- Procfile +1 -0
- README.md +7 -0
- app - Copy.py +149 -0
- app.py +159 -0
- req.txt +558 -0
- request.py +52 -0
- request3.py +42 -0
- requests2.py +38 -0
- requirements.txt +16 -0
- runtime.txt +1 -0
- setup.sh +13 -0
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: sh setup.sh && streamlit run app.py
|
README.md
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
To OPEN **NLP News Classifier** click here:
|
2 |
+
|
3 |
+
[](https://newsclassifiernlp.herokuapp.com/)
|
4 |
+
|
5 |
+
The six categories we want to identify are Sports, Business, Politics, Tech, Entertainment and Health.
|
6 |
+
|
7 |
+
|
app - Copy.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import joblib,os
|
4 |
+
import spacy
|
5 |
+
import pandas as pd
|
6 |
+
nlp = spacy.load("en_core_web_sm")
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib
|
9 |
+
matplotlib.use("Agg")
|
10 |
+
from wordcloud import WordCloud
|
11 |
+
|
12 |
+
|
13 |
+
# load Vectorizer
|
14 |
+
complaints_vectorizer = open("models/tfidf_vect.pickle","rb")
|
15 |
+
complaints_cv = joblib.load(complaints_vectorizer)
|
16 |
+
|
17 |
+
def load_prediction_models(model_file):
|
18 |
+
|
19 |
+
loaded_model = joblib.load(open(os.path.join(model_file),"rb"))
|
20 |
+
return loaded_model
|
21 |
+
|
22 |
+
# Get the Keys
|
23 |
+
def get_key(val,my_dict):
|
24 |
+
for key,value in my_dict.items():
|
25 |
+
if val == value:
|
26 |
+
return key
|
27 |
+
|
28 |
+
|
29 |
+
def main():
|
30 |
+
|
31 |
+
"""Telecom Complaints Classifier"""
|
32 |
+
st.title("Telecom Complaints - Classification App")
|
33 |
+
|
34 |
+
# Layout Templates
|
35 |
+
html_temp = """
|
36 |
+
<div style="background-color:#464e5f;padding:10px;border-radius:10px;margin:10px;">
|
37 |
+
<h1 style="color:white;text-align:center;"> ML - Telecom Complaints Classifier </h1>
|
38 |
+
<img src="https://www.w3schools.com/howto/img_avatar.png" alt="Avatar" style="vertical-align: middle;width: 50px;height: 50px;border-radius: 50%;" >
|
39 |
+
<p style="text-align:justify">{}</p>
|
40 |
+
</div>
|
41 |
+
"""
|
42 |
+
title_temp ="""
|
43 |
+
<div style="background-color:#464e5f;padding:10px;border-radius:10px;margin:10px;">
|
44 |
+
<h4 style="color:white;text-align:center;">{}</h1>
|
45 |
+
<img src="https://www.w3schools.com/howto/img_avatar.png" alt="Avatar" style="vertical-align: middle;float:left;width: 50px;height: 50px;border-radius: 50%;" >
|
46 |
+
<h6>Author:{}</h6>
|
47 |
+
<br/>
|
48 |
+
<br/>
|
49 |
+
<p style="text-align:justify">{}</p>
|
50 |
+
</div>
|
51 |
+
"""
|
52 |
+
article_temp ="""
|
53 |
+
<div style="background-color:#464e5f;padding:10px;border-radius:5px;margin:10px;">
|
54 |
+
<h4 style="color:white;text-align:center;">{}</h1>
|
55 |
+
<h6>Author:{}</h6>
|
56 |
+
<h6>Post Date: {}</h6>
|
57 |
+
<img src="https://www.w3schools.com/howto/img_avatar.png" alt="Avatar" style="vertical-align: middle;width: 50px;height: 50px;border-radius: 50%;" >
|
58 |
+
<br/>
|
59 |
+
<br/>
|
60 |
+
<p style="text-align:justify">{}</p>
|
61 |
+
</div>
|
62 |
+
"""
|
63 |
+
|
64 |
+
|
65 |
+
st.markdown(html_temp,unsafe_allow_html=True)
|
66 |
+
|
67 |
+
activity = ['Prediction','NLP','About']
|
68 |
+
choice = st.sidebar.selectbox("Select Activity",activity)
|
69 |
+
|
70 |
+
|
71 |
+
if choice == 'Prediction':
|
72 |
+
st.info("Prediction with ML")
|
73 |
+
complaints_text = st.text_area("Enter Complaints Here","Type Here")
|
74 |
+
all_ml_models = ["Decision Tree", "GradientBoost"]
|
75 |
+
model_choice = st.selectbox("Select Model",all_ml_models)
|
76 |
+
|
77 |
+
prediction_labels = {'Closed': 0, 'Open': 1, 'Pending': 2, 'Solved': 3}
|
78 |
+
if st.button("Classify"):
|
79 |
+
st.text("Original Text:\n{}".format(complaints_text))
|
80 |
+
vect_text = complaints_cv.transform([complaints_text]).toarray()
|
81 |
+
if model_choice == 'Decision Tree':
|
82 |
+
predictor = load_prediction_models("models/dtcpred.pickle")
|
83 |
+
prediction = predictor.predict(vect_text)
|
84 |
+
# st.write(prediction)
|
85 |
+
elif model_choice == 'GradientBoost':
|
86 |
+
predictor = load_prediction_models("models/gbcpred.pickle")
|
87 |
+
prediction = predictor.predict(vect_text)
|
88 |
+
# st.write(prediction)
|
89 |
+
|
90 |
+
|
91 |
+
final_result = get_key(prediction,prediction_labels)
|
92 |
+
st.success("Complaints Categorized as: {}".format(final_result))
|
93 |
+
|
94 |
+
elif choice == 'NLP':
|
95 |
+
st.info("Natural Language Processing of Text")
|
96 |
+
raw_text = st.text_area("Enter Customer Complaints Here","Type Here")
|
97 |
+
nlp_task = ["Tokenization","Lemmatization","Named Entity Recognition(NER)","Parts-of-Speech(POS) Tags"]
|
98 |
+
task_choice = st.selectbox("Choose NLP Task",nlp_task)
|
99 |
+
if st.button("Analyze"):
|
100 |
+
st.info("Original Text:\n{}".format(raw_text))
|
101 |
+
|
102 |
+
docx = nlp(raw_text)
|
103 |
+
if task_choice == 'Tokenization':
|
104 |
+
result = [token.text for token in docx ]
|
105 |
+
elif task_choice == 'Lemmatization':
|
106 |
+
result = ["'Token':{},'Lemma':{}".format(token.text,token.lemma_) for token in docx]
|
107 |
+
elif task_choice == 'Named Entity Recognition(NER)':
|
108 |
+
result = [(entity.text,entity.label_)for entity in docx.ents]
|
109 |
+
elif task_choice == 'Parts-of-Speech(POS) Tags':
|
110 |
+
result = ["'Token':{},'POS':{},'Dependency':{}".format(word.text,word.tag_,word.dep_) for word in docx]
|
111 |
+
|
112 |
+
st.json(result)
|
113 |
+
|
114 |
+
if st.button("Tabulize"):
|
115 |
+
docx = nlp(raw_text)
|
116 |
+
c_tokens = [token.text for token in docx ]
|
117 |
+
c_lemma = [token.lemma_ for token in docx ]
|
118 |
+
c_pos = [token.pos_ for token in docx ]
|
119 |
+
|
120 |
+
new_df = pd.DataFrame(zip(c_tokens,c_lemma,c_pos),columns=['Tokens','Lemma','POS'])
|
121 |
+
st.dataframe(new_df)
|
122 |
+
|
123 |
+
|
124 |
+
if st.checkbox("WordCloud"):
|
125 |
+
c_text = raw_text
|
126 |
+
wordcloud = WordCloud().generate(c_text)
|
127 |
+
plt.imshow(wordcloud,interpolation='bilinear')
|
128 |
+
plt.axis("off")
|
129 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
130 |
+
st.pyplot()
|
131 |
+
|
132 |
+
else:
|
133 |
+
st.write("")
|
134 |
+
st.subheader("About")
|
135 |
+
st.write("")
|
136 |
+
|
137 |
+
st.markdown("""
|
138 |
+
### NLP Complaints Classifier With Different Models (With Streamlit)
|
139 |
+
Python Tools Used: spacy, pandas, matplotlib, wordcloud, Pillow(PIL), Joblib
|
140 |
+
""")
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == '__main__':
|
144 |
+
main()
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib,os
|
3 |
+
import scipy
|
4 |
+
import spacy
|
5 |
+
import pandas as pd
|
6 |
+
nlp = spacy.load("en_core_web_sm")
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib
|
9 |
+
matplotlib.use("Agg")
|
10 |
+
from wordcloud import WordCloud
|
11 |
+
|
12 |
+
|
13 |
+
# load Vectorizer
|
14 |
+
complaints_vectorizer = open("models/tfidf_vect.joblib","rb")
|
15 |
+
complaints_cv = joblib.load(complaints_vectorizer)
|
16 |
+
|
17 |
+
def load_prediction_models(model_file):
|
18 |
+
|
19 |
+
loaded_model = joblib.load(open(os.path.join(model_file),"rb"))
|
20 |
+
return loaded_model
|
21 |
+
|
22 |
+
# Get the Keys
|
23 |
+
def get_key(val,my_dict):
|
24 |
+
for key,value in my_dict.items():
|
25 |
+
if val == value:
|
26 |
+
return key
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def main():
|
32 |
+
|
33 |
+
"""Telecom Complaints Classifier"""
|
34 |
+
st.title("Comcast Telecom Complaints App")
|
35 |
+
|
36 |
+
# Layout Templates
|
37 |
+
html_temp = """
|
38 |
+
<div style="background-color:#D5CC8F;padding:10px;border-radius:10px;margin:10px;">
|
39 |
+
<h1 style="color:white;text-align:center;"> ML - Telecom Complaints Classifier </h1>
|
40 |
+
<img src="https://www.w3schools.com/howto/img_avatar.png" alt="Avatar" style="vertical-align: middle;width: 50px;height: 50px;border-radius: 50%;" >
|
41 |
+
<p style="text-align:justify">{}</p>
|
42 |
+
</div>
|
43 |
+
"""
|
44 |
+
title_temp ="""
|
45 |
+
<div style="background-color:#D5CC8F;padding:10px;border-radius:10px;margin:10px;">
|
46 |
+
<h4 style="color:white;text-align:center;">{Debmalya Ray}</h1>
|
47 |
+
<img src="https://www.w3schools.com/howto/img_avatar.png" alt="Avatar" style="vertical-align: middle;float:left;width: 50px;height: 50px;border-radius: 50%;" >
|
48 |
+
<h6>Author:{Debmalya Ray}</h6>
|
49 |
+
<br/>
|
50 |
+
<br/>
|
51 |
+
<p style="text-align:justify">{}</p>
|
52 |
+
</div>
|
53 |
+
"""
|
54 |
+
article_temp ="""
|
55 |
+
<div style="background-color:#D5CC8F;padding:10px;border-radius:5px;margin:10px;">
|
56 |
+
<h4 style="color:white;text-align:center;">{Debmalya Ray}</h1>
|
57 |
+
<h6>Author:{Debmalya Ray}</h6>
|
58 |
+
<h6>Post Date: {}</h6>
|
59 |
+
<img src="https://www.w3schools.com/howto/img_avatar.png" alt="Avatar" style="vertical-align: middle;width: 50px;height: 50px;border-radius: 50%;" >
|
60 |
+
<br/>
|
61 |
+
<br/>
|
62 |
+
<p style="text-align:justify">{}</p>
|
63 |
+
</div>
|
64 |
+
"""
|
65 |
+
|
66 |
+
|
67 |
+
st.markdown(html_temp,unsafe_allow_html=True)
|
68 |
+
|
69 |
+
activity = ['Prediction','NLP','About']
|
70 |
+
choice = st.sidebar.selectbox("Select Activity",activity)
|
71 |
+
|
72 |
+
|
73 |
+
if choice == 'Prediction':
|
74 |
+
st.info("Prediction with ML")
|
75 |
+
complaints_text = st.text_area("Enter Complaints Here","Type Here")
|
76 |
+
all_ml_models = ["Decision Tree", "GradientBoost"]
|
77 |
+
model_choice = st.selectbox("Select Model",all_ml_models)
|
78 |
+
|
79 |
+
prediction_labels = {'Closed': 0, 'Open': 1, 'Pending': 2, 'Solved': 3}
|
80 |
+
if st.button("Classify"):
|
81 |
+
st.text("Original Text:\n{}".format(complaints_text))
|
82 |
+
vect_text = complaints_cv.transform([complaints_text]).toarray()
|
83 |
+
if model_choice == 'Decision Tree':
|
84 |
+
predictor = load_prediction_models("models/dtcpred.joblib")
|
85 |
+
prediction = predictor.predict(vect_text)
|
86 |
+
st.write(prediction)
|
87 |
+
elif model_choice == 'GradientBoost':
|
88 |
+
predictor = load_prediction_models("models/gbcpred.joblib")
|
89 |
+
prediction = predictor.predict(vect_text)
|
90 |
+
st.write(prediction)
|
91 |
+
|
92 |
+
final_result = get_key(prediction,prediction_labels)
|
93 |
+
st.success("Complaints Categorized as: {}".format(final_result))
|
94 |
+
|
95 |
+
elif choice == 'NLP':
|
96 |
+
st.info("Natural Language Processing of Text")
|
97 |
+
raw_text = st.text_area("Enter Customer Complaints Here","Type Here")
|
98 |
+
nlp_task = ["Tokenization","Lemmatization","Named Entity Recognition(NER)","Parts-of-Speech(POS) Tags"]
|
99 |
+
task_choice = st.selectbox("Choose NLP Task",nlp_task)
|
100 |
+
if st.button("Analyze"):
|
101 |
+
st.info("Original Text:\n{}".format(raw_text))
|
102 |
+
|
103 |
+
docx = nlp(raw_text)
|
104 |
+
if task_choice == 'Tokenization':
|
105 |
+
result = [token.text for token in docx ]
|
106 |
+
elif task_choice == 'Lemmatization':
|
107 |
+
result = ["'Token':{},'Lemma':{}".format(token.text,token.lemma_) for token in docx]
|
108 |
+
elif task_choice == 'Named Entity Recognition(NER)':
|
109 |
+
result = [(entity.text,entity.label_)for entity in docx.ents]
|
110 |
+
elif task_choice == 'Parts-of-Speech(POS) Tags':
|
111 |
+
result = ["'Token':{},'POS':{},'Dependency':{}".format(word.text,word.tag_,word.dep_) for word in docx]
|
112 |
+
|
113 |
+
st.json(result)
|
114 |
+
|
115 |
+
if st.button("Tabulize"):
|
116 |
+
docx = nlp(raw_text)
|
117 |
+
c_tokens = [token.text for token in docx ]
|
118 |
+
c_lemma = [token.lemma_ for token in docx ]
|
119 |
+
c_pos = [token.pos_ for token in docx ]
|
120 |
+
|
121 |
+
new_df = pd.DataFrame(zip(c_tokens,c_lemma,c_pos),columns=['Tokens','Lemma','POS'])
|
122 |
+
st.dataframe(new_df)
|
123 |
+
|
124 |
+
|
125 |
+
if st.checkbox("WordCloud"):
|
126 |
+
c_text = raw_text
|
127 |
+
wordcloud = WordCloud().generate(c_text)
|
128 |
+
plt.imshow(wordcloud,interpolation='bilinear')
|
129 |
+
plt.axis("off")
|
130 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
131 |
+
st.pyplot()
|
132 |
+
|
133 |
+
else:
|
134 |
+
st.write("")
|
135 |
+
st.subheader("About")
|
136 |
+
st.write("""**************************************************************************""")
|
137 |
+
st.markdown("""
|
138 |
+
### NLP Complaints Classifier With Different Models (With Streamlit)
|
139 |
+
###### Python Tools Used: spacy, pandas, matplotlib, wordcloud, Pillow(PIL), Joblib
|
140 |
+
""")
|
141 |
+
st.write("""**************************************************************************""")
|
142 |
+
st.write("""
|
143 |
+
361148 || Throttling service and unreasonable data caps || 24-06-2015 || Acworth || Georgia || 30101 || Pending
|
144 |
+
""")
|
145 |
+
st.write("""
|
146 |
+
359792 || Comcast refuses to help troubleshoot and correct my service. || 23-06-2015 || Adrian || Michigan || 49221 || Solved
|
147 |
+
""")
|
148 |
+
st.write("""
|
149 |
+
371214 || Comcast Raising Prices and Not Being Available To Ask Why || 28-06-2015 || Alameda || California || 94501 || Open
|
150 |
+
""")
|
151 |
+
st.write("""
|
152 |
+
242732 || Speed and Service || 18-04-2015 || Acworth || Georgia || 30101 || Closed
|
153 |
+
""")
|
154 |
+
st.write("""**************************************************************************""")
|
155 |
+
|
156 |
+
|
157 |
+
if __name__ == '__main__':
|
158 |
+
main()
|
159 |
+
|
req.txt
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.3.0
|
2 |
+
accelerate==0.19.0
|
3 |
+
aiofiles==22.1.0
|
4 |
+
aiohttp @ file:///C:/ci/aiohttp_1646806572557/work
|
5 |
+
aiosignal @ file:///tmp/build/80754af9/aiosignal_1637843061372/work
|
6 |
+
aiosqlite==0.17.0
|
7 |
+
alabaster @ file:///home/ktietz/src/ci/alabaster_1611921544520/work
|
8 |
+
alembic==1.8.1
|
9 |
+
alpha-vantage==2.3.1
|
10 |
+
altair==4.2.0
|
11 |
+
anaconda-client @ file:///C:/ci/anaconda-client_1635342725944/work
|
12 |
+
anaconda-navigator==2.3.2
|
13 |
+
anaconda-project @ file:///tmp/build/80754af9/anaconda-project_1637161053845/work
|
14 |
+
anyio @ file:///C:/ci/anyio_1644481921011/work/dist
|
15 |
+
appdirs==1.4.4
|
16 |
+
argon2-cffi @ file:///opt/conda/conda-bld/argon2-cffi_1645000214183/work
|
17 |
+
argon2-cffi-bindings @ file:///C:/ci/argon2-cffi-bindings_1644551690056/work
|
18 |
+
arrow @ file:///opt/conda/conda-bld/arrow_1649166651673/work
|
19 |
+
asgiref==3.5.2
|
20 |
+
astor==0.8.1
|
21 |
+
astroid @ file:///C:/ci/astroid_1628063282661/work
|
22 |
+
astropy @ file:///C:/ci/astropy_1650634291321/work
|
23 |
+
asttokens @ file:///opt/conda/conda-bld/asttokens_1646925590279/work
|
24 |
+
astunparse==1.6.3
|
25 |
+
async-timeout @ file:///tmp/build/80754af9/async-timeout_1637851218186/work
|
26 |
+
atomicwrites==1.4.0
|
27 |
+
attrs @ file:///opt/conda/conda-bld/attrs_1642510447205/work
|
28 |
+
audioread==3.0.0
|
29 |
+
Automat @ file:///tmp/build/80754af9/automat_1600298431173/work
|
30 |
+
autopage==0.5.1
|
31 |
+
autopep8 @ file:///opt/conda/conda-bld/autopep8_1639166893812/work
|
32 |
+
Babel @ file:///tmp/build/80754af9/babel_1620871417480/work
|
33 |
+
backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work
|
34 |
+
backports.functools-lru-cache @ file:///tmp/build/80754af9/backports.functools_lru_cache_1618170165463/work
|
35 |
+
backports.tempfile @ file:///home/linux1/recipes/ci/backports.tempfile_1610991236607/work
|
36 |
+
backports.weakref==1.0.post1
|
37 |
+
base58==2.1.1
|
38 |
+
bcrypt @ file:///C:/ci/bcrypt_1607022693089/work
|
39 |
+
beautifulsoup4 @ file:///C:/ci/beautifulsoup4_1650293025093/work
|
40 |
+
binaryornot @ file:///tmp/build/80754af9/binaryornot_1617751525010/work
|
41 |
+
bitarray @ file:///C:/ci/bitarray_1648739663053/work
|
42 |
+
bkcharts==0.2
|
43 |
+
black==19.10b0
|
44 |
+
bleach @ file:///opt/conda/conda-bld/bleach_1641577558959/work
|
45 |
+
blinker==1.5
|
46 |
+
blis==0.7.9
|
47 |
+
bokeh @ file:///C:/ci/bokeh_1638362966927/work
|
48 |
+
boto3 @ file:///opt/conda/conda-bld/boto3_1649078879353/work
|
49 |
+
botocore @ file:///opt/conda/conda-bld/botocore_1649076662316/work
|
50 |
+
Bottleneck @ file:///C:/ci/bottleneck_1648010904582/work
|
51 |
+
Brotli==1.0.9
|
52 |
+
brotlipy==0.7.0
|
53 |
+
cachetools @ file:///tmp/build/80754af9/cachetools_1619597386817/work
|
54 |
+
catalogue==1.0.2
|
55 |
+
catboost==1.2
|
56 |
+
category-encoders==2.5.1.post0
|
57 |
+
certifi==2022.12.7
|
58 |
+
cffi @ file:///C:/ci_310/cffi_1642682485096/work
|
59 |
+
chardet==3.0.4
|
60 |
+
charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work
|
61 |
+
click==8.1.3
|
62 |
+
cliff==4.1.0
|
63 |
+
cloudpickle @ file:///tmp/build/80754af9/cloudpickle_1632508026186/work
|
64 |
+
clyent==1.2.2
|
65 |
+
cmaes==0.9.0
|
66 |
+
cmd2==2.4.2
|
67 |
+
cmdstanpy==1.0.8
|
68 |
+
colabcode==0.3.0
|
69 |
+
colorama @ file:///tmp/build/80754af9/colorama_1607707115595/work
|
70 |
+
colorcet @ file:///tmp/build/80754af9/colorcet_1611168489822/work
|
71 |
+
colorlog==6.7.0
|
72 |
+
commonmark==0.9.1
|
73 |
+
comtypes==1.1.10
|
74 |
+
conda==22.9.0
|
75 |
+
conda-build==3.21.8
|
76 |
+
conda-content-trust @ file:///tmp/build/80754af9/conda-content-trust_1617045594566/work
|
77 |
+
conda-pack @ file:///tmp/build/80754af9/conda-pack_1611163042455/work
|
78 |
+
conda-package-handling @ file:///C:/b/abs_81m11h_i4r/croots/recipe/conda-package-handling_1663598470202/work
|
79 |
+
conda-repo-cli @ file:///tmp/build/80754af9/conda-repo-cli_1620168426516/work
|
80 |
+
conda-token @ file:///tmp/build/80754af9/conda-token_1620076980546/work
|
81 |
+
conda-verify==3.4.2
|
82 |
+
confection==0.0.3
|
83 |
+
constantly==15.1.0
|
84 |
+
convertdate==2.4.0
|
85 |
+
cookiecutter @ file:///opt/conda/conda-bld/cookiecutter_1649151442564/work
|
86 |
+
cryptography @ file:///C:/ci/cryptography_1633520531101/work
|
87 |
+
cssselect==1.1.0
|
88 |
+
cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work
|
89 |
+
cymem==2.0.7
|
90 |
+
Cython @ file:///C:/ci/cython_1647850559892/work
|
91 |
+
cytoolz==0.11.0
|
92 |
+
daal4py==2021.5.0
|
93 |
+
dash==2.9.3
|
94 |
+
dash-core-components==2.0.0
|
95 |
+
dash-html-components==2.0.0
|
96 |
+
dash-table==5.0.0
|
97 |
+
dashboard==0.0.6
|
98 |
+
dask @ file:///opt/conda/conda-bld/dask-core_1647268715755/work
|
99 |
+
databases==0.6.1
|
100 |
+
datasets==2.12.0
|
101 |
+
datashader @ file:///tmp/build/80754af9/datashader_1623782308369/work
|
102 |
+
datashape==0.5.4
|
103 |
+
deap==1.3.3
|
104 |
+
debugpy @ file:///C:/ci/debugpy_1637091961445/work
|
105 |
+
decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work
|
106 |
+
defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work
|
107 |
+
Deprecated==1.2.13
|
108 |
+
diff-match-patch @ file:///Users/ktietz/demo/mc3/conda-bld/diff-match-patch_1630511840874/work
|
109 |
+
dill==0.3.6
|
110 |
+
distlib==0.3.6
|
111 |
+
distributed @ file:///opt/conda/conda-bld/distributed_1647271944416/work
|
112 |
+
Django==4.1.2
|
113 |
+
django-admin-rangefilter==0.9.0
|
114 |
+
django-allauth==0.51.0
|
115 |
+
django-crispy-forms==1.14.0
|
116 |
+
django-extensions==3.2.1
|
117 |
+
django-filter==22.1
|
118 |
+
django-multiselectfield==0.1.12
|
119 |
+
django-storages==1.13.1
|
120 |
+
docutils @ file:///C:/ci/docutils_1620828264669/work
|
121 |
+
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.3.1/en_core_web_sm-2.3.1.tar.gz
|
122 |
+
ensure==1.0.2
|
123 |
+
entrypoints @ file:///C:/ci/entrypoints_1649926621128/work
|
124 |
+
ephem==4.1.3
|
125 |
+
et-xmlfile==1.1.0
|
126 |
+
executing @ file:///opt/conda/conda-bld/executing_1646925071911/work
|
127 |
+
fastapi==0.78.0
|
128 |
+
fastdist==1.1.5
|
129 |
+
fastjsonschema @ file:///tmp/build/80754af9/python-fastjsonschema_1620414857593/work/dist
|
130 |
+
filelock @ file:///opt/conda/conda-bld/filelock_1647002191454/work
|
131 |
+
flake8 @ file:///tmp/build/80754af9/flake8_1620776156532/work
|
132 |
+
Flask==2.2.3
|
133 |
+
flatbuffers==22.9.24
|
134 |
+
fonttools==4.25.0
|
135 |
+
frozenlist @ file:///C:/ci/frozenlist_1637767271796/work
|
136 |
+
fsspec @ file:///opt/conda/conda-bld/fsspec_1647268051896/work
|
137 |
+
future @ file:///C:/ci/future_1607568713721/work
|
138 |
+
gast==0.4.0
|
139 |
+
gensim @ file:///C:/ci/gensim_1646825438310/work
|
140 |
+
git-lfs==1.6
|
141 |
+
gitdb==4.0.10
|
142 |
+
GitPython==3.1.29
|
143 |
+
glob2 @ file:///home/linux1/recipes/ci/glob2_1610991677669/work
|
144 |
+
google==3.0.0
|
145 |
+
google-api-core @ file:///C:/ci/google-api-core-split_1613980333946/work
|
146 |
+
google-auth==2.19.1
|
147 |
+
google-auth-oauthlib==1.0.0
|
148 |
+
google-cloud==0.34.0
|
149 |
+
google-cloud-core @ file:///tmp/build/80754af9/google-cloud-core_1625077425256/work
|
150 |
+
google-cloud-storage @ file:///tmp/build/80754af9/google-cloud-storage_1601307969662/work
|
151 |
+
google-crc32c @ file:///C:/ci/google-crc32c_1613234249694/work
|
152 |
+
google-pasta==0.2.0
|
153 |
+
google-resumable-media @ file:///tmp/build/80754af9/google-resumable-media_1624367812531/work
|
154 |
+
googleapis-common-protos @ file:///C:/ci/googleapis-common-protos-feedstock_1617957814607/work
|
155 |
+
graphviz==0.20.1
|
156 |
+
greenlet @ file:///C:/ci/greenlet_1628888275363/work
|
157 |
+
grpcio==1.54.2
|
158 |
+
gunicorn==20.1.0
|
159 |
+
gym==0.26.2
|
160 |
+
gym-notices==0.0.8
|
161 |
+
h11==0.14.0
|
162 |
+
h5py @ file:///C:/ci/h5py_1637120894255/work
|
163 |
+
HeapDict @ file:///Users/ktietz/demo/mc3/conda-bld/heapdict_1630598515714/work
|
164 |
+
hijri-converter==2.2.4
|
165 |
+
holidays==0.17.2
|
166 |
+
holoviews @ file:///opt/conda/conda-bld/holoviews_1645454331194/work
|
167 |
+
htmlmin==0.1.12
|
168 |
+
httplib2==0.20.4
|
169 |
+
huggingface-hub==0.15.1
|
170 |
+
hvplot @ file:///tmp/build/80754af9/hvplot_1627305124151/work
|
171 |
+
hyperlink @ file:///tmp/build/80754af9/hyperlink_1610130746837/work
|
172 |
+
idna==2.10
|
173 |
+
imagecodecs @ file:///C:/ci/imagecodecs_1635511087451/work
|
174 |
+
ImageHash==4.3.1
|
175 |
+
imageio @ file:///tmp/build/80754af9/imageio_1617700267927/work
|
176 |
+
imagesize @ file:///tmp/build/80754af9/imagesize_1637939814114/work
|
177 |
+
imbalanced-learn==0.9.1
|
178 |
+
import-ipynb==0.1.4
|
179 |
+
importlib-metadata @ file:///C:/ci/importlib-metadata_1648562621412/work
|
180 |
+
importlib-resources==5.10.0
|
181 |
+
incremental @ file:///tmp/build/80754af9/incremental_1636629750599/work
|
182 |
+
inflate64==0.3.1
|
183 |
+
inflection==0.5.1
|
184 |
+
iniconfig @ file:///home/linux1/recipes/ci/iniconfig_1610983019677/work
|
185 |
+
intake @ file:///opt/conda/conda-bld/intake_1647436631684/work
|
186 |
+
intervaltree @ file:///Users/ktietz/demo/mc3/conda-bld/intervaltree_1630511889664/work
|
187 |
+
ipykernel @ file:///C:/ci/ipykernel_1646982785443/work/dist/ipykernel-6.9.1-py3-none-any.whl
|
188 |
+
ipython @ file:///C:/ci/ipython_1648817223581/work
|
189 |
+
ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work
|
190 |
+
ipywidgets @ file:///tmp/build/80754af9/ipywidgets_1634143127070/work
|
191 |
+
isort @ file:///tmp/build/80754af9/isort_1628603791788/work
|
192 |
+
itemadapter @ file:///tmp/build/80754af9/itemadapter_1626442940632/work
|
193 |
+
itemloaders @ file:///opt/conda/conda-bld/itemloaders_1646805235997/work
|
194 |
+
itsdangerous==2.1.2
|
195 |
+
jax==0.4.11
|
196 |
+
jdcal @ file:///Users/ktietz/demo/mc3/conda-bld/jdcal_1630584345063/work
|
197 |
+
jedi @ file:///C:/ci/jedi_1644315428289/work
|
198 |
+
Jinja2==3.1.2
|
199 |
+
jinja2-time @ file:///opt/conda/conda-bld/jinja2-time_1649251842261/work
|
200 |
+
jmespath @ file:///Users/ktietz/demo/mc3/conda-bld/jmespath_1630583964805/work
|
201 |
+
joblib==1.2.0
|
202 |
+
json5 @ file:///tmp/build/80754af9/json5_1624432770122/work
|
203 |
+
jsonify==0.5
|
204 |
+
jsonschema @ file:///C:/ci/jsonschema_1650008058050/work
|
205 |
+
jupyter @ file:///C:/ci/jupyter_1607685287094/work
|
206 |
+
jupyter-client @ file:///tmp/build/80754af9/jupyter_client_1616770841739/work
|
207 |
+
jupyter-console @ file:///tmp/build/80754af9/jupyter_console_1616615302928/work
|
208 |
+
jupyter-server==1.23.5
|
209 |
+
jupyter_core==5.1.3
|
210 |
+
jupyterlab==3.0.7
|
211 |
+
jupyterlab-pygments @ file:///tmp/build/80754af9/jupyterlab_pygments_1601490720602/work
|
212 |
+
jupyterlab-server @ file:///opt/conda/conda-bld/jupyterlab_server_1644500396812/work
|
213 |
+
jupyterlab-widgets @ file:///tmp/build/80754af9/jupyterlab_widgets_1609884341231/work
|
214 |
+
jws==0.1.3
|
215 |
+
kaleido==0.2.1
|
216 |
+
keras==2.12.0
|
217 |
+
Keras-Preprocessing==1.1.2
|
218 |
+
keyring @ file:///C:/ci/keyring_1638531673471/work
|
219 |
+
kiwisolver @ file:///C:/ci/kiwisolver_1644962577370/work
|
220 |
+
klib==1.0.4
|
221 |
+
korean-lunar-calendar==0.3.1
|
222 |
+
langcodes==3.3.0
|
223 |
+
lazy-object-proxy @ file:///C:/ci/lazy-object-proxy_1616529288960/work
|
224 |
+
lazy_loader==0.2
|
225 |
+
libarchive-c @ file:///tmp/build/80754af9/python-libarchive-c_1617780486945/work
|
226 |
+
libclang==14.0.6
|
227 |
+
librosa==0.10.0.post2
|
228 |
+
lightgbm==3.3.3
|
229 |
+
llvmlite==0.38.0
|
230 |
+
locket @ file:///C:/ci/locket_1647006279389/work
|
231 |
+
LunarCalendar==0.0.9
|
232 |
+
lxml @ file:///C:/ci/lxml_1646642862366/work
|
233 |
+
Mako==1.2.4
|
234 |
+
Markdown @ file:///C:/ci/markdown_1614364082838/work
|
235 |
+
MarkupSafe==2.1.2
|
236 |
+
matplotlib @ file:///C:/ci/matplotlib-suite_1647423638658/work
|
237 |
+
matplotlib-inline @ file:///tmp/build/80754af9/matplotlib-inline_1628242447089/work
|
238 |
+
mccabe==0.6.1
|
239 |
+
menuinst @ file:///C:/ci/menuinst_1631733438520/work
|
240 |
+
mistune==2.0.4
|
241 |
+
mkl-fft==1.3.1
|
242 |
+
mkl-random @ file:///C:/ci/mkl_random_1626186184308/work
|
243 |
+
mkl-service==2.4.0
|
244 |
+
ml-dtypes==0.1.0
|
245 |
+
# Editable Git install with no remote (mlproject==0.0.1)
|
246 |
+
-e e:\ml_oop\mlproject_airbnb\mlproject_airbnb
|
247 |
+
# Editable Git install with no remote (mlproject-telecom==0.0.1)
|
248 |
+
-e e:\ml_oop\mlproject_telecom\mlproject_telecom
|
249 |
+
mock @ file:///tmp/build/80754af9/mock_1607622725907/work
|
250 |
+
mpmath==1.2.1
|
251 |
+
msgpack @ file:///C:/ci/msgpack-python_1612287350784/work
|
252 |
+
multidict @ file:///C:/ci/multidict_1607349747897/work
|
253 |
+
multimethod==1.9
|
254 |
+
multipledispatch @ file:///C:/ci/multipledispatch_1607574329826/work
|
255 |
+
multiprocess==0.70.14
|
256 |
+
multitasking==0.0.11
|
257 |
+
multivolumefile==0.2.3
|
258 |
+
munkres==1.1.4
|
259 |
+
murmurhash==1.0.9
|
260 |
+
mypy-boto3-s3==1.26.127
|
261 |
+
mypy-extensions==0.4.3
|
262 |
+
mysqlclient==2.1.1
|
263 |
+
navigator-updater==0.2.1
|
264 |
+
nbclassic @ file:///opt/conda/conda-bld/nbclassic_1644943264176/work
|
265 |
+
nbclient @ file:///C:/ci/nbclient_1650290387259/work
|
266 |
+
nbconvert==7.2.8
|
267 |
+
nbformat @ file:///C:/ci/nbformat_1649845125000/work
|
268 |
+
neattext==0.1.3
|
269 |
+
nest-asyncio==1.4.3
|
270 |
+
networkx @ file:///opt/conda/conda-bld/networkx_1647437648384/work
|
271 |
+
nltk @ file:///opt/conda/conda-bld/nltk_1645628263994/work
|
272 |
+
nose @ file:///opt/conda/conda-bld/nose_1642704612149/work
|
273 |
+
notebook==6.4.5
|
274 |
+
notebook-as-pdf==0.5.0
|
275 |
+
numba @ file:///C:/ci/numba_1650394399948/work
|
276 |
+
numexpr @ file:///C:/ci/numexpr_1640704337920/work
|
277 |
+
numpy==1.21.0
|
278 |
+
numpydoc @ file:///opt/conda/conda-bld/numpydoc_1643788541039/work
|
279 |
+
oauth2client==3.0.0
|
280 |
+
oauthlib==3.2.2
|
281 |
+
olefile @ file:///Users/ktietz/demo/mc3/conda-bld/olefile_1629805411829/work
|
282 |
+
openpyxl @ file:///tmp/build/80754af9/openpyxl_1632777717936/work
|
283 |
+
opt-einsum==3.3.0
|
284 |
+
optuna==3.0.3
|
285 |
+
orm==0.2.0.dev1
|
286 |
+
packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work
|
287 |
+
pandas==1.3.5
|
288 |
+
pandas-datareader==0.10.0
|
289 |
+
pandas-profiling==3.5.0
|
290 |
+
pandas-visual-analysis==0.0.4
|
291 |
+
pandocfilters @ file:///opt/conda/conda-bld/pandocfilters_1643405455980/work
|
292 |
+
panel @ file:///C:/ci/panel_1650623703033/work
|
293 |
+
param @ file:///tmp/build/80754af9/param_1636647414893/work
|
294 |
+
paramiko @ file:///opt/conda/conda-bld/paramiko_1640109032755/work
|
295 |
+
parsel @ file:///C:/ci/parsel_1646740216444/work
|
296 |
+
parso @ file:///opt/conda/conda-bld/parso_1641458642106/work
|
297 |
+
partd @ file:///opt/conda/conda-bld/partd_1647245470509/work
|
298 |
+
pathspec==0.7.0
|
299 |
+
pathy==0.10.0
|
300 |
+
patsy==0.5.2
|
301 |
+
pbr==5.11.0
|
302 |
+
pep8==1.7.1
|
303 |
+
pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work
|
304 |
+
phik==0.12.2
|
305 |
+
pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work
|
306 |
+
Pillow==9.0.1
|
307 |
+
pkginfo @ file:///tmp/build/80754af9/pkginfo_1643162084911/work
|
308 |
+
plac==1.1.3
|
309 |
+
platformdirs==2.5.2
|
310 |
+
plotly @ file:///opt/conda/conda-bld/plotly_1646671701182/work
|
311 |
+
pluggy @ file:///C:/ci/pluggy_1648024580010/work
|
312 |
+
pmdarima==2.0.1
|
313 |
+
pooch==1.6.0
|
314 |
+
portalocker==2.7.0
|
315 |
+
poyo @ file:///tmp/build/80754af9/poyo_1617751526755/work
|
316 |
+
preshed==3.0.8
|
317 |
+
prettytable==3.5.0
|
318 |
+
prometheus-client @ file:///opt/conda/conda-bld/prometheus_client_1643788673601/work
|
319 |
+
prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1633440160888/work
|
320 |
+
prophet==1.1.1
|
321 |
+
Protego @ file:///tmp/build/80754af9/protego_1598657180827/work
|
322 |
+
protobuf==3.20.3
|
323 |
+
psutil @ file:///C:/ci/psutil_1612298199233/work
|
324 |
+
ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
|
325 |
+
pure-eval @ file:///opt/conda/conda-bld/pure_eval_1646925070566/work
|
326 |
+
py @ file:///opt/conda/conda-bld/py_1644396412707/work
|
327 |
+
py7zr==0.20.5
|
328 |
+
pyarrow==10.0.1
|
329 |
+
pyasn1 @ file:///Users/ktietz/demo/mc3/conda-bld/pyasn1_1629708007385/work
|
330 |
+
pyasn1-modules==0.2.8
|
331 |
+
pybcj==1.0.1
|
332 |
+
pycaret-ts-alpha==3.0.0.dev1649017462
|
333 |
+
pycodestyle==2.10.0
|
334 |
+
pycosat==0.6.3
|
335 |
+
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
|
336 |
+
pycryptodome==3.15.0
|
337 |
+
pycryptodomex==3.18.0
|
338 |
+
pyct @ file:///C:/ci/pyct_1613411728548/work
|
339 |
+
pycurl==7.44.1
|
340 |
+
pydantic==1.10.2
|
341 |
+
pydeck==0.8.0
|
342 |
+
PyDispatcher==2.0.5
|
343 |
+
pydocstyle @ file:///tmp/build/80754af9/pydocstyle_1621600989141/work
|
344 |
+
pyee==8.2.2
|
345 |
+
pyerfa @ file:///C:/ci/pyerfa_1621560974055/work
|
346 |
+
pyflakes @ file:///tmp/build/80754af9/pyflakes_1617200973297/work
|
347 |
+
Pygments @ file:///opt/conda/conda-bld/pygments_1644249106324/work
|
348 |
+
PyHamcrest @ file:///tmp/build/80754af9/pyhamcrest_1615748656804/work
|
349 |
+
PyJWT @ file:///C:/ci/pyjwt_1657511236979/work
|
350 |
+
pylint @ file:///C:/ci/pylint_1627536884966/work
|
351 |
+
pyls-spyder==0.4.0
|
352 |
+
PyMeeus==0.5.11
|
353 |
+
Pympler==1.0.1
|
354 |
+
PyMySQL==1.0.2
|
355 |
+
PyNaCl @ file:///C:/ci/pynacl_1607612759007/work
|
356 |
+
pyngrok==5.1.0
|
357 |
+
pyod==1.0.6
|
358 |
+
pyodbc @ file:///C:/ci/pyodbc_1647426110990/work
|
359 |
+
pyOpenSSL @ file:///tmp/build/80754af9/pyopenssl_1635333100036/work
|
360 |
+
pyparsing @ file:///tmp/build/80754af9/pyparsing_1635766073266/work
|
361 |
+
PyPDF2==3.0.1
|
362 |
+
pyperclip==1.8.2
|
363 |
+
pyppeteer==1.0.2
|
364 |
+
pyppmd==1.0.0
|
365 |
+
PyQt5==5.15.9
|
366 |
+
PyQt5-Qt5==5.15.2
|
367 |
+
PyQt5-sip==12.12.1
|
368 |
+
PyQtWebEngine==5.15.6
|
369 |
+
PyQtWebEngine-Qt5==5.15.2
|
370 |
+
pyreadline==2.1
|
371 |
+
pyreadline3==3.4.1
|
372 |
+
pyrsistent @ file:///C:/ci/pyrsistent_1636093225342/work
|
373 |
+
PySocks @ file:///C:/ci/pysocks_1605307512533/work
|
374 |
+
pytest==7.1.1
|
375 |
+
python-box==6.0.2
|
376 |
+
python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
|
377 |
+
python-jwt==2.0.1
|
378 |
+
python-lsp-black @ file:///tmp/build/80754af9/python-lsp-black_1634232156041/work
|
379 |
+
python-lsp-jsonrpc==1.0.0
|
380 |
+
python-lsp-server==1.2.4
|
381 |
+
python-multipart==0.0.5
|
382 |
+
python-slugify @ file:///tmp/build/80754af9/python-slugify_1620405669636/work
|
383 |
+
python-snappy @ file:///C:/ci/python-snappy_1610133405910/work
|
384 |
+
python3-openid==3.2.0
|
385 |
+
pytz==2021.3
|
386 |
+
pytz-deprecation-shim==0.1.0.post0
|
387 |
+
pyviz-comms @ file:///tmp/build/80754af9/pyviz_comms_1623747165329/work
|
388 |
+
PyWavelets @ file:///C:/ci/pywavelets_1648728084106/work
|
389 |
+
pywin32==302
|
390 |
+
pywin32-ctypes @ file:///C:/ci/pywin32-ctypes_1607553594546/work
|
391 |
+
pywinpty==1.1.6
|
392 |
+
PyYAML==6.0
|
393 |
+
pyzmq @ file:///C:/ci/pyzmq_1638435148211/work
|
394 |
+
pyzstd==0.15.7
|
395 |
+
QDarkStyle @ file:///tmp/build/80754af9/qdarkstyle_1617386714626/work
|
396 |
+
qstylizer @ file:///tmp/build/80754af9/qstylizer_1617713584600/work/dist/qstylizer-0.1.10-py2.py3-none-any.whl
|
397 |
+
QtAwesome @ file:///tmp/build/80754af9/qtawesome_1637160816833/work
|
398 |
+
qtconsole @ file:///opt/conda/conda-bld/qtconsole_1649078897110/work
|
399 |
+
QtPy @ file:///opt/conda/conda-bld/qtpy_1649073884068/work
|
400 |
+
queuelib==1.5.0
|
401 |
+
rake-nltk==1.0.6
|
402 |
+
regex @ file:///C:/ci/regex_1648447888413/work
|
403 |
+
requests==2.28.1
|
404 |
+
requests-file @ file:///Users/ktietz/demo/mc3/conda-bld/requests-file_1629455781986/work
|
405 |
+
requests-oauthlib==1.3.1
|
406 |
+
requests-toolbelt==0.7.0
|
407 |
+
responses==0.18.0
|
408 |
+
rich==12.6.0
|
409 |
+
river==0.14.0
|
410 |
+
rope @ file:///opt/conda/conda-bld/rope_1643788605236/work
|
411 |
+
rouge-score==0.1.2
|
412 |
+
rsa @ file:///tmp/build/80754af9/rsa_1614366226499/work
|
413 |
+
Rtree @ file:///C:/ci/rtree_1618421015405/work
|
414 |
+
ruamel-yaml-conda @ file:///C:/ci/ruamel_yaml_1616016898638/work
|
415 |
+
s3transfer @ file:///tmp/build/80754af9/s3transfer_1626435152308/work
|
416 |
+
sacrebleu==2.3.1
|
417 |
+
scikit-image @ file:///C:/ci/scikit-image_1648214340990/work
|
418 |
+
scikit-learn==1.2.2
|
419 |
+
scikit-learn-intelex==2021.20220215.102710
|
420 |
+
scikit-plot==0.3.7
|
421 |
+
scipy==1.9.3
|
422 |
+
Scrapy @ file:///C:/ci/scrapy_1646837986255/work
|
423 |
+
seaborn==0.11.1
|
424 |
+
semver==2.13.0
|
425 |
+
Send2Trash @ file:///tmp/build/80754af9/send2trash_1632406701022/work
|
426 |
+
sentencepiece==0.1.99
|
427 |
+
service-identity @ file:///Users/ktietz/demo/mc3/conda-bld/service_identity_1629460757137/work
|
428 |
+
setuptools-git==1.2
|
429 |
+
sip==4.19.13
|
430 |
+
six @ file:///tmp/build/80754af9/six_1644875935023/work
|
431 |
+
sklearn==0.0.post1
|
432 |
+
sktime==0.10.1
|
433 |
+
smart-open==5.2.1
|
434 |
+
smmap==5.0.0
|
435 |
+
sniffio @ file:///C:/ci/sniffio_1614030527509/work
|
436 |
+
snowballstemmer @ file:///tmp/build/80754af9/snowballstemmer_1637937080595/work
|
437 |
+
sortedcollections @ file:///tmp/build/80754af9/sortedcollections_1611172717284/work
|
438 |
+
sortedcontainers @ file:///tmp/build/80754af9/sortedcontainers_1623949099177/work
|
439 |
+
soundfile==0.12.1
|
440 |
+
soupsieve @ file:///tmp/build/80754af9/soupsieve_1636706018808/work
|
441 |
+
soxr==0.3.5
|
442 |
+
spacy==2.3.9
|
443 |
+
spacy-legacy==3.0.10
|
444 |
+
spacy-loggers==1.0.3
|
445 |
+
Sphinx @ file:///opt/conda/conda-bld/sphinx_1643644169832/work
|
446 |
+
sphinxcontrib-applehelp @ file:///home/ktietz/src/ci/sphinxcontrib-applehelp_1611920841464/work
|
447 |
+
sphinxcontrib-devhelp @ file:///home/ktietz/src/ci/sphinxcontrib-devhelp_1611920923094/work
|
448 |
+
sphinxcontrib-htmlhelp @ file:///tmp/build/80754af9/sphinxcontrib-htmlhelp_1623945626792/work
|
449 |
+
sphinxcontrib-jsmath @ file:///home/ktietz/src/ci/sphinxcontrib-jsmath_1611920942228/work
|
450 |
+
sphinxcontrib-qthelp @ file:///home/ktietz/src/ci/sphinxcontrib-qthelp_1611921055322/work
|
451 |
+
sphinxcontrib-serializinghtml @ file:///tmp/build/80754af9/sphinxcontrib-serializinghtml_1624451540180/work
|
452 |
+
spyder @ file:///C:/ci/spyder_1636480369575/work
|
453 |
+
spyder-kernels @ file:///C:/ci/spyder-kernels_1634237096710/work
|
454 |
+
SQLAlchemy @ file:///C:/ci/sqlalchemy_1647600017103/work
|
455 |
+
sqlparse==0.4.3
|
456 |
+
srsly==1.0.6
|
457 |
+
stack-data @ file:///opt/conda/conda-bld/stack_data_1646927590127/work
|
458 |
+
starlette==0.19.1
|
459 |
+
statsmodels==0.13.2
|
460 |
+
stevedore==4.1.1
|
461 |
+
stochastic==0.7.0
|
462 |
+
stopit==1.1.2
|
463 |
+
streamlit==1.25.0
|
464 |
+
streamlit-theme==0.58.0
|
465 |
+
sweetviz==2.1.4
|
466 |
+
sympy @ file:///C:/ci/sympy_1647853873858/work
|
467 |
+
tables==3.6.1
|
468 |
+
tabulate==0.8.9
|
469 |
+
tangled-up-in-unicode==0.2.0
|
470 |
+
tbats==1.1.1
|
471 |
+
TBB==0.2
|
472 |
+
tblib @ file:///Users/ktietz/demo/mc3/conda-bld/tblib_1629402031467/work
|
473 |
+
tenacity==8.2.3
|
474 |
+
tensorboard==2.12.3
|
475 |
+
tensorboard-data-server==0.7.0
|
476 |
+
tensorboard-plugin-wit==1.8.1
|
477 |
+
tensorflow==2.12.0
|
478 |
+
tensorflow-estimator==2.12.0
|
479 |
+
tensorflow-intel==2.12.0
|
480 |
+
tensorflow-io==0.31.0
|
481 |
+
tensorflow-io-gcs-filesystem==0.31.0
|
482 |
+
tensortrade==1.0.3
|
483 |
+
termcolor==2.0.1
|
484 |
+
terminado @ file:///C:/ci/terminado_1644322780199/work
|
485 |
+
testpath @ file:///tmp/build/80754af9/testpath_1624638946665/work
|
486 |
+
text-summarizer==0.0.6
|
487 |
+
text-unidecode @ file:///Users/ktietz/demo/mc3/conda-bld/text-unidecode_1629401354553/work
|
488 |
+
textblob==0.17.1
|
489 |
+
textdistance @ file:///tmp/build/80754af9/textdistance_1612461398012/work
|
490 |
+
# Editable install with no version control (textSummarizer==0.0.0)
|
491 |
+
-e e:\ml_oop\text-summarization-nlp-project-main\src
|
492 |
+
texttable==1.6.7
|
493 |
+
thinc==7.4.6
|
494 |
+
threadpoolctl==2.1.0
|
495 |
+
three-merge @ file:///tmp/build/80754af9/three-merge_1607553261110/work
|
496 |
+
tifffile @ file:///tmp/build/80754af9/tifffile_1627275862826/work
|
497 |
+
tinycss @ file:///tmp/build/80754af9/tinycss_1617713798712/work
|
498 |
+
tinycss2==1.2.1
|
499 |
+
tldextract @ file:///opt/conda/conda-bld/tldextract_1646638314385/work
|
500 |
+
tmdbv3api==1.7.7
|
501 |
+
tokenizers==0.13.3
|
502 |
+
toml @ file:///tmp/build/80754af9/toml_1616166611790/work
|
503 |
+
tomli @ file:///tmp/build/80754af9/tomli_1637314251069/work
|
504 |
+
toolz @ file:///tmp/build/80754af9/toolz_1636545406491/work
|
505 |
+
torch==2.0.1
|
506 |
+
tornado==6.2
|
507 |
+
TPOT==0.11.7
|
508 |
+
tqdm @ file:///C:/ci/tqdm_1650636210717/work
|
509 |
+
traitlets==5.8.1
|
510 |
+
transformers==4.29.2
|
511 |
+
Twisted @ file:///C:/ci/twisted_1646835413846/work
|
512 |
+
twisted-iocpsupport @ file:///C:/ci/twisted-iocpsupport_1646798932792/work
|
513 |
+
typed-ast @ file:///C:/ci/typed-ast_1624953797214/work
|
514 |
+
typeguard==2.13.3
|
515 |
+
typer==0.7.0
|
516 |
+
typesystem==0.3.0.dev0
|
517 |
+
typing_extensions @ file:///opt/conda/conda-bld/typing_extensions_1647553014482/work
|
518 |
+
tzdata==2022.5
|
519 |
+
tzlocal==4.2
|
520 |
+
ujson @ file:///C:/ci/ujson_1648044223886/work
|
521 |
+
Unidecode @ file:///tmp/build/80754af9/unidecode_1614712377438/work
|
522 |
+
update-checker==0.18.0
|
523 |
+
urllib3==1.26.16
|
524 |
+
uvicorn==0.13.1
|
525 |
+
validators==0.20.0
|
526 |
+
vega-datasets==0.9.0
|
527 |
+
virtualenv==20.16.5
|
528 |
+
visions==0.7.5
|
529 |
+
voila==0.4.0
|
530 |
+
w3lib @ file:///Users/ktietz/demo/mc3/conda-bld/w3lib_1629359764703/work
|
531 |
+
wasabi==0.10.1
|
532 |
+
watchdog @ file:///C:/ci/watchdog_1638367441841/work
|
533 |
+
wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work
|
534 |
+
webencodings==0.5.1
|
535 |
+
websocket-client @ file:///C:/ci/websocket-client_1614804375980/work
|
536 |
+
websockets==10.4
|
537 |
+
Werkzeug==2.2.3
|
538 |
+
wget==3.2
|
539 |
+
whitenoise==6.2.0
|
540 |
+
widgetsnbextension @ file:///C:/ci/widgetsnbextension_1644991377168/work
|
541 |
+
win-inet-pton @ file:///C:/ci/win_inet_pton_1605306162074/work
|
542 |
+
win-unicode-console==0.5
|
543 |
+
wincertstore==0.2
|
544 |
+
wordcloud==1.8.2.2
|
545 |
+
wrapt @ file:///C:/ci/wrapt_1607574570428/work
|
546 |
+
xarray @ file:///opt/conda/conda-bld/xarray_1639166117697/work
|
547 |
+
xgboost==1.7.4
|
548 |
+
xlrd @ file:///tmp/build/80754af9/xlrd_1608072521494/work
|
549 |
+
XlsxWriter @ file:///opt/conda/conda-bld/xlsxwriter_1649073856329/work
|
550 |
+
xlwings==0.24.9
|
551 |
+
xxhash==3.2.0
|
552 |
+
yapf @ file:///tmp/build/80754af9/yapf_1615749224965/work
|
553 |
+
yarl @ file:///C:/ci/yarl_1606940155993/work
|
554 |
+
yellowbrick==1.5
|
555 |
+
yfinance==0.1.87
|
556 |
+
zict==2.0.0
|
557 |
+
zipp @ file:///opt/conda/conda-bld/zipp_1641824620731/work
|
558 |
+
zope.interface @ file:///C:/ci/zope.interface_1625036252485/work
|
request.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
url = "https://bloomberg-market-and-financial-news.p.rapidapi.com/market/auto-complete"
|
4 |
+
|
5 |
+
##querystring = {"query":"infosys"}
|
6 |
+
querystring = {"query":"company"}
|
7 |
+
|
8 |
+
headers = {
|
9 |
+
"X-RapidAPI-Key": "ee0947a6afmshd9a0846869b0f80p12916fjsn610316852108",
|
10 |
+
"X-RapidAPI-Host": "bloomberg-market-and-financial-news.p.rapidapi.com"
|
11 |
+
}
|
12 |
+
|
13 |
+
response = requests.request("GET", url, headers=headers, params=querystring)
|
14 |
+
|
15 |
+
|
16 |
+
print(response.text)
|
17 |
+
print('***************************************************************************')
|
18 |
+
print('***************************************************************************')
|
19 |
+
print('***************************************************************************')
|
20 |
+
print('***************************************************************************')
|
21 |
+
print('***************************************************************************')
|
22 |
+
jsondata = response.json()
|
23 |
+
print(jsondata)
|
24 |
+
print('***************************************************************************')
|
25 |
+
print('***************************************************************************')
|
26 |
+
print('***************************************************************************')
|
27 |
+
print('***************************************************************************')
|
28 |
+
print('***************************************************************************')
|
29 |
+
print(jsondata.keys())
|
30 |
+
|
31 |
+
print(type(jsondata['quote']))
|
32 |
+
print(type(jsondata['news']))
|
33 |
+
import pandas as pd
|
34 |
+
df = pd.DataFrame(jsondata['quote'])
|
35 |
+
df2 = pd.DataFrame(jsondata['news'])
|
36 |
+
print('***************************************************************************')
|
37 |
+
print(df.info())
|
38 |
+
print(df2.info())
|
39 |
+
print('***************************************************************************')
|
40 |
+
print(df.head(3))
|
41 |
+
print(df2.head(3))
|
42 |
+
print('***************************************************************************')
|
43 |
+
print(df.shape)
|
44 |
+
print(df2.shape)
|
45 |
+
print('***************************************************************************')
|
46 |
+
print(df.columns)
|
47 |
+
print(df2.columns)
|
48 |
+
print('***************************************************************************')
|
49 |
+
df3 = pd.concat([df, df2], axis = 1)
|
50 |
+
print(df3.columns)
|
51 |
+
print(df3.shape)
|
52 |
+
print('***************************************************************************')
|
request3.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
url = "https://text-analysis12.p.rapidapi.com/sentiment-analysis/api/v1.1"
|
4 |
+
|
5 |
+
payload = {
|
6 |
+
"language": "english",
|
7 |
+
"text": "Falcon 9’s first stage has landed on the Of Course I Still Love You droneship – the 9th landing of this booster"
|
8 |
+
}
|
9 |
+
headers = {
|
10 |
+
"content-type": "application/json",
|
11 |
+
"X-RapidAPI-Key": "ee0947a6afmshd9a0846869b0f80p12916fjsn610316852108",
|
12 |
+
"X-RapidAPI-Host": "text-analysis12.p.rapidapi.com"
|
13 |
+
}
|
14 |
+
|
15 |
+
response = requests.request("POST", url, json=payload, headers=headers)
|
16 |
+
|
17 |
+
print(response.text)
|
18 |
+
print('***************************************************************************')
|
19 |
+
print('***************************************************************************')
|
20 |
+
print('***************************************************************************')
|
21 |
+
print('***************************************************************************')
|
22 |
+
print('***************************************************************************')
|
23 |
+
jsondata = response.json()
|
24 |
+
print(jsondata)
|
25 |
+
print('***************************************************************************')
|
26 |
+
print('***************************************************************************')
|
27 |
+
print('***************************************************************************')
|
28 |
+
print('***************************************************************************')
|
29 |
+
print('***************************************************************************')
|
30 |
+
print(jsondata.keys())
|
31 |
+
|
32 |
+
from pandas import json_normalize
|
33 |
+
import requests
|
34 |
+
import json
|
35 |
+
import pandas as pd
|
36 |
+
textdata = json.loads(response.text)
|
37 |
+
|
38 |
+
res = json_normalize(textdata)
|
39 |
+
|
40 |
+
df = pd.DataFrame(res)
|
41 |
+
print(df.shape)
|
42 |
+
print(df.head(10))
|
requests2.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
url = "https://bloomberg-market-and-financial-news.p.rapidapi.com/news/list-by-region"
|
4 |
+
|
5 |
+
querystring = {"id":"europe-home-v3"}
|
6 |
+
|
7 |
+
headers = {
|
8 |
+
"X-RapidAPI-Key": "ee0947a6afmshd9a0846869b0f80p12916fjsn610316852108",
|
9 |
+
"X-RapidAPI-Host": "bloomberg-market-and-financial-news.p.rapidapi.com"
|
10 |
+
}
|
11 |
+
|
12 |
+
response = requests.request("GET", url, headers=headers, params=querystring)
|
13 |
+
|
14 |
+
print(response.text)
|
15 |
+
print('***************************************************************************')
|
16 |
+
print('***************************************************************************')
|
17 |
+
print('***************************************************************************')
|
18 |
+
print('***************************************************************************')
|
19 |
+
print('***************************************************************************')
|
20 |
+
jsondata = response.json()
|
21 |
+
print(jsondata)
|
22 |
+
print('***************************************************************************')
|
23 |
+
print('***************************************************************************')
|
24 |
+
print('***************************************************************************')
|
25 |
+
print('***************************************************************************')
|
26 |
+
print('***************************************************************************')
|
27 |
+
print(jsondata.keys())
|
28 |
+
|
29 |
+
from pandas import json_normalize
|
30 |
+
import requests
|
31 |
+
import json
|
32 |
+
import pandas as pd
|
33 |
+
textdata = json.loads(response.text)
|
34 |
+
|
35 |
+
res = json_normalize(textdata)
|
36 |
+
|
37 |
+
df = pd.DataFrame(res)
|
38 |
+
print(df.shape)
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
numpy>=1.13.3
|
3 |
+
scikit-learn==0.20.3
|
4 |
+
matplotlib>=1.4.3
|
5 |
+
pandas>=0.19
|
6 |
+
unidecode
|
7 |
+
wordcloud
|
8 |
+
scipy
|
9 |
+
spacy==2.2.0
|
10 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz#egg=en_core_web_sm
|
11 |
+
joblib
|
12 |
+
xgboost
|
13 |
+
plotly
|
14 |
+
nltk
|
15 |
+
|
16 |
+
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-3.6.15
|
setup.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mkdir -p ~/.streamlit/
|
2 |
+
|
3 |
+
echo "\
|
4 |
+
[general]\n\
|
5 |
+
email = \"[email protected]\"\n\
|
6 |
+
" > ~/.streamlit/credentials.toml
|
7 |
+
|
8 |
+
echo "\
|
9 |
+
[server]\n\
|
10 |
+
headless = true\n\
|
11 |
+
enableCORS=false\n\
|
12 |
+
port = $PORT\n\
|
13 |
+
" > ~/.streamlit/config.toml
|