
                qnn_tensor.offset = 0 - qnn_tensor_attribute["quant_params"]["scale_offset"]["offset"]
            qnn_output_tensor_dic[qnn_tensor_name] = qnn_tensor

    assert len(qnn_input_tensor_dic) >= 1 and len(qnn_output_tensor_dic) >= 1, (
        "Converted QNN model not valid. It should have at least 1 input & 1 output."
    )


def generate_wrapper_onnx_file(
    grap_name,
    model_file_name,
    qnn_input_tensor_dic,
    qnn_output_tensor_dic,
    disable_embed_mode,
    qnn_ctx_file,
    quantized_IO,
    qnn_sdk_version="unknown",
):
    graph_nodes = []
    ini_list = []
    value_infos = []

    model_inputs = []
    for qnn_input in qnn_input_tensor_dic.values():
        if qnn_input.is_quantized and not quantized_IO:
            q_scale_input_name = qnn_input.name + "_scale"
            q_offset_input_name = qnn_input.name + "_zp"
            q_scale = helper.make_tensor(q_scale_input_name, TensorProto.FLOAT, [], [qnn_input.scale])
            ini_list.append(q_scale)
            q_offset = helper.make_tensor(q_offset_input_name, qnn_input.onnx_data_type, [], [qnn_input.offset])
            ini_list.append(q_offset)
            input_name = qnn_input.name + "_dq"

            q_node = helper.make_node(
                "QuantizeLinear",
                name=qnn_input.name,
                inputs=[input_name, q_scale_input_name, q_offset_input_name],
                outputs=[qnn_input.name],
            )

            graph_nodes.append(q_node)
            model_inputs.append(helper.make_tensor_value_info(input_name, TensorProto.FLOAT, qnn_input.dim))
            value_infos.append(helper.make_tensor_value_info(qnn_input.name, qnn_input.onnx_data_type, qnn_input.dim))
        else:
            model_inputs.append(helper.make_tensor_value_info(qnn_input.name, qnn_input.onnx_data_type, qnn_input.dim))

    if disable_embed_mode:
        ep_cache_context_content = qnn_ctx_file
        ctx_embed_mode = 0
    else:
        with open(qnn_ctx_file, "rb") as file:
            ep_cache_context_content = file.read()
        ctx_embed_mode = 1

    qnn_ep_context_node = helper.make_node(
        "EPContext",
        name=grap_name,
        inputs=qnn_input_tensor_dic.keys(),
        outputs=qnn_output_tensor_dic.keys(),
        ep_cache_context=ep_cache_context_content,
        embed_mode=ctx_embed_mode,
        ep_sdk_version=qnn_sdk_version,
        source="Qnn",
        domain="com.microsoft",
    )
    graph_nodes.append(qnn_ep_context_node)

    model_outputs = []
    for qnn_output in qnn_output_tensor_dic.values():
        if qnn_output.is_quantized and not quantized_IO:
            dq_scale_input_name = qnn_output.name + "_scale"
            dq_offset_input_name = qnn_output.name + "_zp"
            dq_scale = helper.make_tensor(dq_scale_input_name, TensorProto.FLOAT, [], [qnn_output.scale])
            ini_list.append(dq_scale)
            dq_offset = helper.make_tensor(dq_offset_input_name, qnn_output.onnx_data_type, [], [qnn_output.offset])
            ini_list.append(dq_offset)
            output_name = qnn_output.name + "_dq"

            dq_node = helper.make_node(
                "DequantizeLinear",
                name=output_name,
                inputs=[qnn_output.name, dq_scale_input_name, dq_offset_input_name],
                outputs=[output_name],
            )

            graph_nodes.append(dq_node)
            model_outputs.append(helper.make_tensor_value_info(output_name, TensorProto.FLOAT, qnn_output.dim))
            value_infos.append(
                helper.make_tensor_value_info(qnn_output.name, qnn_output.onnx_data_type, qnn_output.dim)
            )
        else:
            model_outputs.append(
                helper.make_tensor_value_info(qnn_output.name, qnn_output.onnx_data_type, qnn_output.dim)
            )

    graph_def = helper.make_graph(graph_nodes, "qnn-onnx-model", model_inputs, model_outputs, ini_list, "", value_infos)

    model_def = helper.make_model(graph_def, producer_name="MS")

    onnx.save(model_def, model_file_name)


# parse Qnn graph from the json file that extracted from context binary file
def parse_qnn_graph(qnn_graph, qnn_input_tensor_dic, qnn_output_tensor_dic):
    is_qnn_converter_json = False
    graph_name = qnn_graph["info"]["graphName"]
    raw_inputs = qnn_graph["info"]["graphInputs"]
    raw_outputs = qnn_graph["info"]["graphOutputs"]

    for raw_input in raw_inputs:
        tensor_info = raw_input["info"]
        qnn_tensor = QnnTensorStruct()
        qnn_tensor.name = tensor_info["name"]
        qnn_tensor.onnx_data_type = qnn_data_type_to_onnx_data_type(tensor_info["dataType"], is_qnn_converter_json)
        qnn_tensor.is_quantized = is_quantized_data_type(tensor_info["dataType"], is_qnn_converter_json)
        qnn_tensor.dim = tensor_info["dimensions"]
        if (
            tensor_info["quantizeParams"]["definition"] == "QNN_DEFINITION_DEFINED"
            and tensor_info["quantizeParams"]["quantizationEncoding"] == "QNN_QUANTIZATION_ENCODING_SCALE_OFFSET"
        ):
            qnn_tensor.scale = tensor_info["quantizeParams"]["scaleOffset"]["scale"]
            qnn_tensor.offset = 0 - tensor_info["quantizeParams"]["scaleOffset"]["offset"]
        qnn_input_tensor_dic[qnn_tensor.name] = qnn_tensor

    for raw_output in raw_outputs:
        tensor_info = raw_output["info"]
        qnn_tensor = QnnTensorStruct()
        qnn_tensor.name = tensor_info["name"]
        qnn_tensor.onnx_data_type = qnn_data_type_to_onnx_data_type(tensor_info["dataType"], is_qnn_converter_json)
        qnn_tensor.is_quantized = is_quantized_data_type(tensor_info["dataType"], is_qnn_converter_json)
        qnn_tensor.dim = tensor_info["dimensions"]
        if (
            tensor_info["quantizeParams"]["definition"] == "QNN_DEFINITION_DEFINED"
            and tensor_info["quantizeParams"]["quantizationEncoding"] == "QNN_QUANTIZATION_ENCODING_SCALE_OFFSET"
        ):
            qnn_tensor.scale = tensor_info["quantizeParams"]["scaleOffset"]["scale"]
            qnn_tensor.offset = 0 - tensor_info["quantizeParams"]["scaleOffset"]["offset"]
        qnn_output_tensor_dic[qnn_tensor.name] = qnn_tensor

    assert len(qnn_input_tensor_dic) >= 1 and len(qnn_output_tensor_dic) >= 1, (
        "Converted QNN model not valid. It should have at least 1 input & 1 output."
    )

    return graph_name


# Onnxruntime QNN EP can support context binary file generated by QNN tool chain. However QNN generated context binary file
# uses channel last data layout and 8 bits or 16 bits for input and output.
# This script gets the QNN model input & output information from QNN converted model_net.json file, compare them with Onnx model
# and inserts Cast, Transpose nodes to Onnx model if required
def main():
    parser = ArgumentParser("Generate Onnx model which includes the QNN context binary.")
    parser.add_argument("-b", "--qnn_bin", help="Required. Path to Qnn context binary file.", required=True, type=str)
    parser.add_argument(
        "-q", "--qnn_json", help="Required. Path to Qnn converted model_net.json file.", required=True, type=str
    )
    parser.add_argument(
        "--disable_embed_mode",
        action="store_true",
        default=False,
        help="Set embed_mode=1 which mean embed Qnn context binary into the onnx model. Otherwise, set context binary file path in the onnx model",
    )
    parser.add_argument(
        "--quantized_IO",
        action="store_true",
        default=False,
        help="QNN converted context binary use quantized data as graph inputs and outputs. Will keep it if quantized_IO=True, otherwise, will insert Q and DQ nodes accordingly to make the graph inputs & outputs as float32 data type.",
    )
    args = parser.parse_args()

    # Parse Qnn model_net.json file to get the graph input output information

    with open(args.qnn_json) as qnn_json_file:
        qnn_json_obj = json.load(qnn_json_file)
        if "graph" in qnn_json_obj and "tensors" in qnn_json_obj["graph"]:
            print("This json file is from Qnn converter")
            qnn_input_tensor_dic = {}
            qnn_output_tensor_dic = {}
            parse_qnn_converter_json_file(qnn_json_obj, qnn_input_tensor_dic, qnn_output_tensor_dic)

            generate_wrapper_onnx_file(
                "QnnContext",
                args.qnn_json.replace(".json", "_qnn_ctx.onnx"),
                qnn_input_tensor_dic,
                qnn_output_tensor_dic,
                args.disable_embed_mode,
                args.qnn_bin,
                args.quantized_IO,
            )
        elif "info" in qnn_json_obj and "graphs" in qnn_json_obj["info"]:
            print("This json file is extracted from QNN context binary file")
            qnn_version = qnn_json_obj["info"]["buildId"]
            for qnn_graph in qnn_json_obj["info"]["graphs"]:
                qnn_input_tensor_dic = {}
                qnn_output_tensor_dic = {}
                graph_name = parse_qnn_graph(qnn_graph, qnn_input_tensor_dic, qnn_output_tensor_dic)

                ctx_file_name = graph_name + "_qnn_ctx.onnx"
                if not args.quantized_IO:
                    ctx_file_name = ctx_file_name.replace(".onnx", "_fp32_io.onnx")

                generate_wrapper_onnx_file(
                    graph_name,
                    ctx_file_name,
                    qnn_input_tensor_dic,
                    qnn_output_tensor_dic,
                    args.disable_embed_mode,
                    args.qnn_bin,
                    args.quantized_IO,
                    qnn_version,
                )
        else:
            print("json file unrecoginized.")


if __name__ == "__main__":
    main()