--- library_name: transformers base_model: dawid511/speecht5_finetuned_librispeech_polish_epo6_batch8_gas4 tags: - generated_from_trainer model-index: - name: speecht5_finetuned_librispeech_polish_epo10_batch2_gas2 results: [] --- # speecht5_finetuned_librispeech_polish_epo10_batch2_gas2 This model is a fine-tuned version of [dawid511/speecht5_finetuned_librispeech_polish_epo6_batch8_gas4](https://huggingface.co/dawid511/speecht5_finetuned_librispeech_polish_epo6_batch8_gas4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7279 | 0.2558 | 100 | 0.3734 | | 0.7647 | 0.5115 | 200 | 0.3829 | | 0.7646 | 0.7673 | 300 | 0.3793 | | 0.7521 | 1.0230 | 400 | 0.3804 | | 0.7673 | 1.2788 | 500 | 0.3817 | | 0.7415 | 1.5345 | 600 | 0.3824 | | 0.7721 | 1.7903 | 700 | 0.3960 | | 0.7766 | 2.0460 | 800 | 0.3767 | | 0.7529 | 2.3018 | 900 | 0.3756 | | 0.757 | 2.5575 | 1000 | 0.3809 | | 0.757 | 2.8133 | 1100 | 0.3808 | | 0.746 | 3.0691 | 1200 | 0.3762 | | 0.7424 | 3.3248 | 1300 | 0.3744 | | 0.7409 | 3.5806 | 1400 | 0.3778 | | 0.7453 | 3.8363 | 1500 | 0.3715 | | 0.7409 | 4.0921 | 1600 | 0.3722 | | 0.7441 | 4.3478 | 1700 | 0.3728 | | 0.7304 | 4.6036 | 1800 | 0.3724 | | 0.738 | 4.8593 | 1900 | 0.3710 | | 0.7213 | 5.1151 | 2000 | 0.3730 | | 0.7446 | 5.3708 | 2100 | 0.3721 | | 0.7255 | 5.6266 | 2200 | 0.3684 | | 0.7321 | 5.8824 | 2300 | 0.3671 | | 0.7098 | 6.1381 | 2400 | 0.3673 | | 0.7401 | 6.3939 | 2500 | 0.3735 | | 0.7165 | 6.6496 | 2600 | 0.3679 | | 0.714 | 6.9054 | 2700 | 0.3733 | | 0.7035 | 7.1611 | 2800 | 0.3666 | | 0.7089 | 7.4169 | 2900 | 0.3689 | | 0.7118 | 7.6726 | 3000 | 0.3691 | | 0.7064 | 7.9284 | 3100 | 0.3664 | | 0.6994 | 8.1841 | 3200 | 0.3679 | | 0.6958 | 8.4399 | 3300 | 0.3661 | | 0.7087 | 8.6957 | 3400 | 0.3683 | | 0.6968 | 8.9514 | 3500 | 0.3635 | | 0.7035 | 9.2072 | 3600 | 0.3647 | | 0.7045 | 9.4629 | 3700 | 0.3647 | | 0.6982 | 9.7187 | 3800 | 0.3642 | | 0.6996 | 9.9744 | 3900 | 0.3637 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0