--- license: llama2 library_name: peft tags: - generated_from_trainer base_model: codellama/CodeLlama-34b-hf model-index: - name: maverick34b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: codellama/CodeLlama-34b-hf model_type: LlamaForCausalLM tokenizer_type: CodeLlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: iamtarun/code_instructions_120k_alpaca type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./maverick34b adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# maverick34b This model is a fine-tuned version of [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - gradient_accumulation_steps: 4 - total_train_batch_size: 56 - total_eval_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5065 | 0.01 | 1 | 0.5089 | | 0.3477 | 0.25 | 29 | 0.3561 | | 0.3593 | 0.51 | 58 | 0.3461 | | 0.3329 | 0.76 | 87 | 0.3423 | | 0.3607 | 1.0 | 116 | 0.3404 | | 0.3336 | 1.26 | 145 | 0.3395 | | 0.3449 | 1.51 | 174 | 0.3386 | | 0.3187 | 1.77 | 203 | 0.3377 | | 0.3216 | 2.0 | 232 | 0.3371 | | 0.2961 | 2.26 | 261 | 0.3380 | | 0.3117 | 2.51 | 290 | 0.3381 | | 0.3207 | 2.77 | 319 | 0.3379 | | 0.3047 | 3.01 | 348 | 0.3376 | | 0.3096 | 3.26 | 377 | 0.3391 | | 0.3148 | 3.52 | 406 | 0.3391 | | 0.3116 | 3.77 | 435 | 0.3391 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0