Deadwalker0 commited on
Commit
480bc3c
1 Parent(s): 745a581

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +159 -0
  2. adapter_config.json +32 -0
  3. adapter_model.bin +3 -0
  4. added_tokens.json +6 -0
  5. checkpoint-113/README.md +204 -0
  6. checkpoint-113/adapter_config.json +32 -0
  7. checkpoint-113/adapter_model.safetensors +3 -0
  8. checkpoint-113/optimizer.pt +3 -0
  9. checkpoint-113/rng_state_0.pth +3 -0
  10. checkpoint-113/rng_state_1.pth +3 -0
  11. checkpoint-113/rng_state_2.pth +3 -0
  12. checkpoint-113/rng_state_3.pth +3 -0
  13. checkpoint-113/rng_state_4.pth +3 -0
  14. checkpoint-113/rng_state_5.pth +3 -0
  15. checkpoint-113/rng_state_6.pth +3 -0
  16. checkpoint-113/scheduler.pt +3 -0
  17. checkpoint-113/trainer_state.json +731 -0
  18. checkpoint-113/training_args.bin +3 -0
  19. checkpoint-226/README.md +204 -0
  20. checkpoint-226/adapter_config.json +32 -0
  21. checkpoint-226/adapter_model.safetensors +3 -0
  22. checkpoint-226/optimizer.pt +3 -0
  23. checkpoint-226/rng_state_0.pth +3 -0
  24. checkpoint-226/rng_state_1.pth +3 -0
  25. checkpoint-226/rng_state_2.pth +3 -0
  26. checkpoint-226/rng_state_3.pth +3 -0
  27. checkpoint-226/rng_state_4.pth +3 -0
  28. checkpoint-226/rng_state_5.pth +3 -0
  29. checkpoint-226/rng_state_6.pth +3 -0
  30. checkpoint-226/scheduler.pt +3 -0
  31. checkpoint-226/trainer_state.json +1441 -0
  32. checkpoint-226/training_args.bin +3 -0
  33. checkpoint-339/README.md +204 -0
  34. checkpoint-339/adapter_config.json +32 -0
  35. checkpoint-339/adapter_model.safetensors +3 -0
  36. checkpoint-339/optimizer.pt +3 -0
  37. checkpoint-339/rng_state_0.pth +3 -0
  38. checkpoint-339/rng_state_1.pth +3 -0
  39. checkpoint-339/rng_state_2.pth +3 -0
  40. checkpoint-339/rng_state_3.pth +3 -0
  41. checkpoint-339/rng_state_4.pth +3 -0
  42. checkpoint-339/rng_state_5.pth +3 -0
  43. checkpoint-339/rng_state_6.pth +3 -0
  44. checkpoint-339/scheduler.pt +3 -0
  45. checkpoint-339/trainer_state.json +2151 -0
  46. checkpoint-339/training_args.bin +3 -0
  47. checkpoint-452/README.md +204 -0
  48. checkpoint-452/adapter_config.json +32 -0
  49. checkpoint-452/adapter_model.safetensors +3 -0
  50. checkpoint-452/optimizer.pt +3 -0
README.md ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: codellama/CodeLlama-34b-hf
7
+ model-index:
8
+ - name: maverick34b
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: codellama/CodeLlama-34b-hf
21
+ model_type: LlamaForCausalLM
22
+ tokenizer_type: CodeLlamaTokenizer
23
+ is_llama_derived_model: true
24
+
25
+ load_in_8bit: false
26
+ load_in_4bit: true
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: iamtarun/code_instructions_120k_alpaca
31
+ type: alpaca
32
+ dataset_prepared_path:
33
+ val_set_size: 0.05
34
+ output_dir: ./maverick34b
35
+
36
+ adapter: qlora
37
+ lora_model_dir:
38
+
39
+ sequence_len: 4096
40
+ sample_packing: true
41
+ pad_to_sequence_len: true
42
+
43
+ lora_r: 32
44
+ lora_alpha: 16
45
+ lora_dropout: 0.05
46
+ lora_target_modules:
47
+ lora_target_linear: true
48
+ lora_fan_in_fan_out:
49
+
50
+ wandb_project:
51
+ wandb_entity:
52
+ wandb_watch:
53
+ wandb_name:
54
+ wandb_log_model:
55
+
56
+ gradient_accumulation_steps: 4
57
+ micro_batch_size: 2
58
+ num_epochs: 4
59
+ optimizer: paged_adamw_32bit
60
+ lr_scheduler: cosine
61
+ learning_rate: 0.0002
62
+
63
+ train_on_inputs: false
64
+ group_by_length: false
65
+ bf16: auto
66
+ fp16:
67
+ tf32: false
68
+
69
+ gradient_checkpointing: true
70
+ early_stopping_patience:
71
+ resume_from_checkpoint:
72
+ local_rank:
73
+ logging_steps: 1
74
+ xformers_attention:
75
+ flash_attention: true
76
+
77
+ warmup_steps: 10
78
+ evals_per_epoch: 4
79
+ saves_per_epoch: 1
80
+ debug:
81
+ deepspeed:
82
+ weight_decay: 0.0
83
+ fsdp:
84
+ fsdp_config:
85
+ special_tokens:
86
+ bos_token: "<s>"
87
+ eos_token: "</s>"
88
+ unk_token: "<unk>"
89
+
90
+ ```
91
+
92
+ </details><br>
93
+
94
+ # maverick34b
95
+
96
+ This model is a fine-tuned version of [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) on the None dataset.
97
+ It achieves the following results on the evaluation set:
98
+ - Loss: 0.3391
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 0.0002
118
+ - train_batch_size: 2
119
+ - eval_batch_size: 2
120
+ - seed: 42
121
+ - distributed_type: multi-GPU
122
+ - num_devices: 7
123
+ - gradient_accumulation_steps: 4
124
+ - total_train_batch_size: 56
125
+ - total_eval_batch_size: 14
126
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
127
+ - lr_scheduler_type: cosine
128
+ - lr_scheduler_warmup_steps: 10
129
+ - num_epochs: 4
130
+
131
+ ### Training results
132
+
133
+ | Training Loss | Epoch | Step | Validation Loss |
134
+ |:-------------:|:-----:|:----:|:---------------:|
135
+ | 0.5065 | 0.01 | 1 | 0.5089 |
136
+ | 0.3477 | 0.25 | 29 | 0.3561 |
137
+ | 0.3593 | 0.51 | 58 | 0.3461 |
138
+ | 0.3329 | 0.76 | 87 | 0.3423 |
139
+ | 0.3607 | 1.0 | 116 | 0.3404 |
140
+ | 0.3336 | 1.26 | 145 | 0.3395 |
141
+ | 0.3449 | 1.51 | 174 | 0.3386 |
142
+ | 0.3187 | 1.77 | 203 | 0.3377 |
143
+ | 0.3216 | 2.0 | 232 | 0.3371 |
144
+ | 0.2961 | 2.26 | 261 | 0.3380 |
145
+ | 0.3117 | 2.51 | 290 | 0.3381 |
146
+ | 0.3207 | 2.77 | 319 | 0.3379 |
147
+ | 0.3047 | 3.01 | 348 | 0.3376 |
148
+ | 0.3096 | 3.26 | 377 | 0.3391 |
149
+ | 0.3148 | 3.52 | 406 | 0.3391 |
150
+ | 0.3116 | 3.77 | 435 | 0.3391 |
151
+
152
+
153
+ ### Framework versions
154
+
155
+ - PEFT 0.8.2
156
+ - Transformers 4.38.0.dev0
157
+ - Pytorch 2.0.1+cu118
158
+ - Datasets 2.17.0
159
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-34b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "down_proj",
24
+ "o_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:031b1128c4a75c85ff0ea0314fdf324f9c5443537cef0fe5b3714a3ff48d05b9
3
+ size 1920316885
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "▁<EOT>": 32003,
3
+ "▁<MID>": 32001,
4
+ "▁<PRE>": 32000,
5
+ "▁<SUF>": 32002
6
+ }
checkpoint-113/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-34b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-113/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-34b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "down_proj",
24
+ "o_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-113/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31bac09b45c64d4a4385f8518f332e06718d8d448929fbc2b816613de241ea53
3
+ size 1920164848
checkpoint-113/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:596e640b5ad2d862140ee761588aef9c7f9c75ff1bafeba632b2d74489698a73
3
+ size 1743146781
checkpoint-113/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45d8b602c8660af2d817113bf055d8f453ed39ee5668751c783f72699c898d3f
3
+ size 20663
checkpoint-113/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4508e7a4fb74ae0a0e24c98041cf8d391ea8fdb7f4174dcad3e33323fc1d069
3
+ size 20663
checkpoint-113/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e95a5381db5d512375a6475f6fdd8906a41b6cb10f7e73f78cb5095e33d2e7f3
3
+ size 20663
checkpoint-113/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a36823b3aa29b3a8c14c88c112853e5dd49f7e6f8fea3ab0a73018de49f36a5
3
+ size 20663
checkpoint-113/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5aeacfe9803f585796f59eae82000839a7469fbca516aecf8d8b0e9a78a242c
3
+ size 20663
checkpoint-113/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c5a6458864e33f66dc2c30e9e6077b55314be9b33e99e5b33cf8b30d167330e
3
+ size 20663
checkpoint-113/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d1778783a8d72022a8924c8234a1b6aa28a8e92cfa4f2bb95389003bc6da68d
3
+ size 20663
checkpoint-113/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5c16e4c80361f85f40be2fdbaf90ba79fbd83617cee764a7b7d64dc0ce5ef56
3
+ size 627
checkpoint-113/trainer_state.json ADDED
@@ -0,0 +1,731 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9934065934065934,
5
+ "eval_steps": 29,
6
+ "global_step": 113,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2e-05,
14
+ "loss": 0.5065,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "eval_loss": 0.5089401602745056,
20
+ "eval_runtime": 34.8867,
21
+ "eval_samples_per_second": 174.68,
22
+ "eval_steps_per_second": 12.498,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "learning_rate": 4e-05,
28
+ "loss": 0.5189,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.03,
33
+ "learning_rate": 6e-05,
34
+ "loss": 0.4966,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.04,
39
+ "learning_rate": 8e-05,
40
+ "loss": 0.4891,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.04,
45
+ "learning_rate": 0.0001,
46
+ "loss": 0.507,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.05,
51
+ "learning_rate": 0.00012,
52
+ "loss": 0.5071,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.06,
57
+ "learning_rate": 0.00014,
58
+ "loss": 0.4739,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.07,
63
+ "learning_rate": 0.00016,
64
+ "loss": 0.4721,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.08,
69
+ "learning_rate": 0.00018,
70
+ "loss": 0.4213,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.09,
75
+ "learning_rate": 0.0002,
76
+ "loss": 0.4056,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.1,
81
+ "learning_rate": 0.00019999747405795057,
82
+ "loss": 0.3989,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.11,
87
+ "learning_rate": 0.00019998989635940995,
88
+ "loss": 0.3843,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.11,
93
+ "learning_rate": 0.00019997726728719468,
94
+ "loss": 0.3771,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.12,
99
+ "learning_rate": 0.00019995958747931082,
100
+ "loss": 0.3775,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.13,
105
+ "learning_rate": 0.00019993685782892183,
106
+ "loss": 0.3778,
107
+ "step": 15
108
+ },
109
+ {
110
+ "epoch": 0.14,
111
+ "learning_rate": 0.00019990907948430327,
112
+ "loss": 0.3786,
113
+ "step": 16
114
+ },
115
+ {
116
+ "epoch": 0.15,
117
+ "learning_rate": 0.0001998762538487849,
118
+ "loss": 0.3669,
119
+ "step": 17
120
+ },
121
+ {
122
+ "epoch": 0.16,
123
+ "learning_rate": 0.00019983838258067987,
124
+ "loss": 0.3819,
125
+ "step": 18
126
+ },
127
+ {
128
+ "epoch": 0.17,
129
+ "learning_rate": 0.0001997954675932006,
130
+ "loss": 0.4043,
131
+ "step": 19
132
+ },
133
+ {
134
+ "epoch": 0.18,
135
+ "learning_rate": 0.00019974751105436266,
136
+ "loss": 0.3503,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.18,
141
+ "learning_rate": 0.00019969451538687474,
142
+ "loss": 0.3753,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.19,
147
+ "learning_rate": 0.00019963648326801653,
148
+ "loss": 0.368,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.2,
153
+ "learning_rate": 0.00019957341762950344,
154
+ "loss": 0.3828,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.21,
159
+ "learning_rate": 0.00019950532165733845,
160
+ "loss": 0.3509,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.22,
165
+ "learning_rate": 0.00019943219879165115,
166
+ "loss": 0.381,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.23,
171
+ "learning_rate": 0.0001993540527265239,
172
+ "loss": 0.3638,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.24,
177
+ "learning_rate": 0.0001992708874098054,
178
+ "loss": 0.3645,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.25,
183
+ "learning_rate": 0.00019918270704291104,
184
+ "loss": 0.3466,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.25,
189
+ "learning_rate": 0.00019908951608061076,
190
+ "loss": 0.3477,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.25,
195
+ "eval_loss": 0.35608404874801636,
196
+ "eval_runtime": 35.0585,
197
+ "eval_samples_per_second": 173.824,
198
+ "eval_steps_per_second": 12.436,
199
+ "step": 29
200
+ },
201
+ {
202
+ "epoch": 0.26,
203
+ "learning_rate": 0.000198991319230804,
204
+ "loss": 0.3444,
205
+ "step": 30
206
+ },
207
+ {
208
+ "epoch": 0.27,
209
+ "learning_rate": 0.0001988881214542817,
210
+ "loss": 0.3646,
211
+ "step": 31
212
+ },
213
+ {
214
+ "epoch": 0.28,
215
+ "learning_rate": 0.00019877992796447601,
216
+ "loss": 0.3502,
217
+ "step": 32
218
+ },
219
+ {
220
+ "epoch": 0.29,
221
+ "learning_rate": 0.00019866674422719665,
222
+ "loss": 0.3532,
223
+ "step": 33
224
+ },
225
+ {
226
+ "epoch": 0.3,
227
+ "learning_rate": 0.00019854857596035476,
228
+ "loss": 0.3639,
229
+ "step": 34
230
+ },
231
+ {
232
+ "epoch": 0.31,
233
+ "learning_rate": 0.0001984254291336743,
234
+ "loss": 0.3538,
235
+ "step": 35
236
+ },
237
+ {
238
+ "epoch": 0.32,
239
+ "learning_rate": 0.0001982973099683902,
240
+ "loss": 0.3431,
241
+ "step": 36
242
+ },
243
+ {
244
+ "epoch": 0.33,
245
+ "learning_rate": 0.00019816422493693417,
246
+ "loss": 0.3493,
247
+ "step": 37
248
+ },
249
+ {
250
+ "epoch": 0.33,
251
+ "learning_rate": 0.0001980261807626078,
252
+ "loss": 0.3596,
253
+ "step": 38
254
+ },
255
+ {
256
+ "epoch": 0.34,
257
+ "learning_rate": 0.00019788318441924275,
258
+ "loss": 0.3401,
259
+ "step": 39
260
+ },
261
+ {
262
+ "epoch": 0.35,
263
+ "learning_rate": 0.00019773524313084856,
264
+ "loss": 0.3822,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.36,
269
+ "learning_rate": 0.00019758236437124769,
270
+ "loss": 0.3719,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.37,
275
+ "learning_rate": 0.00019742455586369784,
276
+ "loss": 0.3369,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.38,
281
+ "learning_rate": 0.0001972618255805019,
282
+ "loss": 0.341,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.39,
287
+ "learning_rate": 0.0001970941817426052,
288
+ "loss": 0.3481,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.4,
293
+ "learning_rate": 0.00019692163281918014,
294
+ "loss": 0.3615,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.4,
299
+ "learning_rate": 0.00019674418752719833,
300
+ "loss": 0.346,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.41,
305
+ "learning_rate": 0.00019656185483099024,
306
+ "loss": 0.3479,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.42,
311
+ "learning_rate": 0.00019637464394179239,
312
+ "loss": 0.3638,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.43,
317
+ "learning_rate": 0.00019618256431728194,
318
+ "loss": 0.3419,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.44,
323
+ "learning_rate": 0.0001959856256610988,
324
+ "loss": 0.3496,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.45,
329
+ "learning_rate": 0.00019578383792235573,
330
+ "loss": 0.3503,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.46,
335
+ "learning_rate": 0.0001955772112951354,
336
+ "loss": 0.3437,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.47,
341
+ "learning_rate": 0.00019536575621797547,
342
+ "loss": 0.3343,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.47,
347
+ "learning_rate": 0.00019514948337334142,
348
+ "loss": 0.3517,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.48,
353
+ "learning_rate": 0.0001949284036870867,
354
+ "loss": 0.343,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.49,
359
+ "learning_rate": 0.0001947025283279008,
360
+ "loss": 0.3479,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.5,
365
+ "learning_rate": 0.00019447186870674506,
366
+ "loss": 0.3237,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.51,
371
+ "learning_rate": 0.00019423643647627624,
372
+ "loss": 0.3593,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.51,
377
+ "eval_loss": 0.3460778594017029,
378
+ "eval_runtime": 35.0517,
379
+ "eval_samples_per_second": 173.858,
380
+ "eval_steps_per_second": 12.439,
381
+ "step": 58
382
+ },
383
+ {
384
+ "epoch": 0.52,
385
+ "learning_rate": 0.00019399624353025772,
386
+ "loss": 0.348,
387
+ "step": 59
388
+ },
389
+ {
390
+ "epoch": 0.53,
391
+ "learning_rate": 0.00019375130200295878,
392
+ "loss": 0.344,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.54,
397
+ "learning_rate": 0.0001935016242685415,
398
+ "loss": 0.3601,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.55,
403
+ "learning_rate": 0.00019324722294043558,
404
+ "loss": 0.3524,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.55,
409
+ "learning_rate": 0.00019298811087070132,
410
+ "loss": 0.3421,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.56,
415
+ "learning_rate": 0.00019272430114938017,
416
+ "loss": 0.3524,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.57,
421
+ "learning_rate": 0.00019245580710383343,
422
+ "loss": 0.3334,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.58,
427
+ "learning_rate": 0.00019218264229806917,
428
+ "loss": 0.3312,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.59,
433
+ "learning_rate": 0.00019190482053205673,
434
+ "loss": 0.344,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.6,
439
+ "learning_rate": 0.00019162235584102973,
440
+ "loss": 0.353,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.61,
445
+ "learning_rate": 0.00019133526249477702,
446
+ "loss": 0.3473,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.62,
451
+ "learning_rate": 0.00019104355499692166,
452
+ "loss": 0.345,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.62,
457
+ "learning_rate": 0.00019074724808418835,
458
+ "loss": 0.348,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.63,
463
+ "learning_rate": 0.00019044635672565895,
464
+ "loss": 0.3333,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.64,
469
+ "learning_rate": 0.00019014089612201613,
470
+ "loss": 0.3398,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.65,
475
+ "learning_rate": 0.00018983088170477553,
476
+ "loss": 0.3424,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.66,
481
+ "learning_rate": 0.00018951632913550626,
482
+ "loss": 0.3279,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.67,
487
+ "learning_rate": 0.00018919725430503945,
488
+ "loss": 0.3243,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.68,
493
+ "learning_rate": 0.00018887367333266582,
494
+ "loss": 0.3439,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.69,
499
+ "learning_rate": 0.000188545602565321,
500
+ "loss": 0.3486,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.69,
505
+ "learning_rate": 0.00018821305857675996,
506
+ "loss": 0.3367,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.7,
511
+ "learning_rate": 0.00018787605816671953,
512
+ "loss": 0.3386,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.71,
517
+ "learning_rate": 0.00018753461836006988,
518
+ "loss": 0.3574,
519
+ "step": 81
520
+ },
521
+ {
522
+ "epoch": 0.72,
523
+ "learning_rate": 0.00018718875640595434,
524
+ "loss": 0.334,
525
+ "step": 82
526
+ },
527
+ {
528
+ "epoch": 0.73,
529
+ "learning_rate": 0.00018683848977691785,
530
+ "loss": 0.3342,
531
+ "step": 83
532
+ },
533
+ {
534
+ "epoch": 0.74,
535
+ "learning_rate": 0.0001864838361680247,
536
+ "loss": 0.3693,
537
+ "step": 84
538
+ },
539
+ {
540
+ "epoch": 0.75,
541
+ "learning_rate": 0.00018612481349596405,
542
+ "loss": 0.3422,
543
+ "step": 85
544
+ },
545
+ {
546
+ "epoch": 0.76,
547
+ "learning_rate": 0.00018576143989814523,
548
+ "loss": 0.3346,
549
+ "step": 86
550
+ },
551
+ {
552
+ "epoch": 0.76,
553
+ "learning_rate": 0.00018539373373178123,
554
+ "loss": 0.3329,
555
+ "step": 87
556
+ },
557
+ {
558
+ "epoch": 0.76,
559
+ "eval_loss": 0.3422779440879822,
560
+ "eval_runtime": 35.1197,
561
+ "eval_samples_per_second": 173.521,
562
+ "eval_steps_per_second": 12.415,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.77,
567
+ "learning_rate": 0.00018502171357296144,
568
+ "loss": 0.3485,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.78,
573
+ "learning_rate": 0.00018464539821571303,
574
+ "loss": 0.3383,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.79,
579
+ "learning_rate": 0.00018426480667105177,
580
+ "loss": 0.3434,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.8,
585
+ "learning_rate": 0.00018387995816602137,
586
+ "loss": 0.3205,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.81,
591
+ "learning_rate": 0.00018349087214272224,
592
+ "loss": 0.3522,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.82,
597
+ "learning_rate": 0.0001830975682573293,
598
+ "loss": 0.3416,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.83,
603
+ "learning_rate": 0.00018270006637909907,
604
+ "loss": 0.3468,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.84,
609
+ "learning_rate": 0.00018229838658936564,
610
+ "loss": 0.3407,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.84,
615
+ "learning_rate": 0.0001818925491805265,
616
+ "loss": 0.3198,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.85,
621
+ "learning_rate": 0.00018148257465501716,
622
+ "loss": 0.3369,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.86,
627
+ "learning_rate": 0.0001810684837242755,
628
+ "loss": 0.3371,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.87,
633
+ "learning_rate": 0.00018065029730769534,
634
+ "loss": 0.3395,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.88,
639
+ "learning_rate": 0.00018022803653156984,
640
+ "loss": 0.3418,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.89,
645
+ "learning_rate": 0.000179801722728024,
646
+ "loss": 0.346,
647
+ "step": 101
648
+ },
649
+ {
650
+ "epoch": 0.9,
651
+ "learning_rate": 0.00017937137743393694,
652
+ "loss": 0.3385,
653
+ "step": 102
654
+ },
655
+ {
656
+ "epoch": 0.91,
657
+ "learning_rate": 0.00017893702238985432,
658
+ "loss": 0.3343,
659
+ "step": 103
660
+ },
661
+ {
662
+ "epoch": 0.91,
663
+ "learning_rate": 0.00017849867953888948,
664
+ "loss": 0.3146,
665
+ "step": 104
666
+ },
667
+ {
668
+ "epoch": 0.92,
669
+ "learning_rate": 0.00017805637102561516,
670
+ "loss": 0.3662,
671
+ "step": 105
672
+ },
673
+ {
674
+ "epoch": 0.93,
675
+ "learning_rate": 0.00017761011919494488,
676
+ "loss": 0.3481,
677
+ "step": 106
678
+ },
679
+ {
680
+ "epoch": 0.94,
681
+ "learning_rate": 0.00017715994659100388,
682
+ "loss": 0.3447,
683
+ "step": 107
684
+ },
685
+ {
686
+ "epoch": 0.95,
687
+ "learning_rate": 0.00017670587595599034,
688
+ "loss": 0.3379,
689
+ "step": 108
690
+ },
691
+ {
692
+ "epoch": 0.96,
693
+ "learning_rate": 0.0001762479302290265,
694
+ "loss": 0.3388,
695
+ "step": 109
696
+ },
697
+ {
698
+ "epoch": 0.97,
699
+ "learning_rate": 0.0001757861325449997,
700
+ "loss": 0.3497,
701
+ "step": 110
702
+ },
703
+ {
704
+ "epoch": 0.98,
705
+ "learning_rate": 0.0001753205062333937,
706
+ "loss": 0.3539,
707
+ "step": 111
708
+ },
709
+ {
710
+ "epoch": 0.98,
711
+ "learning_rate": 0.00017485107481711012,
712
+ "loss": 0.3571,
713
+ "step": 112
714
+ },
715
+ {
716
+ "epoch": 0.99,
717
+ "learning_rate": 0.00017437786201128004,
718
+ "loss": 0.3496,
719
+ "step": 113
720
+ }
721
+ ],
722
+ "logging_steps": 1,
723
+ "max_steps": 452,
724
+ "num_input_tokens_seen": 0,
725
+ "num_train_epochs": 4,
726
+ "save_steps": 113,
727
+ "total_flos": 5.240873872315646e+18,
728
+ "train_batch_size": 2,
729
+ "trial_name": null,
730
+ "trial_params": null
731
+ }
checkpoint-113/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66dc6af509e7f51c6a244a8a9af44ad9044f2ab26d51bec3236dad93ab4ef46c
3
+ size 4923
checkpoint-226/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-34b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-226/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-34b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "down_proj",
24
+ "o_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-226/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203f2bfbd6affec6966260d5c95f0daab5bf232780d35759e10a7450d58d7ff6
3
+ size 1920164848
checkpoint-226/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72b0ff5951effac1c7d78bd229f9948749eefd3a6ad9c20b19ca66634a577d3c
3
+ size 1743146781
checkpoint-226/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fcc6059a78d85b7d5ecff973d5fdb61e1cc300ca1aa3d5a3604ce83a1fce515
3
+ size 20663
checkpoint-226/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85ebe23981e0d536e50b83ff9534e99705328e53886916a318049d2315d8fa62
3
+ size 20663
checkpoint-226/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b46b7cf672f3b941a9cca2a125b291575fb170699e065ebff9245c9b8e7a4c24
3
+ size 20663
checkpoint-226/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6a7b6e0beaf804e994b6c9d93e7e82d9a3385a654928ad19458aa14baffe17c
3
+ size 20663
checkpoint-226/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4099d385ac4820de03fa011c6af31443e309ac69a2a1583dcefe9258ad9d12e5
3
+ size 20663
checkpoint-226/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4aad4ef662803b511027c8e879dd335422e7e3580eb6ec820135c9808fc6e87
3
+ size 20663
checkpoint-226/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af51875441abd7c59ceb0edaa1ea2dc18e0d83cdcd70fe0950f926e48ab3b8ae
3
+ size 20663
checkpoint-226/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cff18ed392e2ba35f469da7820c5ea719917ff9bf1638273dae98c09921a2a6
3
+ size 627
checkpoint-226/trainer_state.json ADDED
@@ -0,0 +1,1441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9692307692307693,
5
+ "eval_steps": 29,
6
+ "global_step": 226,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2e-05,
14
+ "loss": 0.5065,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "eval_loss": 0.5089401602745056,
20
+ "eval_runtime": 34.8867,
21
+ "eval_samples_per_second": 174.68,
22
+ "eval_steps_per_second": 12.498,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "learning_rate": 4e-05,
28
+ "loss": 0.5189,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.03,
33
+ "learning_rate": 6e-05,
34
+ "loss": 0.4966,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.04,
39
+ "learning_rate": 8e-05,
40
+ "loss": 0.4891,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.04,
45
+ "learning_rate": 0.0001,
46
+ "loss": 0.507,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.05,
51
+ "learning_rate": 0.00012,
52
+ "loss": 0.5071,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.06,
57
+ "learning_rate": 0.00014,
58
+ "loss": 0.4739,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.07,
63
+ "learning_rate": 0.00016,
64
+ "loss": 0.4721,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.08,
69
+ "learning_rate": 0.00018,
70
+ "loss": 0.4213,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.09,
75
+ "learning_rate": 0.0002,
76
+ "loss": 0.4056,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.1,
81
+ "learning_rate": 0.00019999747405795057,
82
+ "loss": 0.3989,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.11,
87
+ "learning_rate": 0.00019998989635940995,
88
+ "loss": 0.3843,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.11,
93
+ "learning_rate": 0.00019997726728719468,
94
+ "loss": 0.3771,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.12,
99
+ "learning_rate": 0.00019995958747931082,
100
+ "loss": 0.3775,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.13,
105
+ "learning_rate": 0.00019993685782892183,
106
+ "loss": 0.3778,
107
+ "step": 15
108
+ },
109
+ {
110
+ "epoch": 0.14,
111
+ "learning_rate": 0.00019990907948430327,
112
+ "loss": 0.3786,
113
+ "step": 16
114
+ },
115
+ {
116
+ "epoch": 0.15,
117
+ "learning_rate": 0.0001998762538487849,
118
+ "loss": 0.3669,
119
+ "step": 17
120
+ },
121
+ {
122
+ "epoch": 0.16,
123
+ "learning_rate": 0.00019983838258067987,
124
+ "loss": 0.3819,
125
+ "step": 18
126
+ },
127
+ {
128
+ "epoch": 0.17,
129
+ "learning_rate": 0.0001997954675932006,
130
+ "loss": 0.4043,
131
+ "step": 19
132
+ },
133
+ {
134
+ "epoch": 0.18,
135
+ "learning_rate": 0.00019974751105436266,
136
+ "loss": 0.3503,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.18,
141
+ "learning_rate": 0.00019969451538687474,
142
+ "loss": 0.3753,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.19,
147
+ "learning_rate": 0.00019963648326801653,
148
+ "loss": 0.368,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.2,
153
+ "learning_rate": 0.00019957341762950344,
154
+ "loss": 0.3828,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.21,
159
+ "learning_rate": 0.00019950532165733845,
160
+ "loss": 0.3509,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.22,
165
+ "learning_rate": 0.00019943219879165115,
166
+ "loss": 0.381,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.23,
171
+ "learning_rate": 0.0001993540527265239,
172
+ "loss": 0.3638,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.24,
177
+ "learning_rate": 0.0001992708874098054,
178
+ "loss": 0.3645,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.25,
183
+ "learning_rate": 0.00019918270704291104,
184
+ "loss": 0.3466,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.25,
189
+ "learning_rate": 0.00019908951608061076,
190
+ "loss": 0.3477,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.25,
195
+ "eval_loss": 0.35608404874801636,
196
+ "eval_runtime": 35.0585,
197
+ "eval_samples_per_second": 173.824,
198
+ "eval_steps_per_second": 12.436,
199
+ "step": 29
200
+ },
201
+ {
202
+ "epoch": 0.26,
203
+ "learning_rate": 0.000198991319230804,
204
+ "loss": 0.3444,
205
+ "step": 30
206
+ },
207
+ {
208
+ "epoch": 0.27,
209
+ "learning_rate": 0.0001988881214542817,
210
+ "loss": 0.3646,
211
+ "step": 31
212
+ },
213
+ {
214
+ "epoch": 0.28,
215
+ "learning_rate": 0.00019877992796447601,
216
+ "loss": 0.3502,
217
+ "step": 32
218
+ },
219
+ {
220
+ "epoch": 0.29,
221
+ "learning_rate": 0.00019866674422719665,
222
+ "loss": 0.3532,
223
+ "step": 33
224
+ },
225
+ {
226
+ "epoch": 0.3,
227
+ "learning_rate": 0.00019854857596035476,
228
+ "loss": 0.3639,
229
+ "step": 34
230
+ },
231
+ {
232
+ "epoch": 0.31,
233
+ "learning_rate": 0.0001984254291336743,
234
+ "loss": 0.3538,
235
+ "step": 35
236
+ },
237
+ {
238
+ "epoch": 0.32,
239
+ "learning_rate": 0.0001982973099683902,
240
+ "loss": 0.3431,
241
+ "step": 36
242
+ },
243
+ {
244
+ "epoch": 0.33,
245
+ "learning_rate": 0.00019816422493693417,
246
+ "loss": 0.3493,
247
+ "step": 37
248
+ },
249
+ {
250
+ "epoch": 0.33,
251
+ "learning_rate": 0.0001980261807626078,
252
+ "loss": 0.3596,
253
+ "step": 38
254
+ },
255
+ {
256
+ "epoch": 0.34,
257
+ "learning_rate": 0.00019788318441924275,
258
+ "loss": 0.3401,
259
+ "step": 39
260
+ },
261
+ {
262
+ "epoch": 0.35,
263
+ "learning_rate": 0.00019773524313084856,
264
+ "loss": 0.3822,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.36,
269
+ "learning_rate": 0.00019758236437124769,
270
+ "loss": 0.3719,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.37,
275
+ "learning_rate": 0.00019742455586369784,
276
+ "loss": 0.3369,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.38,
281
+ "learning_rate": 0.0001972618255805019,
282
+ "loss": 0.341,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.39,
287
+ "learning_rate": 0.0001970941817426052,
288
+ "loss": 0.3481,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.4,
293
+ "learning_rate": 0.00019692163281918014,
294
+ "loss": 0.3615,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.4,
299
+ "learning_rate": 0.00019674418752719833,
300
+ "loss": 0.346,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.41,
305
+ "learning_rate": 0.00019656185483099024,
306
+ "loss": 0.3479,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.42,
311
+ "learning_rate": 0.00019637464394179239,
312
+ "loss": 0.3638,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.43,
317
+ "learning_rate": 0.00019618256431728194,
318
+ "loss": 0.3419,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.44,
323
+ "learning_rate": 0.0001959856256610988,
324
+ "loss": 0.3496,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.45,
329
+ "learning_rate": 0.00019578383792235573,
330
+ "loss": 0.3503,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.46,
335
+ "learning_rate": 0.0001955772112951354,
336
+ "loss": 0.3437,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.47,
341
+ "learning_rate": 0.00019536575621797547,
342
+ "loss": 0.3343,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.47,
347
+ "learning_rate": 0.00019514948337334142,
348
+ "loss": 0.3517,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.48,
353
+ "learning_rate": 0.0001949284036870867,
354
+ "loss": 0.343,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.49,
359
+ "learning_rate": 0.0001947025283279008,
360
+ "loss": 0.3479,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.5,
365
+ "learning_rate": 0.00019447186870674506,
366
+ "loss": 0.3237,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.51,
371
+ "learning_rate": 0.00019423643647627624,
372
+ "loss": 0.3593,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.51,
377
+ "eval_loss": 0.3460778594017029,
378
+ "eval_runtime": 35.0517,
379
+ "eval_samples_per_second": 173.858,
380
+ "eval_steps_per_second": 12.439,
381
+ "step": 58
382
+ },
383
+ {
384
+ "epoch": 0.52,
385
+ "learning_rate": 0.00019399624353025772,
386
+ "loss": 0.348,
387
+ "step": 59
388
+ },
389
+ {
390
+ "epoch": 0.53,
391
+ "learning_rate": 0.00019375130200295878,
392
+ "loss": 0.344,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.54,
397
+ "learning_rate": 0.0001935016242685415,
398
+ "loss": 0.3601,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.55,
403
+ "learning_rate": 0.00019324722294043558,
404
+ "loss": 0.3524,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.55,
409
+ "learning_rate": 0.00019298811087070132,
410
+ "loss": 0.3421,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.56,
415
+ "learning_rate": 0.00019272430114938017,
416
+ "loss": 0.3524,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.57,
421
+ "learning_rate": 0.00019245580710383343,
422
+ "loss": 0.3334,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.58,
427
+ "learning_rate": 0.00019218264229806917,
428
+ "loss": 0.3312,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.59,
433
+ "learning_rate": 0.00019190482053205673,
434
+ "loss": 0.344,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.6,
439
+ "learning_rate": 0.00019162235584102973,
440
+ "loss": 0.353,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.61,
445
+ "learning_rate": 0.00019133526249477702,
446
+ "loss": 0.3473,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.62,
451
+ "learning_rate": 0.00019104355499692166,
452
+ "loss": 0.345,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.62,
457
+ "learning_rate": 0.00019074724808418835,
458
+ "loss": 0.348,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.63,
463
+ "learning_rate": 0.00019044635672565895,
464
+ "loss": 0.3333,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.64,
469
+ "learning_rate": 0.00019014089612201613,
470
+ "loss": 0.3398,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.65,
475
+ "learning_rate": 0.00018983088170477553,
476
+ "loss": 0.3424,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.66,
481
+ "learning_rate": 0.00018951632913550626,
482
+ "loss": 0.3279,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.67,
487
+ "learning_rate": 0.00018919725430503945,
488
+ "loss": 0.3243,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.68,
493
+ "learning_rate": 0.00018887367333266582,
494
+ "loss": 0.3439,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.69,
499
+ "learning_rate": 0.000188545602565321,
500
+ "loss": 0.3486,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.69,
505
+ "learning_rate": 0.00018821305857675996,
506
+ "loss": 0.3367,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.7,
511
+ "learning_rate": 0.00018787605816671953,
512
+ "loss": 0.3386,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.71,
517
+ "learning_rate": 0.00018753461836006988,
518
+ "loss": 0.3574,
519
+ "step": 81
520
+ },
521
+ {
522
+ "epoch": 0.72,
523
+ "learning_rate": 0.00018718875640595434,
524
+ "loss": 0.334,
525
+ "step": 82
526
+ },
527
+ {
528
+ "epoch": 0.73,
529
+ "learning_rate": 0.00018683848977691785,
530
+ "loss": 0.3342,
531
+ "step": 83
532
+ },
533
+ {
534
+ "epoch": 0.74,
535
+ "learning_rate": 0.0001864838361680247,
536
+ "loss": 0.3693,
537
+ "step": 84
538
+ },
539
+ {
540
+ "epoch": 0.75,
541
+ "learning_rate": 0.00018612481349596405,
542
+ "loss": 0.3422,
543
+ "step": 85
544
+ },
545
+ {
546
+ "epoch": 0.76,
547
+ "learning_rate": 0.00018576143989814523,
548
+ "loss": 0.3346,
549
+ "step": 86
550
+ },
551
+ {
552
+ "epoch": 0.76,
553
+ "learning_rate": 0.00018539373373178123,
554
+ "loss": 0.3329,
555
+ "step": 87
556
+ },
557
+ {
558
+ "epoch": 0.76,
559
+ "eval_loss": 0.3422779440879822,
560
+ "eval_runtime": 35.1197,
561
+ "eval_samples_per_second": 173.521,
562
+ "eval_steps_per_second": 12.415,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.77,
567
+ "learning_rate": 0.00018502171357296144,
568
+ "loss": 0.3485,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.78,
573
+ "learning_rate": 0.00018464539821571303,
574
+ "loss": 0.3383,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.79,
579
+ "learning_rate": 0.00018426480667105177,
580
+ "loss": 0.3434,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.8,
585
+ "learning_rate": 0.00018387995816602137,
586
+ "loss": 0.3205,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.81,
591
+ "learning_rate": 0.00018349087214272224,
592
+ "loss": 0.3522,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.82,
597
+ "learning_rate": 0.0001830975682573293,
598
+ "loss": 0.3416,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.83,
603
+ "learning_rate": 0.00018270006637909907,
604
+ "loss": 0.3468,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.84,
609
+ "learning_rate": 0.00018229838658936564,
610
+ "loss": 0.3407,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.84,
615
+ "learning_rate": 0.0001818925491805265,
616
+ "loss": 0.3198,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.85,
621
+ "learning_rate": 0.00018148257465501716,
622
+ "loss": 0.3369,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.86,
627
+ "learning_rate": 0.0001810684837242755,
628
+ "loss": 0.3371,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.87,
633
+ "learning_rate": 0.00018065029730769534,
634
+ "loss": 0.3395,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.88,
639
+ "learning_rate": 0.00018022803653156984,
640
+ "loss": 0.3418,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.89,
645
+ "learning_rate": 0.000179801722728024,
646
+ "loss": 0.346,
647
+ "step": 101
648
+ },
649
+ {
650
+ "epoch": 0.9,
651
+ "learning_rate": 0.00017937137743393694,
652
+ "loss": 0.3385,
653
+ "step": 102
654
+ },
655
+ {
656
+ "epoch": 0.91,
657
+ "learning_rate": 0.00017893702238985432,
658
+ "loss": 0.3343,
659
+ "step": 103
660
+ },
661
+ {
662
+ "epoch": 0.91,
663
+ "learning_rate": 0.00017849867953888948,
664
+ "loss": 0.3146,
665
+ "step": 104
666
+ },
667
+ {
668
+ "epoch": 0.92,
669
+ "learning_rate": 0.00017805637102561516,
670
+ "loss": 0.3662,
671
+ "step": 105
672
+ },
673
+ {
674
+ "epoch": 0.93,
675
+ "learning_rate": 0.00017761011919494488,
676
+ "loss": 0.3481,
677
+ "step": 106
678
+ },
679
+ {
680
+ "epoch": 0.94,
681
+ "learning_rate": 0.00017715994659100388,
682
+ "loss": 0.3447,
683
+ "step": 107
684
+ },
685
+ {
686
+ "epoch": 0.95,
687
+ "learning_rate": 0.00017670587595599034,
688
+ "loss": 0.3379,
689
+ "step": 108
690
+ },
691
+ {
692
+ "epoch": 0.96,
693
+ "learning_rate": 0.0001762479302290265,
694
+ "loss": 0.3388,
695
+ "step": 109
696
+ },
697
+ {
698
+ "epoch": 0.97,
699
+ "learning_rate": 0.0001757861325449997,
700
+ "loss": 0.3497,
701
+ "step": 110
702
+ },
703
+ {
704
+ "epoch": 0.98,
705
+ "learning_rate": 0.0001753205062333937,
706
+ "loss": 0.3539,
707
+ "step": 111
708
+ },
709
+ {
710
+ "epoch": 0.98,
711
+ "learning_rate": 0.00017485107481711012,
712
+ "loss": 0.3571,
713
+ "step": 112
714
+ },
715
+ {
716
+ "epoch": 0.99,
717
+ "learning_rate": 0.00017437786201128004,
718
+ "loss": 0.3496,
719
+ "step": 113
720
+ },
721
+ {
722
+ "epoch": 1.0,
723
+ "learning_rate": 0.00017390089172206592,
724
+ "loss": 0.3436,
725
+ "step": 114
726
+ },
727
+ {
728
+ "epoch": 1.01,
729
+ "learning_rate": 0.000173420188045454,
730
+ "loss": 0.3434,
731
+ "step": 115
732
+ },
733
+ {
734
+ "epoch": 1.0,
735
+ "learning_rate": 0.00017293577526603682,
736
+ "loss": 0.3607,
737
+ "step": 116
738
+ },
739
+ {
740
+ "epoch": 1.0,
741
+ "eval_loss": 0.3404248356819153,
742
+ "eval_runtime": 35.0435,
743
+ "eval_samples_per_second": 173.898,
744
+ "eval_steps_per_second": 12.442,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 1.01,
749
+ "learning_rate": 0.0001724476778557866,
750
+ "loss": 0.3363,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 1.02,
755
+ "learning_rate": 0.00017195592047281882,
756
+ "loss": 0.3283,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 1.03,
761
+ "learning_rate": 0.00017146052796014646,
762
+ "loss": 0.3293,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 1.04,
767
+ "learning_rate": 0.00017096152534442513,
768
+ "loss": 0.3485,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 1.05,
773
+ "learning_rate": 0.0001704589378346886,
774
+ "loss": 0.3315,
775
+ "step": 121
776
+ },
777
+ {
778
+ "epoch": 1.05,
779
+ "learning_rate": 0.0001699527908210754,
780
+ "loss": 0.3686,
781
+ "step": 122
782
+ },
783
+ {
784
+ "epoch": 1.06,
785
+ "learning_rate": 0.00016944310987354597,
786
+ "loss": 0.3384,
787
+ "step": 123
788
+ },
789
+ {
790
+ "epoch": 1.07,
791
+ "learning_rate": 0.0001689299207405911,
792
+ "loss": 0.3432,
793
+ "step": 124
794
+ },
795
+ {
796
+ "epoch": 1.08,
797
+ "learning_rate": 0.00016841324934793094,
798
+ "loss": 0.3323,
799
+ "step": 125
800
+ },
801
+ {
802
+ "epoch": 1.09,
803
+ "learning_rate": 0.00016789312179720547,
804
+ "loss": 0.3325,
805
+ "step": 126
806
+ },
807
+ {
808
+ "epoch": 1.1,
809
+ "learning_rate": 0.00016736956436465573,
810
+ "loss": 0.3464,
811
+ "step": 127
812
+ },
813
+ {
814
+ "epoch": 1.11,
815
+ "learning_rate": 0.00016684260349979636,
816
+ "loss": 0.3344,
817
+ "step": 128
818
+ },
819
+ {
820
+ "epoch": 1.12,
821
+ "learning_rate": 0.00016631226582407952,
822
+ "loss": 0.3319,
823
+ "step": 129
824
+ },
825
+ {
826
+ "epoch": 1.13,
827
+ "learning_rate": 0.00016577857812954993,
828
+ "loss": 0.3385,
829
+ "step": 130
830
+ },
831
+ {
832
+ "epoch": 1.13,
833
+ "learning_rate": 0.00016524156737749132,
834
+ "loss": 0.3166,
835
+ "step": 131
836
+ },
837
+ {
838
+ "epoch": 1.14,
839
+ "learning_rate": 0.00016470126069706456,
840
+ "loss": 0.3214,
841
+ "step": 132
842
+ },
843
+ {
844
+ "epoch": 1.15,
845
+ "learning_rate": 0.00016415768538393687,
846
+ "loss": 0.3101,
847
+ "step": 133
848
+ },
849
+ {
850
+ "epoch": 1.16,
851
+ "learning_rate": 0.00016361086889890306,
852
+ "loss": 0.3334,
853
+ "step": 134
854
+ },
855
+ {
856
+ "epoch": 1.17,
857
+ "learning_rate": 0.0001630608388664982,
858
+ "loss": 0.3094,
859
+ "step": 135
860
+ },
861
+ {
862
+ "epoch": 1.18,
863
+ "learning_rate": 0.00016250762307360207,
864
+ "loss": 0.327,
865
+ "step": 136
866
+ },
867
+ {
868
+ "epoch": 1.19,
869
+ "learning_rate": 0.00016195124946803525,
870
+ "loss": 0.3512,
871
+ "step": 137
872
+ },
873
+ {
874
+ "epoch": 1.2,
875
+ "learning_rate": 0.0001613917461571475,
876
+ "loss": 0.3329,
877
+ "step": 138
878
+ },
879
+ {
880
+ "epoch": 1.2,
881
+ "learning_rate": 0.0001608291414063977,
882
+ "loss": 0.342,
883
+ "step": 139
884
+ },
885
+ {
886
+ "epoch": 1.21,
887
+ "learning_rate": 0.00016026346363792567,
888
+ "loss": 0.3488,
889
+ "step": 140
890
+ },
891
+ {
892
+ "epoch": 1.22,
893
+ "learning_rate": 0.00015969474142911666,
894
+ "loss": 0.3385,
895
+ "step": 141
896
+ },
897
+ {
898
+ "epoch": 1.23,
899
+ "learning_rate": 0.0001591230035111576,
900
+ "loss": 0.3207,
901
+ "step": 142
902
+ },
903
+ {
904
+ "epoch": 1.24,
905
+ "learning_rate": 0.00015854827876758532,
906
+ "loss": 0.321,
907
+ "step": 143
908
+ },
909
+ {
910
+ "epoch": 1.25,
911
+ "learning_rate": 0.00015797059623282787,
912
+ "loss": 0.3409,
913
+ "step": 144
914
+ },
915
+ {
916
+ "epoch": 1.26,
917
+ "learning_rate": 0.0001573899850907373,
918
+ "loss": 0.3336,
919
+ "step": 145
920
+ },
921
+ {
922
+ "epoch": 1.26,
923
+ "eval_loss": 0.3395354747772217,
924
+ "eval_runtime": 35.0942,
925
+ "eval_samples_per_second": 173.647,
926
+ "eval_steps_per_second": 12.424,
927
+ "step": 145
928
+ },
929
+ {
930
+ "epoch": 1.27,
931
+ "learning_rate": 0.00015680647467311557,
932
+ "loss": 0.3355,
933
+ "step": 146
934
+ },
935
+ {
936
+ "epoch": 1.27,
937
+ "learning_rate": 0.00015622009445823273,
938
+ "loss": 0.347,
939
+ "step": 147
940
+ },
941
+ {
942
+ "epoch": 1.28,
943
+ "learning_rate": 0.0001556308740693376,
944
+ "loss": 0.3433,
945
+ "step": 148
946
+ },
947
+ {
948
+ "epoch": 1.29,
949
+ "learning_rate": 0.00015503884327316132,
950
+ "loss": 0.3271,
951
+ "step": 149
952
+ },
953
+ {
954
+ "epoch": 1.3,
955
+ "learning_rate": 0.00015444403197841346,
956
+ "loss": 0.3195,
957
+ "step": 150
958
+ },
959
+ {
960
+ "epoch": 1.31,
961
+ "learning_rate": 0.00015384647023427138,
962
+ "loss": 0.3314,
963
+ "step": 151
964
+ },
965
+ {
966
+ "epoch": 1.32,
967
+ "learning_rate": 0.00015324618822886165,
968
+ "loss": 0.3387,
969
+ "step": 152
970
+ },
971
+ {
972
+ "epoch": 1.33,
973
+ "learning_rate": 0.0001526432162877356,
974
+ "loss": 0.3436,
975
+ "step": 153
976
+ },
977
+ {
978
+ "epoch": 1.34,
979
+ "learning_rate": 0.00015203758487233678,
980
+ "loss": 0.3152,
981
+ "step": 154
982
+ },
983
+ {
984
+ "epoch": 1.35,
985
+ "learning_rate": 0.0001514293245784623,
986
+ "loss": 0.341,
987
+ "step": 155
988
+ },
989
+ {
990
+ "epoch": 1.35,
991
+ "learning_rate": 0.00015081846613471735,
992
+ "loss": 0.3465,
993
+ "step": 156
994
+ },
995
+ {
996
+ "epoch": 1.36,
997
+ "learning_rate": 0.0001502050404009624,
998
+ "loss": 0.3328,
999
+ "step": 157
1000
+ },
1001
+ {
1002
+ "epoch": 1.37,
1003
+ "learning_rate": 0.00014958907836675468,
1004
+ "loss": 0.3459,
1005
+ "step": 158
1006
+ },
1007
+ {
1008
+ "epoch": 1.38,
1009
+ "learning_rate": 0.0001489706111497821,
1010
+ "loss": 0.3625,
1011
+ "step": 159
1012
+ },
1013
+ {
1014
+ "epoch": 1.39,
1015
+ "learning_rate": 0.00014834966999429178,
1016
+ "loss": 0.3558,
1017
+ "step": 160
1018
+ },
1019
+ {
1020
+ "epoch": 1.4,
1021
+ "learning_rate": 0.00014772628626951112,
1022
+ "loss": 0.3418,
1023
+ "step": 161
1024
+ },
1025
+ {
1026
+ "epoch": 1.41,
1027
+ "learning_rate": 0.00014710049146806348,
1028
+ "loss": 0.3304,
1029
+ "step": 162
1030
+ },
1031
+ {
1032
+ "epoch": 1.42,
1033
+ "learning_rate": 0.00014647231720437686,
1034
+ "loss": 0.3231,
1035
+ "step": 163
1036
+ },
1037
+ {
1038
+ "epoch": 1.42,
1039
+ "learning_rate": 0.00014584179521308702,
1040
+ "loss": 0.3144,
1041
+ "step": 164
1042
+ },
1043
+ {
1044
+ "epoch": 1.43,
1045
+ "learning_rate": 0.00014520895734743418,
1046
+ "loss": 0.3332,
1047
+ "step": 165
1048
+ },
1049
+ {
1050
+ "epoch": 1.44,
1051
+ "learning_rate": 0.00014457383557765386,
1052
+ "loss": 0.3311,
1053
+ "step": 166
1054
+ },
1055
+ {
1056
+ "epoch": 1.45,
1057
+ "learning_rate": 0.00014393646198936167,
1058
+ "loss": 0.3396,
1059
+ "step": 167
1060
+ },
1061
+ {
1062
+ "epoch": 1.46,
1063
+ "learning_rate": 0.0001432968687819327,
1064
+ "loss": 0.3341,
1065
+ "step": 168
1066
+ },
1067
+ {
1068
+ "epoch": 1.47,
1069
+ "learning_rate": 0.0001426550882668744,
1070
+ "loss": 0.3477,
1071
+ "step": 169
1072
+ },
1073
+ {
1074
+ "epoch": 1.48,
1075
+ "learning_rate": 0.00014201115286619463,
1076
+ "loss": 0.3455,
1077
+ "step": 170
1078
+ },
1079
+ {
1080
+ "epoch": 1.49,
1081
+ "learning_rate": 0.00014136509511076346,
1082
+ "loss": 0.3415,
1083
+ "step": 171
1084
+ },
1085
+ {
1086
+ "epoch": 1.49,
1087
+ "learning_rate": 0.00014071694763866986,
1088
+ "loss": 0.3392,
1089
+ "step": 172
1090
+ },
1091
+ {
1092
+ "epoch": 1.5,
1093
+ "learning_rate": 0.00014006674319357298,
1094
+ "loss": 0.3543,
1095
+ "step": 173
1096
+ },
1097
+ {
1098
+ "epoch": 1.51,
1099
+ "learning_rate": 0.00013941451462304777,
1100
+ "loss": 0.3449,
1101
+ "step": 174
1102
+ },
1103
+ {
1104
+ "epoch": 1.51,
1105
+ "eval_loss": 0.33857324719429016,
1106
+ "eval_runtime": 35.0605,
1107
+ "eval_samples_per_second": 173.814,
1108
+ "eval_steps_per_second": 12.436,
1109
+ "step": 174
1110
+ },
1111
+ {
1112
+ "epoch": 1.52,
1113
+ "learning_rate": 0.0001387602948769257,
1114
+ "loss": 0.3518,
1115
+ "step": 175
1116
+ },
1117
+ {
1118
+ "epoch": 1.53,
1119
+ "learning_rate": 0.00013810411700563004,
1120
+ "loss": 0.3266,
1121
+ "step": 176
1122
+ },
1123
+ {
1124
+ "epoch": 1.54,
1125
+ "learning_rate": 0.00013744601415850637,
1126
+ "loss": 0.3358,
1127
+ "step": 177
1128
+ },
1129
+ {
1130
+ "epoch": 1.55,
1131
+ "learning_rate": 0.0001367860195821478,
1132
+ "loss": 0.3208,
1133
+ "step": 178
1134
+ },
1135
+ {
1136
+ "epoch": 1.56,
1137
+ "learning_rate": 0.00013612416661871533,
1138
+ "loss": 0.3061,
1139
+ "step": 179
1140
+ },
1141
+ {
1142
+ "epoch": 1.56,
1143
+ "learning_rate": 0.00013546048870425356,
1144
+ "loss": 0.3151,
1145
+ "step": 180
1146
+ },
1147
+ {
1148
+ "epoch": 1.57,
1149
+ "learning_rate": 0.0001347950193670016,
1150
+ "loss": 0.3185,
1151
+ "step": 181
1152
+ },
1153
+ {
1154
+ "epoch": 1.58,
1155
+ "learning_rate": 0.00013412779222569908,
1156
+ "loss": 0.3248,
1157
+ "step": 182
1158
+ },
1159
+ {
1160
+ "epoch": 1.59,
1161
+ "learning_rate": 0.00013345884098788774,
1162
+ "loss": 0.3285,
1163
+ "step": 183
1164
+ },
1165
+ {
1166
+ "epoch": 1.6,
1167
+ "learning_rate": 0.00013278819944820893,
1168
+ "loss": 0.3444,
1169
+ "step": 184
1170
+ },
1171
+ {
1172
+ "epoch": 1.61,
1173
+ "learning_rate": 0.00013211590148669587,
1174
+ "loss": 0.3268,
1175
+ "step": 185
1176
+ },
1177
+ {
1178
+ "epoch": 1.62,
1179
+ "learning_rate": 0.0001314419810670624,
1180
+ "loss": 0.3334,
1181
+ "step": 186
1182
+ },
1183
+ {
1184
+ "epoch": 1.63,
1185
+ "learning_rate": 0.00013076647223498702,
1186
+ "loss": 0.347,
1187
+ "step": 187
1188
+ },
1189
+ {
1190
+ "epoch": 1.64,
1191
+ "learning_rate": 0.00013008940911639303,
1192
+ "loss": 0.3308,
1193
+ "step": 188
1194
+ },
1195
+ {
1196
+ "epoch": 1.64,
1197
+ "learning_rate": 0.00012941082591572443,
1198
+ "loss": 0.3164,
1199
+ "step": 189
1200
+ },
1201
+ {
1202
+ "epoch": 1.65,
1203
+ "learning_rate": 0.00012873075691421807,
1204
+ "loss": 0.333,
1205
+ "step": 190
1206
+ },
1207
+ {
1208
+ "epoch": 1.66,
1209
+ "learning_rate": 0.00012804923646817168,
1210
+ "loss": 0.319,
1211
+ "step": 191
1212
+ },
1213
+ {
1214
+ "epoch": 1.67,
1215
+ "learning_rate": 0.0001273662990072083,
1216
+ "loss": 0.3235,
1217
+ "step": 192
1218
+ },
1219
+ {
1220
+ "epoch": 1.68,
1221
+ "learning_rate": 0.00012668197903253694,
1222
+ "loss": 0.3553,
1223
+ "step": 193
1224
+ },
1225
+ {
1226
+ "epoch": 1.69,
1227
+ "learning_rate": 0.00012599631111520954,
1228
+ "loss": 0.3323,
1229
+ "step": 194
1230
+ },
1231
+ {
1232
+ "epoch": 1.7,
1233
+ "learning_rate": 0.00012530932989437464,
1234
+ "loss": 0.3183,
1235
+ "step": 195
1236
+ },
1237
+ {
1238
+ "epoch": 1.71,
1239
+ "learning_rate": 0.00012462107007552725,
1240
+ "loss": 0.3328,
1241
+ "step": 196
1242
+ },
1243
+ {
1244
+ "epoch": 1.71,
1245
+ "learning_rate": 0.0001239315664287558,
1246
+ "loss": 0.3153,
1247
+ "step": 197
1248
+ },
1249
+ {
1250
+ "epoch": 1.72,
1251
+ "learning_rate": 0.00012324085378698528,
1252
+ "loss": 0.3349,
1253
+ "step": 198
1254
+ },
1255
+ {
1256
+ "epoch": 1.73,
1257
+ "learning_rate": 0.0001225489670442179,
1258
+ "loss": 0.3367,
1259
+ "step": 199
1260
+ },
1261
+ {
1262
+ "epoch": 1.74,
1263
+ "learning_rate": 0.0001218559411537699,
1264
+ "loss": 0.3432,
1265
+ "step": 200
1266
+ },
1267
+ {
1268
+ "epoch": 1.75,
1269
+ "learning_rate": 0.0001211618111265061,
1270
+ "loss": 0.3191,
1271
+ "step": 201
1272
+ },
1273
+ {
1274
+ "epoch": 1.76,
1275
+ "learning_rate": 0.00012046661202907101,
1276
+ "loss": 0.3506,
1277
+ "step": 202
1278
+ },
1279
+ {
1280
+ "epoch": 1.77,
1281
+ "learning_rate": 0.00011977037898211723,
1282
+ "loss": 0.3187,
1283
+ "step": 203
1284
+ },
1285
+ {
1286
+ "epoch": 1.77,
1287
+ "eval_loss": 0.3376944661140442,
1288
+ "eval_runtime": 35.038,
1289
+ "eval_samples_per_second": 173.925,
1290
+ "eval_steps_per_second": 12.444,
1291
+ "step": 203
1292
+ },
1293
+ {
1294
+ "epoch": 1.78,
1295
+ "learning_rate": 0.00011907314715853138,
1296
+ "loss": 0.3553,
1297
+ "step": 204
1298
+ },
1299
+ {
1300
+ "epoch": 1.78,
1301
+ "learning_rate": 0.00011837495178165706,
1302
+ "loss": 0.3567,
1303
+ "step": 205
1304
+ },
1305
+ {
1306
+ "epoch": 1.79,
1307
+ "learning_rate": 0.0001176758281235155,
1308
+ "loss": 0.3221,
1309
+ "step": 206
1310
+ },
1311
+ {
1312
+ "epoch": 1.8,
1313
+ "learning_rate": 0.00011697581150302362,
1314
+ "loss": 0.3458,
1315
+ "step": 207
1316
+ },
1317
+ {
1318
+ "epoch": 1.81,
1319
+ "learning_rate": 0.00011627493728420978,
1320
+ "loss": 0.329,
1321
+ "step": 208
1322
+ },
1323
+ {
1324
+ "epoch": 1.82,
1325
+ "learning_rate": 0.00011557324087442717,
1326
+ "loss": 0.3222,
1327
+ "step": 209
1328
+ },
1329
+ {
1330
+ "epoch": 1.83,
1331
+ "learning_rate": 0.00011487075772256517,
1332
+ "loss": 0.3411,
1333
+ "step": 210
1334
+ },
1335
+ {
1336
+ "epoch": 1.84,
1337
+ "learning_rate": 0.00011416752331725842,
1338
+ "loss": 0.3322,
1339
+ "step": 211
1340
+ },
1341
+ {
1342
+ "epoch": 1.85,
1343
+ "learning_rate": 0.00011346357318509395,
1344
+ "loss": 0.3202,
1345
+ "step": 212
1346
+ },
1347
+ {
1348
+ "epoch": 1.85,
1349
+ "learning_rate": 0.00011275894288881663,
1350
+ "loss": 0.3354,
1351
+ "step": 213
1352
+ },
1353
+ {
1354
+ "epoch": 1.86,
1355
+ "learning_rate": 0.0001120536680255323,
1356
+ "loss": 0.3454,
1357
+ "step": 214
1358
+ },
1359
+ {
1360
+ "epoch": 1.87,
1361
+ "learning_rate": 0.0001113477842249097,
1362
+ "loss": 0.3376,
1363
+ "step": 215
1364
+ },
1365
+ {
1366
+ "epoch": 1.88,
1367
+ "learning_rate": 0.00011064132714738024,
1368
+ "loss": 0.3206,
1369
+ "step": 216
1370
+ },
1371
+ {
1372
+ "epoch": 1.89,
1373
+ "learning_rate": 0.00010993433248233671,
1374
+ "loss": 0.3258,
1375
+ "step": 217
1376
+ },
1377
+ {
1378
+ "epoch": 1.9,
1379
+ "learning_rate": 0.00010922683594633021,
1380
+ "loss": 0.3376,
1381
+ "step": 218
1382
+ },
1383
+ {
1384
+ "epoch": 1.91,
1385
+ "learning_rate": 0.00010851887328126568,
1386
+ "loss": 0.3194,
1387
+ "step": 219
1388
+ },
1389
+ {
1390
+ "epoch": 1.92,
1391
+ "learning_rate": 0.00010781048025259648,
1392
+ "loss": 0.3117,
1393
+ "step": 220
1394
+ },
1395
+ {
1396
+ "epoch": 1.93,
1397
+ "learning_rate": 0.00010710169264751732,
1398
+ "loss": 0.3225,
1399
+ "step": 221
1400
+ },
1401
+ {
1402
+ "epoch": 1.93,
1403
+ "learning_rate": 0.00010639254627315657,
1404
+ "loss": 0.3347,
1405
+ "step": 222
1406
+ },
1407
+ {
1408
+ "epoch": 1.94,
1409
+ "learning_rate": 0.00010568307695476711,
1410
+ "loss": 0.3274,
1411
+ "step": 223
1412
+ },
1413
+ {
1414
+ "epoch": 1.95,
1415
+ "learning_rate": 0.00010497332053391668,
1416
+ "loss": 0.3219,
1417
+ "step": 224
1418
+ },
1419
+ {
1420
+ "epoch": 1.96,
1421
+ "learning_rate": 0.00010426331286667701,
1422
+ "loss": 0.3272,
1423
+ "step": 225
1424
+ },
1425
+ {
1426
+ "epoch": 1.97,
1427
+ "learning_rate": 0.00010355308982181253,
1428
+ "loss": 0.3246,
1429
+ "step": 226
1430
+ }
1431
+ ],
1432
+ "logging_steps": 1,
1433
+ "max_steps": 452,
1434
+ "num_input_tokens_seen": 0,
1435
+ "num_train_epochs": 4,
1436
+ "save_steps": 113,
1437
+ "total_flos": 1.0481747744631292e+19,
1438
+ "train_batch_size": 2,
1439
+ "trial_name": null,
1440
+ "trial_params": null
1441
+ }
checkpoint-226/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66dc6af509e7f51c6a244a8a9af44ad9044f2ab26d51bec3236dad93ab4ef46c
3
+ size 4923
checkpoint-339/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-34b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-339/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-34b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "down_proj",
24
+ "o_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-339/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2675b8c6c0eb32c2ade876ffcb901cce07b24978a8fb8b357b13500c6a48f325
3
+ size 1920164848
checkpoint-339/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf3eef9333bb65394884d3fbde15fa61e6d744021dff14017c001747efcb5444
3
+ size 1743147421
checkpoint-339/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de2511e59e98dde4bc88b8676b8bcafd50ec70d1db3c69ab729844e0acba9351
3
+ size 20663
checkpoint-339/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f62c5d80926d5f53a3a741d0bcfde11a94803e81574aa452c54c70071d6ee907
3
+ size 20663
checkpoint-339/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f0ebfc6d6f0e102907cec3536b416a319e447f0af6d068f6858f188e6b8bb9c
3
+ size 20663
checkpoint-339/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f36755f0f86b29ea66e6fba8de2ff383a3e6ad5592906ab43c33695adb4a3af
3
+ size 20663
checkpoint-339/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5cec541773bb67f532d0d12d92dd78f6e8900d223d3123bff23e326ec30b9f9
3
+ size 20663
checkpoint-339/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28c5ba9234cf43e24133fe3325eec1d58059433bdb2d821ed6add4a3e3b37229
3
+ size 20663
checkpoint-339/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f7df030b0ce70f200552bc1fe0e2fff358c92da5adb3dfab6312c9ac2bc9c9a
3
+ size 20663
checkpoint-339/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab4fefc68aa069447a8f613a225ac6ee4d3a36662b5ea5ade1a0d9cc090d8313
3
+ size 627
checkpoint-339/trainer_state.json ADDED
@@ -0,0 +1,2151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9450549450549453,
5
+ "eval_steps": 29,
6
+ "global_step": 339,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2e-05,
14
+ "loss": 0.5065,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "eval_loss": 0.5089401602745056,
20
+ "eval_runtime": 34.8867,
21
+ "eval_samples_per_second": 174.68,
22
+ "eval_steps_per_second": 12.498,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "learning_rate": 4e-05,
28
+ "loss": 0.5189,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.03,
33
+ "learning_rate": 6e-05,
34
+ "loss": 0.4966,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.04,
39
+ "learning_rate": 8e-05,
40
+ "loss": 0.4891,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.04,
45
+ "learning_rate": 0.0001,
46
+ "loss": 0.507,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.05,
51
+ "learning_rate": 0.00012,
52
+ "loss": 0.5071,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.06,
57
+ "learning_rate": 0.00014,
58
+ "loss": 0.4739,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.07,
63
+ "learning_rate": 0.00016,
64
+ "loss": 0.4721,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.08,
69
+ "learning_rate": 0.00018,
70
+ "loss": 0.4213,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.09,
75
+ "learning_rate": 0.0002,
76
+ "loss": 0.4056,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.1,
81
+ "learning_rate": 0.00019999747405795057,
82
+ "loss": 0.3989,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.11,
87
+ "learning_rate": 0.00019998989635940995,
88
+ "loss": 0.3843,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.11,
93
+ "learning_rate": 0.00019997726728719468,
94
+ "loss": 0.3771,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.12,
99
+ "learning_rate": 0.00019995958747931082,
100
+ "loss": 0.3775,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.13,
105
+ "learning_rate": 0.00019993685782892183,
106
+ "loss": 0.3778,
107
+ "step": 15
108
+ },
109
+ {
110
+ "epoch": 0.14,
111
+ "learning_rate": 0.00019990907948430327,
112
+ "loss": 0.3786,
113
+ "step": 16
114
+ },
115
+ {
116
+ "epoch": 0.15,
117
+ "learning_rate": 0.0001998762538487849,
118
+ "loss": 0.3669,
119
+ "step": 17
120
+ },
121
+ {
122
+ "epoch": 0.16,
123
+ "learning_rate": 0.00019983838258067987,
124
+ "loss": 0.3819,
125
+ "step": 18
126
+ },
127
+ {
128
+ "epoch": 0.17,
129
+ "learning_rate": 0.0001997954675932006,
130
+ "loss": 0.4043,
131
+ "step": 19
132
+ },
133
+ {
134
+ "epoch": 0.18,
135
+ "learning_rate": 0.00019974751105436266,
136
+ "loss": 0.3503,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.18,
141
+ "learning_rate": 0.00019969451538687474,
142
+ "loss": 0.3753,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.19,
147
+ "learning_rate": 0.00019963648326801653,
148
+ "loss": 0.368,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.2,
153
+ "learning_rate": 0.00019957341762950344,
154
+ "loss": 0.3828,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.21,
159
+ "learning_rate": 0.00019950532165733845,
160
+ "loss": 0.3509,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.22,
165
+ "learning_rate": 0.00019943219879165115,
166
+ "loss": 0.381,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.23,
171
+ "learning_rate": 0.0001993540527265239,
172
+ "loss": 0.3638,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.24,
177
+ "learning_rate": 0.0001992708874098054,
178
+ "loss": 0.3645,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.25,
183
+ "learning_rate": 0.00019918270704291104,
184
+ "loss": 0.3466,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.25,
189
+ "learning_rate": 0.00019908951608061076,
190
+ "loss": 0.3477,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.25,
195
+ "eval_loss": 0.35608404874801636,
196
+ "eval_runtime": 35.0585,
197
+ "eval_samples_per_second": 173.824,
198
+ "eval_steps_per_second": 12.436,
199
+ "step": 29
200
+ },
201
+ {
202
+ "epoch": 0.26,
203
+ "learning_rate": 0.000198991319230804,
204
+ "loss": 0.3444,
205
+ "step": 30
206
+ },
207
+ {
208
+ "epoch": 0.27,
209
+ "learning_rate": 0.0001988881214542817,
210
+ "loss": 0.3646,
211
+ "step": 31
212
+ },
213
+ {
214
+ "epoch": 0.28,
215
+ "learning_rate": 0.00019877992796447601,
216
+ "loss": 0.3502,
217
+ "step": 32
218
+ },
219
+ {
220
+ "epoch": 0.29,
221
+ "learning_rate": 0.00019866674422719665,
222
+ "loss": 0.3532,
223
+ "step": 33
224
+ },
225
+ {
226
+ "epoch": 0.3,
227
+ "learning_rate": 0.00019854857596035476,
228
+ "loss": 0.3639,
229
+ "step": 34
230
+ },
231
+ {
232
+ "epoch": 0.31,
233
+ "learning_rate": 0.0001984254291336743,
234
+ "loss": 0.3538,
235
+ "step": 35
236
+ },
237
+ {
238
+ "epoch": 0.32,
239
+ "learning_rate": 0.0001982973099683902,
240
+ "loss": 0.3431,
241
+ "step": 36
242
+ },
243
+ {
244
+ "epoch": 0.33,
245
+ "learning_rate": 0.00019816422493693417,
246
+ "loss": 0.3493,
247
+ "step": 37
248
+ },
249
+ {
250
+ "epoch": 0.33,
251
+ "learning_rate": 0.0001980261807626078,
252
+ "loss": 0.3596,
253
+ "step": 38
254
+ },
255
+ {
256
+ "epoch": 0.34,
257
+ "learning_rate": 0.00019788318441924275,
258
+ "loss": 0.3401,
259
+ "step": 39
260
+ },
261
+ {
262
+ "epoch": 0.35,
263
+ "learning_rate": 0.00019773524313084856,
264
+ "loss": 0.3822,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.36,
269
+ "learning_rate": 0.00019758236437124769,
270
+ "loss": 0.3719,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.37,
275
+ "learning_rate": 0.00019742455586369784,
276
+ "loss": 0.3369,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.38,
281
+ "learning_rate": 0.0001972618255805019,
282
+ "loss": 0.341,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.39,
287
+ "learning_rate": 0.0001970941817426052,
288
+ "loss": 0.3481,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.4,
293
+ "learning_rate": 0.00019692163281918014,
294
+ "loss": 0.3615,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.4,
299
+ "learning_rate": 0.00019674418752719833,
300
+ "loss": 0.346,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.41,
305
+ "learning_rate": 0.00019656185483099024,
306
+ "loss": 0.3479,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.42,
311
+ "learning_rate": 0.00019637464394179239,
312
+ "loss": 0.3638,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.43,
317
+ "learning_rate": 0.00019618256431728194,
318
+ "loss": 0.3419,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.44,
323
+ "learning_rate": 0.0001959856256610988,
324
+ "loss": 0.3496,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.45,
329
+ "learning_rate": 0.00019578383792235573,
330
+ "loss": 0.3503,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.46,
335
+ "learning_rate": 0.0001955772112951354,
336
+ "loss": 0.3437,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.47,
341
+ "learning_rate": 0.00019536575621797547,
342
+ "loss": 0.3343,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.47,
347
+ "learning_rate": 0.00019514948337334142,
348
+ "loss": 0.3517,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.48,
353
+ "learning_rate": 0.0001949284036870867,
354
+ "loss": 0.343,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.49,
359
+ "learning_rate": 0.0001947025283279008,
360
+ "loss": 0.3479,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.5,
365
+ "learning_rate": 0.00019447186870674506,
366
+ "loss": 0.3237,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.51,
371
+ "learning_rate": 0.00019423643647627624,
372
+ "loss": 0.3593,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.51,
377
+ "eval_loss": 0.3460778594017029,
378
+ "eval_runtime": 35.0517,
379
+ "eval_samples_per_second": 173.858,
380
+ "eval_steps_per_second": 12.439,
381
+ "step": 58
382
+ },
383
+ {
384
+ "epoch": 0.52,
385
+ "learning_rate": 0.00019399624353025772,
386
+ "loss": 0.348,
387
+ "step": 59
388
+ },
389
+ {
390
+ "epoch": 0.53,
391
+ "learning_rate": 0.00019375130200295878,
392
+ "loss": 0.344,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.54,
397
+ "learning_rate": 0.0001935016242685415,
398
+ "loss": 0.3601,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.55,
403
+ "learning_rate": 0.00019324722294043558,
404
+ "loss": 0.3524,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.55,
409
+ "learning_rate": 0.00019298811087070132,
410
+ "loss": 0.3421,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.56,
415
+ "learning_rate": 0.00019272430114938017,
416
+ "loss": 0.3524,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.57,
421
+ "learning_rate": 0.00019245580710383343,
422
+ "loss": 0.3334,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.58,
427
+ "learning_rate": 0.00019218264229806917,
428
+ "loss": 0.3312,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.59,
433
+ "learning_rate": 0.00019190482053205673,
434
+ "loss": 0.344,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.6,
439
+ "learning_rate": 0.00019162235584102973,
440
+ "loss": 0.353,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.61,
445
+ "learning_rate": 0.00019133526249477702,
446
+ "loss": 0.3473,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.62,
451
+ "learning_rate": 0.00019104355499692166,
452
+ "loss": 0.345,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.62,
457
+ "learning_rate": 0.00019074724808418835,
458
+ "loss": 0.348,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.63,
463
+ "learning_rate": 0.00019044635672565895,
464
+ "loss": 0.3333,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.64,
469
+ "learning_rate": 0.00019014089612201613,
470
+ "loss": 0.3398,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.65,
475
+ "learning_rate": 0.00018983088170477553,
476
+ "loss": 0.3424,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.66,
481
+ "learning_rate": 0.00018951632913550626,
482
+ "loss": 0.3279,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.67,
487
+ "learning_rate": 0.00018919725430503945,
488
+ "loss": 0.3243,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.68,
493
+ "learning_rate": 0.00018887367333266582,
494
+ "loss": 0.3439,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.69,
499
+ "learning_rate": 0.000188545602565321,
500
+ "loss": 0.3486,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.69,
505
+ "learning_rate": 0.00018821305857675996,
506
+ "loss": 0.3367,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.7,
511
+ "learning_rate": 0.00018787605816671953,
512
+ "loss": 0.3386,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.71,
517
+ "learning_rate": 0.00018753461836006988,
518
+ "loss": 0.3574,
519
+ "step": 81
520
+ },
521
+ {
522
+ "epoch": 0.72,
523
+ "learning_rate": 0.00018718875640595434,
524
+ "loss": 0.334,
525
+ "step": 82
526
+ },
527
+ {
528
+ "epoch": 0.73,
529
+ "learning_rate": 0.00018683848977691785,
530
+ "loss": 0.3342,
531
+ "step": 83
532
+ },
533
+ {
534
+ "epoch": 0.74,
535
+ "learning_rate": 0.0001864838361680247,
536
+ "loss": 0.3693,
537
+ "step": 84
538
+ },
539
+ {
540
+ "epoch": 0.75,
541
+ "learning_rate": 0.00018612481349596405,
542
+ "loss": 0.3422,
543
+ "step": 85
544
+ },
545
+ {
546
+ "epoch": 0.76,
547
+ "learning_rate": 0.00018576143989814523,
548
+ "loss": 0.3346,
549
+ "step": 86
550
+ },
551
+ {
552
+ "epoch": 0.76,
553
+ "learning_rate": 0.00018539373373178123,
554
+ "loss": 0.3329,
555
+ "step": 87
556
+ },
557
+ {
558
+ "epoch": 0.76,
559
+ "eval_loss": 0.3422779440879822,
560
+ "eval_runtime": 35.1197,
561
+ "eval_samples_per_second": 173.521,
562
+ "eval_steps_per_second": 12.415,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.77,
567
+ "learning_rate": 0.00018502171357296144,
568
+ "loss": 0.3485,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.78,
573
+ "learning_rate": 0.00018464539821571303,
574
+ "loss": 0.3383,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.79,
579
+ "learning_rate": 0.00018426480667105177,
580
+ "loss": 0.3434,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.8,
585
+ "learning_rate": 0.00018387995816602137,
586
+ "loss": 0.3205,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.81,
591
+ "learning_rate": 0.00018349087214272224,
592
+ "loss": 0.3522,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.82,
597
+ "learning_rate": 0.0001830975682573293,
598
+ "loss": 0.3416,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.83,
603
+ "learning_rate": 0.00018270006637909907,
604
+ "loss": 0.3468,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.84,
609
+ "learning_rate": 0.00018229838658936564,
610
+ "loss": 0.3407,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.84,
615
+ "learning_rate": 0.0001818925491805265,
616
+ "loss": 0.3198,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.85,
621
+ "learning_rate": 0.00018148257465501716,
622
+ "loss": 0.3369,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.86,
627
+ "learning_rate": 0.0001810684837242755,
628
+ "loss": 0.3371,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.87,
633
+ "learning_rate": 0.00018065029730769534,
634
+ "loss": 0.3395,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.88,
639
+ "learning_rate": 0.00018022803653156984,
640
+ "loss": 0.3418,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.89,
645
+ "learning_rate": 0.000179801722728024,
646
+ "loss": 0.346,
647
+ "step": 101
648
+ },
649
+ {
650
+ "epoch": 0.9,
651
+ "learning_rate": 0.00017937137743393694,
652
+ "loss": 0.3385,
653
+ "step": 102
654
+ },
655
+ {
656
+ "epoch": 0.91,
657
+ "learning_rate": 0.00017893702238985432,
658
+ "loss": 0.3343,
659
+ "step": 103
660
+ },
661
+ {
662
+ "epoch": 0.91,
663
+ "learning_rate": 0.00017849867953888948,
664
+ "loss": 0.3146,
665
+ "step": 104
666
+ },
667
+ {
668
+ "epoch": 0.92,
669
+ "learning_rate": 0.00017805637102561516,
670
+ "loss": 0.3662,
671
+ "step": 105
672
+ },
673
+ {
674
+ "epoch": 0.93,
675
+ "learning_rate": 0.00017761011919494488,
676
+ "loss": 0.3481,
677
+ "step": 106
678
+ },
679
+ {
680
+ "epoch": 0.94,
681
+ "learning_rate": 0.00017715994659100388,
682
+ "loss": 0.3447,
683
+ "step": 107
684
+ },
685
+ {
686
+ "epoch": 0.95,
687
+ "learning_rate": 0.00017670587595599034,
688
+ "loss": 0.3379,
689
+ "step": 108
690
+ },
691
+ {
692
+ "epoch": 0.96,
693
+ "learning_rate": 0.0001762479302290265,
694
+ "loss": 0.3388,
695
+ "step": 109
696
+ },
697
+ {
698
+ "epoch": 0.97,
699
+ "learning_rate": 0.0001757861325449997,
700
+ "loss": 0.3497,
701
+ "step": 110
702
+ },
703
+ {
704
+ "epoch": 0.98,
705
+ "learning_rate": 0.0001753205062333937,
706
+ "loss": 0.3539,
707
+ "step": 111
708
+ },
709
+ {
710
+ "epoch": 0.98,
711
+ "learning_rate": 0.00017485107481711012,
712
+ "loss": 0.3571,
713
+ "step": 112
714
+ },
715
+ {
716
+ "epoch": 0.99,
717
+ "learning_rate": 0.00017437786201128004,
718
+ "loss": 0.3496,
719
+ "step": 113
720
+ },
721
+ {
722
+ "epoch": 1.0,
723
+ "learning_rate": 0.00017390089172206592,
724
+ "loss": 0.3436,
725
+ "step": 114
726
+ },
727
+ {
728
+ "epoch": 1.01,
729
+ "learning_rate": 0.000173420188045454,
730
+ "loss": 0.3434,
731
+ "step": 115
732
+ },
733
+ {
734
+ "epoch": 1.0,
735
+ "learning_rate": 0.00017293577526603682,
736
+ "loss": 0.3607,
737
+ "step": 116
738
+ },
739
+ {
740
+ "epoch": 1.0,
741
+ "eval_loss": 0.3404248356819153,
742
+ "eval_runtime": 35.0435,
743
+ "eval_samples_per_second": 173.898,
744
+ "eval_steps_per_second": 12.442,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 1.01,
749
+ "learning_rate": 0.0001724476778557866,
750
+ "loss": 0.3363,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 1.02,
755
+ "learning_rate": 0.00017195592047281882,
756
+ "loss": 0.3283,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 1.03,
761
+ "learning_rate": 0.00017146052796014646,
762
+ "loss": 0.3293,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 1.04,
767
+ "learning_rate": 0.00017096152534442513,
768
+ "loss": 0.3485,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 1.05,
773
+ "learning_rate": 0.0001704589378346886,
774
+ "loss": 0.3315,
775
+ "step": 121
776
+ },
777
+ {
778
+ "epoch": 1.05,
779
+ "learning_rate": 0.0001699527908210754,
780
+ "loss": 0.3686,
781
+ "step": 122
782
+ },
783
+ {
784
+ "epoch": 1.06,
785
+ "learning_rate": 0.00016944310987354597,
786
+ "loss": 0.3384,
787
+ "step": 123
788
+ },
789
+ {
790
+ "epoch": 1.07,
791
+ "learning_rate": 0.0001689299207405911,
792
+ "loss": 0.3432,
793
+ "step": 124
794
+ },
795
+ {
796
+ "epoch": 1.08,
797
+ "learning_rate": 0.00016841324934793094,
798
+ "loss": 0.3323,
799
+ "step": 125
800
+ },
801
+ {
802
+ "epoch": 1.09,
803
+ "learning_rate": 0.00016789312179720547,
804
+ "loss": 0.3325,
805
+ "step": 126
806
+ },
807
+ {
808
+ "epoch": 1.1,
809
+ "learning_rate": 0.00016736956436465573,
810
+ "loss": 0.3464,
811
+ "step": 127
812
+ },
813
+ {
814
+ "epoch": 1.11,
815
+ "learning_rate": 0.00016684260349979636,
816
+ "loss": 0.3344,
817
+ "step": 128
818
+ },
819
+ {
820
+ "epoch": 1.12,
821
+ "learning_rate": 0.00016631226582407952,
822
+ "loss": 0.3319,
823
+ "step": 129
824
+ },
825
+ {
826
+ "epoch": 1.13,
827
+ "learning_rate": 0.00016577857812954993,
828
+ "loss": 0.3385,
829
+ "step": 130
830
+ },
831
+ {
832
+ "epoch": 1.13,
833
+ "learning_rate": 0.00016524156737749132,
834
+ "loss": 0.3166,
835
+ "step": 131
836
+ },
837
+ {
838
+ "epoch": 1.14,
839
+ "learning_rate": 0.00016470126069706456,
840
+ "loss": 0.3214,
841
+ "step": 132
842
+ },
843
+ {
844
+ "epoch": 1.15,
845
+ "learning_rate": 0.00016415768538393687,
846
+ "loss": 0.3101,
847
+ "step": 133
848
+ },
849
+ {
850
+ "epoch": 1.16,
851
+ "learning_rate": 0.00016361086889890306,
852
+ "loss": 0.3334,
853
+ "step": 134
854
+ },
855
+ {
856
+ "epoch": 1.17,
857
+ "learning_rate": 0.0001630608388664982,
858
+ "loss": 0.3094,
859
+ "step": 135
860
+ },
861
+ {
862
+ "epoch": 1.18,
863
+ "learning_rate": 0.00016250762307360207,
864
+ "loss": 0.327,
865
+ "step": 136
866
+ },
867
+ {
868
+ "epoch": 1.19,
869
+ "learning_rate": 0.00016195124946803525,
870
+ "loss": 0.3512,
871
+ "step": 137
872
+ },
873
+ {
874
+ "epoch": 1.2,
875
+ "learning_rate": 0.0001613917461571475,
876
+ "loss": 0.3329,
877
+ "step": 138
878
+ },
879
+ {
880
+ "epoch": 1.2,
881
+ "learning_rate": 0.0001608291414063977,
882
+ "loss": 0.342,
883
+ "step": 139
884
+ },
885
+ {
886
+ "epoch": 1.21,
887
+ "learning_rate": 0.00016026346363792567,
888
+ "loss": 0.3488,
889
+ "step": 140
890
+ },
891
+ {
892
+ "epoch": 1.22,
893
+ "learning_rate": 0.00015969474142911666,
894
+ "loss": 0.3385,
895
+ "step": 141
896
+ },
897
+ {
898
+ "epoch": 1.23,
899
+ "learning_rate": 0.0001591230035111576,
900
+ "loss": 0.3207,
901
+ "step": 142
902
+ },
903
+ {
904
+ "epoch": 1.24,
905
+ "learning_rate": 0.00015854827876758532,
906
+ "loss": 0.321,
907
+ "step": 143
908
+ },
909
+ {
910
+ "epoch": 1.25,
911
+ "learning_rate": 0.00015797059623282787,
912
+ "loss": 0.3409,
913
+ "step": 144
914
+ },
915
+ {
916
+ "epoch": 1.26,
917
+ "learning_rate": 0.0001573899850907373,
918
+ "loss": 0.3336,
919
+ "step": 145
920
+ },
921
+ {
922
+ "epoch": 1.26,
923
+ "eval_loss": 0.3395354747772217,
924
+ "eval_runtime": 35.0942,
925
+ "eval_samples_per_second": 173.647,
926
+ "eval_steps_per_second": 12.424,
927
+ "step": 145
928
+ },
929
+ {
930
+ "epoch": 1.27,
931
+ "learning_rate": 0.00015680647467311557,
932
+ "loss": 0.3355,
933
+ "step": 146
934
+ },
935
+ {
936
+ "epoch": 1.27,
937
+ "learning_rate": 0.00015622009445823273,
938
+ "loss": 0.347,
939
+ "step": 147
940
+ },
941
+ {
942
+ "epoch": 1.28,
943
+ "learning_rate": 0.0001556308740693376,
944
+ "loss": 0.3433,
945
+ "step": 148
946
+ },
947
+ {
948
+ "epoch": 1.29,
949
+ "learning_rate": 0.00015503884327316132,
950
+ "loss": 0.3271,
951
+ "step": 149
952
+ },
953
+ {
954
+ "epoch": 1.3,
955
+ "learning_rate": 0.00015444403197841346,
956
+ "loss": 0.3195,
957
+ "step": 150
958
+ },
959
+ {
960
+ "epoch": 1.31,
961
+ "learning_rate": 0.00015384647023427138,
962
+ "loss": 0.3314,
963
+ "step": 151
964
+ },
965
+ {
966
+ "epoch": 1.32,
967
+ "learning_rate": 0.00015324618822886165,
968
+ "loss": 0.3387,
969
+ "step": 152
970
+ },
971
+ {
972
+ "epoch": 1.33,
973
+ "learning_rate": 0.0001526432162877356,
974
+ "loss": 0.3436,
975
+ "step": 153
976
+ },
977
+ {
978
+ "epoch": 1.34,
979
+ "learning_rate": 0.00015203758487233678,
980
+ "loss": 0.3152,
981
+ "step": 154
982
+ },
983
+ {
984
+ "epoch": 1.35,
985
+ "learning_rate": 0.0001514293245784623,
986
+ "loss": 0.341,
987
+ "step": 155
988
+ },
989
+ {
990
+ "epoch": 1.35,
991
+ "learning_rate": 0.00015081846613471735,
992
+ "loss": 0.3465,
993
+ "step": 156
994
+ },
995
+ {
996
+ "epoch": 1.36,
997
+ "learning_rate": 0.0001502050404009624,
998
+ "loss": 0.3328,
999
+ "step": 157
1000
+ },
1001
+ {
1002
+ "epoch": 1.37,
1003
+ "learning_rate": 0.00014958907836675468,
1004
+ "loss": 0.3459,
1005
+ "step": 158
1006
+ },
1007
+ {
1008
+ "epoch": 1.38,
1009
+ "learning_rate": 0.0001489706111497821,
1010
+ "loss": 0.3625,
1011
+ "step": 159
1012
+ },
1013
+ {
1014
+ "epoch": 1.39,
1015
+ "learning_rate": 0.00014834966999429178,
1016
+ "loss": 0.3558,
1017
+ "step": 160
1018
+ },
1019
+ {
1020
+ "epoch": 1.4,
1021
+ "learning_rate": 0.00014772628626951112,
1022
+ "loss": 0.3418,
1023
+ "step": 161
1024
+ },
1025
+ {
1026
+ "epoch": 1.41,
1027
+ "learning_rate": 0.00014710049146806348,
1028
+ "loss": 0.3304,
1029
+ "step": 162
1030
+ },
1031
+ {
1032
+ "epoch": 1.42,
1033
+ "learning_rate": 0.00014647231720437686,
1034
+ "loss": 0.3231,
1035
+ "step": 163
1036
+ },
1037
+ {
1038
+ "epoch": 1.42,
1039
+ "learning_rate": 0.00014584179521308702,
1040
+ "loss": 0.3144,
1041
+ "step": 164
1042
+ },
1043
+ {
1044
+ "epoch": 1.43,
1045
+ "learning_rate": 0.00014520895734743418,
1046
+ "loss": 0.3332,
1047
+ "step": 165
1048
+ },
1049
+ {
1050
+ "epoch": 1.44,
1051
+ "learning_rate": 0.00014457383557765386,
1052
+ "loss": 0.3311,
1053
+ "step": 166
1054
+ },
1055
+ {
1056
+ "epoch": 1.45,
1057
+ "learning_rate": 0.00014393646198936167,
1058
+ "loss": 0.3396,
1059
+ "step": 167
1060
+ },
1061
+ {
1062
+ "epoch": 1.46,
1063
+ "learning_rate": 0.0001432968687819327,
1064
+ "loss": 0.3341,
1065
+ "step": 168
1066
+ },
1067
+ {
1068
+ "epoch": 1.47,
1069
+ "learning_rate": 0.0001426550882668744,
1070
+ "loss": 0.3477,
1071
+ "step": 169
1072
+ },
1073
+ {
1074
+ "epoch": 1.48,
1075
+ "learning_rate": 0.00014201115286619463,
1076
+ "loss": 0.3455,
1077
+ "step": 170
1078
+ },
1079
+ {
1080
+ "epoch": 1.49,
1081
+ "learning_rate": 0.00014136509511076346,
1082
+ "loss": 0.3415,
1083
+ "step": 171
1084
+ },
1085
+ {
1086
+ "epoch": 1.49,
1087
+ "learning_rate": 0.00014071694763866986,
1088
+ "loss": 0.3392,
1089
+ "step": 172
1090
+ },
1091
+ {
1092
+ "epoch": 1.5,
1093
+ "learning_rate": 0.00014006674319357298,
1094
+ "loss": 0.3543,
1095
+ "step": 173
1096
+ },
1097
+ {
1098
+ "epoch": 1.51,
1099
+ "learning_rate": 0.00013941451462304777,
1100
+ "loss": 0.3449,
1101
+ "step": 174
1102
+ },
1103
+ {
1104
+ "epoch": 1.51,
1105
+ "eval_loss": 0.33857324719429016,
1106
+ "eval_runtime": 35.0605,
1107
+ "eval_samples_per_second": 173.814,
1108
+ "eval_steps_per_second": 12.436,
1109
+ "step": 174
1110
+ },
1111
+ {
1112
+ "epoch": 1.52,
1113
+ "learning_rate": 0.0001387602948769257,
1114
+ "loss": 0.3518,
1115
+ "step": 175
1116
+ },
1117
+ {
1118
+ "epoch": 1.53,
1119
+ "learning_rate": 0.00013810411700563004,
1120
+ "loss": 0.3266,
1121
+ "step": 176
1122
+ },
1123
+ {
1124
+ "epoch": 1.54,
1125
+ "learning_rate": 0.00013744601415850637,
1126
+ "loss": 0.3358,
1127
+ "step": 177
1128
+ },
1129
+ {
1130
+ "epoch": 1.55,
1131
+ "learning_rate": 0.0001367860195821478,
1132
+ "loss": 0.3208,
1133
+ "step": 178
1134
+ },
1135
+ {
1136
+ "epoch": 1.56,
1137
+ "learning_rate": 0.00013612416661871533,
1138
+ "loss": 0.3061,
1139
+ "step": 179
1140
+ },
1141
+ {
1142
+ "epoch": 1.56,
1143
+ "learning_rate": 0.00013546048870425356,
1144
+ "loss": 0.3151,
1145
+ "step": 180
1146
+ },
1147
+ {
1148
+ "epoch": 1.57,
1149
+ "learning_rate": 0.0001347950193670016,
1150
+ "loss": 0.3185,
1151
+ "step": 181
1152
+ },
1153
+ {
1154
+ "epoch": 1.58,
1155
+ "learning_rate": 0.00013412779222569908,
1156
+ "loss": 0.3248,
1157
+ "step": 182
1158
+ },
1159
+ {
1160
+ "epoch": 1.59,
1161
+ "learning_rate": 0.00013345884098788774,
1162
+ "loss": 0.3285,
1163
+ "step": 183
1164
+ },
1165
+ {
1166
+ "epoch": 1.6,
1167
+ "learning_rate": 0.00013278819944820893,
1168
+ "loss": 0.3444,
1169
+ "step": 184
1170
+ },
1171
+ {
1172
+ "epoch": 1.61,
1173
+ "learning_rate": 0.00013211590148669587,
1174
+ "loss": 0.3268,
1175
+ "step": 185
1176
+ },
1177
+ {
1178
+ "epoch": 1.62,
1179
+ "learning_rate": 0.0001314419810670624,
1180
+ "loss": 0.3334,
1181
+ "step": 186
1182
+ },
1183
+ {
1184
+ "epoch": 1.63,
1185
+ "learning_rate": 0.00013076647223498702,
1186
+ "loss": 0.347,
1187
+ "step": 187
1188
+ },
1189
+ {
1190
+ "epoch": 1.64,
1191
+ "learning_rate": 0.00013008940911639303,
1192
+ "loss": 0.3308,
1193
+ "step": 188
1194
+ },
1195
+ {
1196
+ "epoch": 1.64,
1197
+ "learning_rate": 0.00012941082591572443,
1198
+ "loss": 0.3164,
1199
+ "step": 189
1200
+ },
1201
+ {
1202
+ "epoch": 1.65,
1203
+ "learning_rate": 0.00012873075691421807,
1204
+ "loss": 0.333,
1205
+ "step": 190
1206
+ },
1207
+ {
1208
+ "epoch": 1.66,
1209
+ "learning_rate": 0.00012804923646817168,
1210
+ "loss": 0.319,
1211
+ "step": 191
1212
+ },
1213
+ {
1214
+ "epoch": 1.67,
1215
+ "learning_rate": 0.0001273662990072083,
1216
+ "loss": 0.3235,
1217
+ "step": 192
1218
+ },
1219
+ {
1220
+ "epoch": 1.68,
1221
+ "learning_rate": 0.00012668197903253694,
1222
+ "loss": 0.3553,
1223
+ "step": 193
1224
+ },
1225
+ {
1226
+ "epoch": 1.69,
1227
+ "learning_rate": 0.00012599631111520954,
1228
+ "loss": 0.3323,
1229
+ "step": 194
1230
+ },
1231
+ {
1232
+ "epoch": 1.7,
1233
+ "learning_rate": 0.00012530932989437464,
1234
+ "loss": 0.3183,
1235
+ "step": 195
1236
+ },
1237
+ {
1238
+ "epoch": 1.71,
1239
+ "learning_rate": 0.00012462107007552725,
1240
+ "loss": 0.3328,
1241
+ "step": 196
1242
+ },
1243
+ {
1244
+ "epoch": 1.71,
1245
+ "learning_rate": 0.0001239315664287558,
1246
+ "loss": 0.3153,
1247
+ "step": 197
1248
+ },
1249
+ {
1250
+ "epoch": 1.72,
1251
+ "learning_rate": 0.00012324085378698528,
1252
+ "loss": 0.3349,
1253
+ "step": 198
1254
+ },
1255
+ {
1256
+ "epoch": 1.73,
1257
+ "learning_rate": 0.0001225489670442179,
1258
+ "loss": 0.3367,
1259
+ "step": 199
1260
+ },
1261
+ {
1262
+ "epoch": 1.74,
1263
+ "learning_rate": 0.0001218559411537699,
1264
+ "loss": 0.3432,
1265
+ "step": 200
1266
+ },
1267
+ {
1268
+ "epoch": 1.75,
1269
+ "learning_rate": 0.0001211618111265061,
1270
+ "loss": 0.3191,
1271
+ "step": 201
1272
+ },
1273
+ {
1274
+ "epoch": 1.76,
1275
+ "learning_rate": 0.00012046661202907101,
1276
+ "loss": 0.3506,
1277
+ "step": 202
1278
+ },
1279
+ {
1280
+ "epoch": 1.77,
1281
+ "learning_rate": 0.00011977037898211723,
1282
+ "loss": 0.3187,
1283
+ "step": 203
1284
+ },
1285
+ {
1286
+ "epoch": 1.77,
1287
+ "eval_loss": 0.3376944661140442,
1288
+ "eval_runtime": 35.038,
1289
+ "eval_samples_per_second": 173.925,
1290
+ "eval_steps_per_second": 12.444,
1291
+ "step": 203
1292
+ },
1293
+ {
1294
+ "epoch": 1.78,
1295
+ "learning_rate": 0.00011907314715853138,
1296
+ "loss": 0.3553,
1297
+ "step": 204
1298
+ },
1299
+ {
1300
+ "epoch": 1.78,
1301
+ "learning_rate": 0.00011837495178165706,
1302
+ "loss": 0.3567,
1303
+ "step": 205
1304
+ },
1305
+ {
1306
+ "epoch": 1.79,
1307
+ "learning_rate": 0.0001176758281235155,
1308
+ "loss": 0.3221,
1309
+ "step": 206
1310
+ },
1311
+ {
1312
+ "epoch": 1.8,
1313
+ "learning_rate": 0.00011697581150302362,
1314
+ "loss": 0.3458,
1315
+ "step": 207
1316
+ },
1317
+ {
1318
+ "epoch": 1.81,
1319
+ "learning_rate": 0.00011627493728420978,
1320
+ "loss": 0.329,
1321
+ "step": 208
1322
+ },
1323
+ {
1324
+ "epoch": 1.82,
1325
+ "learning_rate": 0.00011557324087442717,
1326
+ "loss": 0.3222,
1327
+ "step": 209
1328
+ },
1329
+ {
1330
+ "epoch": 1.83,
1331
+ "learning_rate": 0.00011487075772256517,
1332
+ "loss": 0.3411,
1333
+ "step": 210
1334
+ },
1335
+ {
1336
+ "epoch": 1.84,
1337
+ "learning_rate": 0.00011416752331725842,
1338
+ "loss": 0.3322,
1339
+ "step": 211
1340
+ },
1341
+ {
1342
+ "epoch": 1.85,
1343
+ "learning_rate": 0.00011346357318509395,
1344
+ "loss": 0.3202,
1345
+ "step": 212
1346
+ },
1347
+ {
1348
+ "epoch": 1.85,
1349
+ "learning_rate": 0.00011275894288881663,
1350
+ "loss": 0.3354,
1351
+ "step": 213
1352
+ },
1353
+ {
1354
+ "epoch": 1.86,
1355
+ "learning_rate": 0.0001120536680255323,
1356
+ "loss": 0.3454,
1357
+ "step": 214
1358
+ },
1359
+ {
1360
+ "epoch": 1.87,
1361
+ "learning_rate": 0.0001113477842249097,
1362
+ "loss": 0.3376,
1363
+ "step": 215
1364
+ },
1365
+ {
1366
+ "epoch": 1.88,
1367
+ "learning_rate": 0.00011064132714738024,
1368
+ "loss": 0.3206,
1369
+ "step": 216
1370
+ },
1371
+ {
1372
+ "epoch": 1.89,
1373
+ "learning_rate": 0.00010993433248233671,
1374
+ "loss": 0.3258,
1375
+ "step": 217
1376
+ },
1377
+ {
1378
+ "epoch": 1.9,
1379
+ "learning_rate": 0.00010922683594633021,
1380
+ "loss": 0.3376,
1381
+ "step": 218
1382
+ },
1383
+ {
1384
+ "epoch": 1.91,
1385
+ "learning_rate": 0.00010851887328126568,
1386
+ "loss": 0.3194,
1387
+ "step": 219
1388
+ },
1389
+ {
1390
+ "epoch": 1.92,
1391
+ "learning_rate": 0.00010781048025259648,
1392
+ "loss": 0.3117,
1393
+ "step": 220
1394
+ },
1395
+ {
1396
+ "epoch": 1.93,
1397
+ "learning_rate": 0.00010710169264751732,
1398
+ "loss": 0.3225,
1399
+ "step": 221
1400
+ },
1401
+ {
1402
+ "epoch": 1.93,
1403
+ "learning_rate": 0.00010639254627315657,
1404
+ "loss": 0.3347,
1405
+ "step": 222
1406
+ },
1407
+ {
1408
+ "epoch": 1.94,
1409
+ "learning_rate": 0.00010568307695476711,
1410
+ "loss": 0.3274,
1411
+ "step": 223
1412
+ },
1413
+ {
1414
+ "epoch": 1.95,
1415
+ "learning_rate": 0.00010497332053391668,
1416
+ "loss": 0.3219,
1417
+ "step": 224
1418
+ },
1419
+ {
1420
+ "epoch": 1.96,
1421
+ "learning_rate": 0.00010426331286667701,
1422
+ "loss": 0.3272,
1423
+ "step": 225
1424
+ },
1425
+ {
1426
+ "epoch": 1.97,
1427
+ "learning_rate": 0.00010355308982181253,
1428
+ "loss": 0.3246,
1429
+ "step": 226
1430
+ },
1431
+ {
1432
+ "epoch": 1.98,
1433
+ "learning_rate": 0.00010284268727896833,
1434
+ "loss": 0.327,
1435
+ "step": 227
1436
+ },
1437
+ {
1438
+ "epoch": 1.99,
1439
+ "learning_rate": 0.00010213214112685748,
1440
+ "loss": 0.3201,
1441
+ "step": 228
1442
+ },
1443
+ {
1444
+ "epoch": 2.0,
1445
+ "learning_rate": 0.00010142148726144807,
1446
+ "loss": 0.3097,
1447
+ "step": 229
1448
+ },
1449
+ {
1450
+ "epoch": 2.0,
1451
+ "learning_rate": 0.00010071076158414976,
1452
+ "loss": 0.3374,
1453
+ "step": 230
1454
+ },
1455
+ {
1456
+ "epoch": 2.01,
1457
+ "learning_rate": 0.0001,
1458
+ "loss": 0.3394,
1459
+ "step": 231
1460
+ },
1461
+ {
1462
+ "epoch": 2.0,
1463
+ "learning_rate": 9.928923841585024e-05,
1464
+ "loss": 0.3216,
1465
+ "step": 232
1466
+ },
1467
+ {
1468
+ "epoch": 2.0,
1469
+ "eval_loss": 0.3371301591396332,
1470
+ "eval_runtime": 35.0645,
1471
+ "eval_samples_per_second": 173.794,
1472
+ "eval_steps_per_second": 12.434,
1473
+ "step": 232
1474
+ },
1475
+ {
1476
+ "epoch": 2.01,
1477
+ "learning_rate": 9.857851273855194e-05,
1478
+ "loss": 0.3184,
1479
+ "step": 233
1480
+ },
1481
+ {
1482
+ "epoch": 2.02,
1483
+ "learning_rate": 9.786785887314255e-05,
1484
+ "loss": 0.3199,
1485
+ "step": 234
1486
+ },
1487
+ {
1488
+ "epoch": 2.03,
1489
+ "learning_rate": 9.71573127210317e-05,
1490
+ "loss": 0.3188,
1491
+ "step": 235
1492
+ },
1493
+ {
1494
+ "epoch": 2.04,
1495
+ "learning_rate": 9.644691017818752e-05,
1496
+ "loss": 0.3407,
1497
+ "step": 236
1498
+ },
1499
+ {
1500
+ "epoch": 2.05,
1501
+ "learning_rate": 9.573668713332304e-05,
1502
+ "loss": 0.3226,
1503
+ "step": 237
1504
+ },
1505
+ {
1506
+ "epoch": 2.06,
1507
+ "learning_rate": 9.502667946608333e-05,
1508
+ "loss": 0.319,
1509
+ "step": 238
1510
+ },
1511
+ {
1512
+ "epoch": 2.07,
1513
+ "learning_rate": 9.431692304523288e-05,
1514
+ "loss": 0.3248,
1515
+ "step": 239
1516
+ },
1517
+ {
1518
+ "epoch": 2.07,
1519
+ "learning_rate": 9.360745372684345e-05,
1520
+ "loss": 0.3303,
1521
+ "step": 240
1522
+ },
1523
+ {
1524
+ "epoch": 2.08,
1525
+ "learning_rate": 9.289830735248269e-05,
1526
+ "loss": 0.3124,
1527
+ "step": 241
1528
+ },
1529
+ {
1530
+ "epoch": 2.09,
1531
+ "learning_rate": 9.218951974740354e-05,
1532
+ "loss": 0.3197,
1533
+ "step": 242
1534
+ },
1535
+ {
1536
+ "epoch": 2.1,
1537
+ "learning_rate": 9.148112671873433e-05,
1538
+ "loss": 0.3358,
1539
+ "step": 243
1540
+ },
1541
+ {
1542
+ "epoch": 2.11,
1543
+ "learning_rate": 9.077316405366981e-05,
1544
+ "loss": 0.3216,
1545
+ "step": 244
1546
+ },
1547
+ {
1548
+ "epoch": 2.12,
1549
+ "learning_rate": 9.00656675176633e-05,
1550
+ "loss": 0.3126,
1551
+ "step": 245
1552
+ },
1553
+ {
1554
+ "epoch": 2.13,
1555
+ "learning_rate": 8.935867285261978e-05,
1556
+ "loss": 0.3327,
1557
+ "step": 246
1558
+ },
1559
+ {
1560
+ "epoch": 2.14,
1561
+ "learning_rate": 8.865221577509033e-05,
1562
+ "loss": 0.3239,
1563
+ "step": 247
1564
+ },
1565
+ {
1566
+ "epoch": 2.15,
1567
+ "learning_rate": 8.79463319744677e-05,
1568
+ "loss": 0.3237,
1569
+ "step": 248
1570
+ },
1571
+ {
1572
+ "epoch": 2.15,
1573
+ "learning_rate": 8.724105711118342e-05,
1574
+ "loss": 0.3163,
1575
+ "step": 249
1576
+ },
1577
+ {
1578
+ "epoch": 2.16,
1579
+ "learning_rate": 8.653642681490608e-05,
1580
+ "loss": 0.3323,
1581
+ "step": 250
1582
+ },
1583
+ {
1584
+ "epoch": 2.17,
1585
+ "learning_rate": 8.583247668274163e-05,
1586
+ "loss": 0.303,
1587
+ "step": 251
1588
+ },
1589
+ {
1590
+ "epoch": 2.18,
1591
+ "learning_rate": 8.512924227743481e-05,
1592
+ "loss": 0.3507,
1593
+ "step": 252
1594
+ },
1595
+ {
1596
+ "epoch": 2.19,
1597
+ "learning_rate": 8.442675912557281e-05,
1598
+ "loss": 0.334,
1599
+ "step": 253
1600
+ },
1601
+ {
1602
+ "epoch": 2.2,
1603
+ "learning_rate": 8.372506271579022e-05,
1604
+ "loss": 0.3144,
1605
+ "step": 254
1606
+ },
1607
+ {
1608
+ "epoch": 2.21,
1609
+ "learning_rate": 8.302418849697638e-05,
1610
+ "loss": 0.3298,
1611
+ "step": 255
1612
+ },
1613
+ {
1614
+ "epoch": 2.22,
1615
+ "learning_rate": 8.232417187648454e-05,
1616
+ "loss": 0.3229,
1617
+ "step": 256
1618
+ },
1619
+ {
1620
+ "epoch": 2.22,
1621
+ "learning_rate": 8.162504821834295e-05,
1622
+ "loss": 0.2989,
1623
+ "step": 257
1624
+ },
1625
+ {
1626
+ "epoch": 2.23,
1627
+ "learning_rate": 8.092685284146865e-05,
1628
+ "loss": 0.3165,
1629
+ "step": 258
1630
+ },
1631
+ {
1632
+ "epoch": 2.24,
1633
+ "learning_rate": 8.02296210178828e-05,
1634
+ "loss": 0.3129,
1635
+ "step": 259
1636
+ },
1637
+ {
1638
+ "epoch": 2.25,
1639
+ "learning_rate": 7.953338797092902e-05,
1640
+ "loss": 0.319,
1641
+ "step": 260
1642
+ },
1643
+ {
1644
+ "epoch": 2.26,
1645
+ "learning_rate": 7.883818887349392e-05,
1646
+ "loss": 0.2961,
1647
+ "step": 261
1648
+ },
1649
+ {
1650
+ "epoch": 2.26,
1651
+ "eval_loss": 0.3379780054092407,
1652
+ "eval_runtime": 35.0784,
1653
+ "eval_samples_per_second": 173.725,
1654
+ "eval_steps_per_second": 12.429,
1655
+ "step": 261
1656
+ },
1657
+ {
1658
+ "epoch": 2.27,
1659
+ "learning_rate": 7.814405884623011e-05,
1660
+ "loss": 0.3,
1661
+ "step": 262
1662
+ },
1663
+ {
1664
+ "epoch": 2.28,
1665
+ "learning_rate": 7.745103295578216e-05,
1666
+ "loss": 0.3133,
1667
+ "step": 263
1668
+ },
1669
+ {
1670
+ "epoch": 2.29,
1671
+ "learning_rate": 7.675914621301476e-05,
1672
+ "loss": 0.3277,
1673
+ "step": 264
1674
+ },
1675
+ {
1676
+ "epoch": 2.29,
1677
+ "learning_rate": 7.606843357124426e-05,
1678
+ "loss": 0.3142,
1679
+ "step": 265
1680
+ },
1681
+ {
1682
+ "epoch": 2.3,
1683
+ "learning_rate": 7.537892992447273e-05,
1684
+ "loss": 0.3245,
1685
+ "step": 266
1686
+ },
1687
+ {
1688
+ "epoch": 2.31,
1689
+ "learning_rate": 7.469067010562539e-05,
1690
+ "loss": 0.3393,
1691
+ "step": 267
1692
+ },
1693
+ {
1694
+ "epoch": 2.32,
1695
+ "learning_rate": 7.400368888479048e-05,
1696
+ "loss": 0.3125,
1697
+ "step": 268
1698
+ },
1699
+ {
1700
+ "epoch": 2.33,
1701
+ "learning_rate": 7.331802096746308e-05,
1702
+ "loss": 0.3083,
1703
+ "step": 269
1704
+ },
1705
+ {
1706
+ "epoch": 2.34,
1707
+ "learning_rate": 7.263370099279172e-05,
1708
+ "loss": 0.3188,
1709
+ "step": 270
1710
+ },
1711
+ {
1712
+ "epoch": 2.35,
1713
+ "learning_rate": 7.195076353182834e-05,
1714
+ "loss": 0.3071,
1715
+ "step": 271
1716
+ },
1717
+ {
1718
+ "epoch": 2.36,
1719
+ "learning_rate": 7.126924308578196e-05,
1720
+ "loss": 0.3223,
1721
+ "step": 272
1722
+ },
1723
+ {
1724
+ "epoch": 2.36,
1725
+ "learning_rate": 7.058917408427558e-05,
1726
+ "loss": 0.3201,
1727
+ "step": 273
1728
+ },
1729
+ {
1730
+ "epoch": 2.37,
1731
+ "learning_rate": 6.991059088360699e-05,
1732
+ "loss": 0.3237,
1733
+ "step": 274
1734
+ },
1735
+ {
1736
+ "epoch": 2.38,
1737
+ "learning_rate": 6.923352776501301e-05,
1738
+ "loss": 0.3172,
1739
+ "step": 275
1740
+ },
1741
+ {
1742
+ "epoch": 2.39,
1743
+ "learning_rate": 6.855801893293765e-05,
1744
+ "loss": 0.3188,
1745
+ "step": 276
1746
+ },
1747
+ {
1748
+ "epoch": 2.4,
1749
+ "learning_rate": 6.788409851330418e-05,
1750
+ "loss": 0.3268,
1751
+ "step": 277
1752
+ },
1753
+ {
1754
+ "epoch": 2.41,
1755
+ "learning_rate": 6.721180055179112e-05,
1756
+ "loss": 0.3256,
1757
+ "step": 278
1758
+ },
1759
+ {
1760
+ "epoch": 2.42,
1761
+ "learning_rate": 6.654115901211229e-05,
1762
+ "loss": 0.3216,
1763
+ "step": 279
1764
+ },
1765
+ {
1766
+ "epoch": 2.43,
1767
+ "learning_rate": 6.587220777430096e-05,
1768
+ "loss": 0.3304,
1769
+ "step": 280
1770
+ },
1771
+ {
1772
+ "epoch": 2.44,
1773
+ "learning_rate": 6.52049806329984e-05,
1774
+ "loss": 0.3246,
1775
+ "step": 281
1776
+ },
1777
+ {
1778
+ "epoch": 2.44,
1779
+ "learning_rate": 6.453951129574644e-05,
1780
+ "loss": 0.3072,
1781
+ "step": 282
1782
+ },
1783
+ {
1784
+ "epoch": 2.45,
1785
+ "learning_rate": 6.387583338128471e-05,
1786
+ "loss": 0.3169,
1787
+ "step": 283
1788
+ },
1789
+ {
1790
+ "epoch": 2.46,
1791
+ "learning_rate": 6.321398041785224e-05,
1792
+ "loss": 0.3219,
1793
+ "step": 284
1794
+ },
1795
+ {
1796
+ "epoch": 2.47,
1797
+ "learning_rate": 6.255398584149365e-05,
1798
+ "loss": 0.3529,
1799
+ "step": 285
1800
+ },
1801
+ {
1802
+ "epoch": 2.48,
1803
+ "learning_rate": 6.189588299436997e-05,
1804
+ "loss": 0.3114,
1805
+ "step": 286
1806
+ },
1807
+ {
1808
+ "epoch": 2.49,
1809
+ "learning_rate": 6.123970512307434e-05,
1810
+ "loss": 0.3205,
1811
+ "step": 287
1812
+ },
1813
+ {
1814
+ "epoch": 2.5,
1815
+ "learning_rate": 6.0585485376952244e-05,
1816
+ "loss": 0.3113,
1817
+ "step": 288
1818
+ },
1819
+ {
1820
+ "epoch": 2.51,
1821
+ "learning_rate": 5.993325680642705e-05,
1822
+ "loss": 0.3439,
1823
+ "step": 289
1824
+ },
1825
+ {
1826
+ "epoch": 2.51,
1827
+ "learning_rate": 5.928305236133016e-05,
1828
+ "loss": 0.3117,
1829
+ "step": 290
1830
+ },
1831
+ {
1832
+ "epoch": 2.51,
1833
+ "eval_loss": 0.3381350338459015,
1834
+ "eval_runtime": 35.0904,
1835
+ "eval_samples_per_second": 173.666,
1836
+ "eval_steps_per_second": 12.425,
1837
+ "step": 290
1838
+ },
1839
+ {
1840
+ "epoch": 2.52,
1841
+ "learning_rate": 5.8634904889236595e-05,
1842
+ "loss": 0.3109,
1843
+ "step": 291
1844
+ },
1845
+ {
1846
+ "epoch": 2.53,
1847
+ "learning_rate": 5.798884713380541e-05,
1848
+ "loss": 0.3154,
1849
+ "step": 292
1850
+ },
1851
+ {
1852
+ "epoch": 2.54,
1853
+ "learning_rate": 5.7344911733125594e-05,
1854
+ "loss": 0.3407,
1855
+ "step": 293
1856
+ },
1857
+ {
1858
+ "epoch": 2.55,
1859
+ "learning_rate": 5.67031312180673e-05,
1860
+ "loss": 0.3118,
1861
+ "step": 294
1862
+ },
1863
+ {
1864
+ "epoch": 2.56,
1865
+ "learning_rate": 5.6063538010638293e-05,
1866
+ "loss": 0.3221,
1867
+ "step": 295
1868
+ },
1869
+ {
1870
+ "epoch": 2.57,
1871
+ "learning_rate": 5.542616442234618e-05,
1872
+ "loss": 0.3153,
1873
+ "step": 296
1874
+ },
1875
+ {
1876
+ "epoch": 2.58,
1877
+ "learning_rate": 5.479104265256583e-05,
1878
+ "loss": 0.3267,
1879
+ "step": 297
1880
+ },
1881
+ {
1882
+ "epoch": 2.58,
1883
+ "learning_rate": 5.4158204786913005e-05,
1884
+ "loss": 0.3294,
1885
+ "step": 298
1886
+ },
1887
+ {
1888
+ "epoch": 2.59,
1889
+ "learning_rate": 5.3527682795623146e-05,
1890
+ "loss": 0.3428,
1891
+ "step": 299
1892
+ },
1893
+ {
1894
+ "epoch": 2.6,
1895
+ "learning_rate": 5.289950853193653e-05,
1896
+ "loss": 0.3342,
1897
+ "step": 300
1898
+ },
1899
+ {
1900
+ "epoch": 2.61,
1901
+ "learning_rate": 5.227371373048888e-05,
1902
+ "loss": 0.3362,
1903
+ "step": 301
1904
+ },
1905
+ {
1906
+ "epoch": 2.62,
1907
+ "learning_rate": 5.165033000570825e-05,
1908
+ "loss": 0.3542,
1909
+ "step": 302
1910
+ },
1911
+ {
1912
+ "epoch": 2.63,
1913
+ "learning_rate": 5.102938885021793e-05,
1914
+ "loss": 0.3252,
1915
+ "step": 303
1916
+ },
1917
+ {
1918
+ "epoch": 2.64,
1919
+ "learning_rate": 5.041092163324537e-05,
1920
+ "loss": 0.3205,
1921
+ "step": 304
1922
+ },
1923
+ {
1924
+ "epoch": 2.65,
1925
+ "learning_rate": 4.979495959903759e-05,
1926
+ "loss": 0.3201,
1927
+ "step": 305
1928
+ },
1929
+ {
1930
+ "epoch": 2.65,
1931
+ "learning_rate": 4.9181533865282706e-05,
1932
+ "loss": 0.3181,
1933
+ "step": 306
1934
+ },
1935
+ {
1936
+ "epoch": 2.66,
1937
+ "learning_rate": 4.857067542153768e-05,
1938
+ "loss": 0.3116,
1939
+ "step": 307
1940
+ },
1941
+ {
1942
+ "epoch": 2.67,
1943
+ "learning_rate": 4.796241512766326e-05,
1944
+ "loss": 0.3212,
1945
+ "step": 308
1946
+ },
1947
+ {
1948
+ "epoch": 2.68,
1949
+ "learning_rate": 4.735678371226441e-05,
1950
+ "loss": 0.3267,
1951
+ "step": 309
1952
+ },
1953
+ {
1954
+ "epoch": 2.69,
1955
+ "learning_rate": 4.6753811771138364e-05,
1956
+ "loss": 0.3027,
1957
+ "step": 310
1958
+ },
1959
+ {
1960
+ "epoch": 2.7,
1961
+ "learning_rate": 4.6153529765728664e-05,
1962
+ "loss": 0.3068,
1963
+ "step": 311
1964
+ },
1965
+ {
1966
+ "epoch": 2.71,
1967
+ "learning_rate": 4.555596802158653e-05,
1968
+ "loss": 0.3326,
1969
+ "step": 312
1970
+ },
1971
+ {
1972
+ "epoch": 2.72,
1973
+ "learning_rate": 4.496115672683873e-05,
1974
+ "loss": 0.3259,
1975
+ "step": 313
1976
+ },
1977
+ {
1978
+ "epoch": 2.73,
1979
+ "learning_rate": 4.4369125930662404e-05,
1980
+ "loss": 0.3211,
1981
+ "step": 314
1982
+ },
1983
+ {
1984
+ "epoch": 2.73,
1985
+ "learning_rate": 4.3779905541767285e-05,
1986
+ "loss": 0.3174,
1987
+ "step": 315
1988
+ },
1989
+ {
1990
+ "epoch": 2.74,
1991
+ "learning_rate": 4.3193525326884435e-05,
1992
+ "loss": 0.3151,
1993
+ "step": 316
1994
+ },
1995
+ {
1996
+ "epoch": 2.75,
1997
+ "learning_rate": 4.261001490926272e-05,
1998
+ "loss": 0.3207,
1999
+ "step": 317
2000
+ },
2001
+ {
2002
+ "epoch": 2.76,
2003
+ "learning_rate": 4.202940376717217e-05,
2004
+ "loss": 0.3101,
2005
+ "step": 318
2006
+ },
2007
+ {
2008
+ "epoch": 2.77,
2009
+ "learning_rate": 4.14517212324147e-05,
2010
+ "loss": 0.3207,
2011
+ "step": 319
2012
+ },
2013
+ {
2014
+ "epoch": 2.77,
2015
+ "eval_loss": 0.3378981053829193,
2016
+ "eval_runtime": 35.0668,
2017
+ "eval_samples_per_second": 173.782,
2018
+ "eval_steps_per_second": 12.433,
2019
+ "step": 319
2020
+ },
2021
+ {
2022
+ "epoch": 2.78,
2023
+ "learning_rate": 4.087699648884248e-05,
2024
+ "loss": 0.3089,
2025
+ "step": 320
2026
+ },
2027
+ {
2028
+ "epoch": 2.79,
2029
+ "learning_rate": 4.0305258570883334e-05,
2030
+ "loss": 0.3416,
2031
+ "step": 321
2032
+ },
2033
+ {
2034
+ "epoch": 2.8,
2035
+ "learning_rate": 3.973653636207437e-05,
2036
+ "loss": 0.3072,
2037
+ "step": 322
2038
+ },
2039
+ {
2040
+ "epoch": 2.8,
2041
+ "learning_rate": 3.9170858593602336e-05,
2042
+ "loss": 0.3364,
2043
+ "step": 323
2044
+ },
2045
+ {
2046
+ "epoch": 2.81,
2047
+ "learning_rate": 3.860825384285247e-05,
2048
+ "loss": 0.3233,
2049
+ "step": 324
2050
+ },
2051
+ {
2052
+ "epoch": 2.82,
2053
+ "learning_rate": 3.804875053196477e-05,
2054
+ "loss": 0.318,
2055
+ "step": 325
2056
+ },
2057
+ {
2058
+ "epoch": 2.83,
2059
+ "learning_rate": 3.7492376926397964e-05,
2060
+ "loss": 0.319,
2061
+ "step": 326
2062
+ },
2063
+ {
2064
+ "epoch": 2.84,
2065
+ "learning_rate": 3.693916113350182e-05,
2066
+ "loss": 0.324,
2067
+ "step": 327
2068
+ },
2069
+ {
2070
+ "epoch": 2.85,
2071
+ "learning_rate": 3.638913110109695e-05,
2072
+ "loss": 0.3196,
2073
+ "step": 328
2074
+ },
2075
+ {
2076
+ "epoch": 2.86,
2077
+ "learning_rate": 3.5842314616063135e-05,
2078
+ "loss": 0.3186,
2079
+ "step": 329
2080
+ },
2081
+ {
2082
+ "epoch": 2.87,
2083
+ "learning_rate": 3.529873930293546e-05,
2084
+ "loss": 0.3073,
2085
+ "step": 330
2086
+ },
2087
+ {
2088
+ "epoch": 2.87,
2089
+ "learning_rate": 3.4758432622508674e-05,
2090
+ "loss": 0.3427,
2091
+ "step": 331
2092
+ },
2093
+ {
2094
+ "epoch": 2.88,
2095
+ "learning_rate": 3.422142187045011e-05,
2096
+ "loss": 0.3064,
2097
+ "step": 332
2098
+ },
2099
+ {
2100
+ "epoch": 2.89,
2101
+ "learning_rate": 3.36877341759205e-05,
2102
+ "loss": 0.3278,
2103
+ "step": 333
2104
+ },
2105
+ {
2106
+ "epoch": 2.9,
2107
+ "learning_rate": 3.315739650020365e-05,
2108
+ "loss": 0.347,
2109
+ "step": 334
2110
+ },
2111
+ {
2112
+ "epoch": 2.91,
2113
+ "learning_rate": 3.263043563534428e-05,
2114
+ "loss": 0.3269,
2115
+ "step": 335
2116
+ },
2117
+ {
2118
+ "epoch": 2.92,
2119
+ "learning_rate": 3.210687820279451e-05,
2120
+ "loss": 0.3122,
2121
+ "step": 336
2122
+ },
2123
+ {
2124
+ "epoch": 2.93,
2125
+ "learning_rate": 3.1586750652069074e-05,
2126
+ "loss": 0.3223,
2127
+ "step": 337
2128
+ },
2129
+ {
2130
+ "epoch": 2.94,
2131
+ "learning_rate": 3.107007925940894e-05,
2132
+ "loss": 0.3208,
2133
+ "step": 338
2134
+ },
2135
+ {
2136
+ "epoch": 2.95,
2137
+ "learning_rate": 3.0556890126454075e-05,
2138
+ "loss": 0.3073,
2139
+ "step": 339
2140
+ }
2141
+ ],
2142
+ "logging_steps": 1,
2143
+ "max_steps": 452,
2144
+ "num_input_tokens_seen": 0,
2145
+ "num_train_epochs": 4,
2146
+ "save_steps": 113,
2147
+ "total_flos": 1.5721793414108283e+19,
2148
+ "train_batch_size": 2,
2149
+ "trial_name": null,
2150
+ "trial_params": null
2151
+ }
checkpoint-339/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66dc6af509e7f51c6a244a8a9af44ad9044f2ab26d51bec3236dad93ab4ef46c
3
+ size 4923
checkpoint-452/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-34b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-452/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-34b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "down_proj",
24
+ "o_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-452/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54a05003644b645a327b51d5c317ecc913ac1f4a1bd09c137ea2cf65e36aaf53
3
+ size 1920164848
checkpoint-452/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8b95943c4dd1b49bcaae543885a0299860f305a201791d18df138376bbbcbe1
3
+ size 1743147421