Hugging Face's logo --- language: - ar - as - bn - ca - en - es - eu - fr - gu - hi - id - ig - mr - pa - pt - sw - ur - vi - yo - zh - multilingual datasets: - wikiann --- # xlm-roberta-base-wikiann-ner ## Model description **xlm-roberta-base-wikiann-ner** is the first **Named Entity Recognition** model for 20 languages (Arabic, Assamese, Bengali, Catalan, English, Spanish, Basque, French, Gujarati, Hindi, Indonesia, Igbo, Marathi, Punjabi, Portugues and Swahili, Urdu, Vietnamese, Yoruba, Chinese) based on a fine-tuned XLM-RoBERTa large model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize three types of entities: location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of languages datasets obtained from [WikiANN](https://huggingface.co/datasets/wikiann) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base-wikiann-ner") model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-base-wikiann-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ìbọn ń ró kù kù gẹ́gẹ́ bí ọwọ́ ọ̀pọ̀ aráàlù ṣe tẹ ìbọn ní Kyiv láti dojú kọ Russia" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 20 NER datasets (Arabic, Assamese, Bengali, Catalan, English, Spanish, Basque, French, Gujarati, Hindi, Indonesia, Igbo, Marathi, Punjabi, Portugues and Swahili, Urdu, Vietnamese, Yoruba, Chinese)[wikiann](https://huggingface.co/datasets/wikiann). The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ### BibTeX entry and citation info ```