danaevan commited on
Commit
49b1a09
·
verified ·
1 Parent(s): c6d205b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -17
README.md CHANGED
@@ -13,7 +13,7 @@ datasets:
13
  ---
14
  # DeciDiffusion 2.0
15
 
16
- DeciDiffusion 2.0 is a 725 million parameter text-to-image latent diffusion model trained on the LAION-v2 dataset and fine-tuned on the LAION-ART dataset. Advanced training techniques were used to speed up training, improve training performance, and achieve better inference quality.
17
 
18
  ## Model Details
19
 
@@ -24,8 +24,8 @@ DeciDiffusion 2.0 is a 725 million parameter text-to-image latent diffusion mode
24
  - **Weights License:** The weights are released under the [CreativeML Open RAIL++-M License](https://huggingface.co/Deci/DeciDiffusion-v1-0/blob/main/LICENSE-WEIGHTS.md)
25
 
26
  ### Model Sources
27
- - **Blog:** [A technical overview and comparison to Stable Diffusion 1.5](https://deci.ai/blog/decidiffusion-1-0-3x-faster-than-stable-diffusion-same-quality/)CHANGE
28
- - **Demo:** [Experience DeciDiffusion in action](https://huggingface.co/spaces/Deci/DeciDiffusion-v1-0)CHANGE
29
 
30
  ## Model Architecture
31
 
@@ -63,26 +63,26 @@ The following techniques were used to shorten training time:
63
 
64
  ### Additional Details
65
  #### Phase 1
66
- - **Hardware:** 8 x 8 x A100 (80gb)
67
- - **Optimizer:** AdamW
68
- - **Batch:** 8192
69
- - **Learning rate:** 1e-4
70
 
71
  #### Phases 2-4
72
- - **Hardware:** 8 x 8 x H100 (80gb)
73
  - **Optimizer:** LAMB
74
- - **Batch:** 6144
75
- - **Learning rate:** 5e-3
76
 
77
  ## Runtime Benchmarks
78
 
79
- The following tables provide an image latency comparison between DeciDiffusion 1.0 and Stable Diffusion v1.5.
80
 
81
- DeciDiffusion 1.0 vs. Stable Diffusion v1.5 at FP16 precision
82
- |Implementation + Iterations| DeciDiffusion 1.0 on A10 (seconds/image) | Stable Diffusion v1.5 on A10 (seconds/image) |
83
  |:----------|:----------|:----------|
84
- | PyTorch 16 Iterations | 1.358 | 3.3216 |
85
- | PyTorch 10 Iterations | 1.0059 |2.2459 |
86
 
87
  ## How to Use
88
 
@@ -136,7 +136,7 @@ The model has certain limitations and may not function optimally in the followin
136
  - The autoencoding component of the model is lossy.
137
 
138
  ### Bias
139
- The remarkable abilities of image generation models can unintentionally amplify societal biases. DeciDiffusion was mainly trained on subsets of LAION-v2, focused on English descriptions. Consequently, non-English communities and cultures might be underrepresented, leading to a bias towards white and western norms. Outputs from non-English prompts are notably less accurate. Given these biases, users should approach DeciDiffusion with discretion, regardless of input.
140
 
141
 
142
  ## How to Cite
@@ -147,7 +147,7 @@ Please cite this model using this format.
147
  @misc{DeciFoundationModels,
148
  title = {DeciDiffusion 2.0},
149
  author = {DeciAI Research Team},
150
- year = {2023}
151
  url={[https://huggingface.co/deci/decidiffusion-v2-0](https://huggingface.co/deci/decidiffusion-v2-0)},
152
  }
153
  ```
 
13
  ---
14
  # DeciDiffusion 2.0
15
 
16
+ DeciDiffusion 2.0 is a 732 million parameter text-to-image latent diffusion model trained on the LAION-v2 dataset and fine-tuned on the LAION-ART dataset. Advanced training techniques were used to speed up training, improve training performance, and achieve better inference quality.
17
 
18
  ## Model Details
19
 
 
24
  - **Weights License:** The weights are released under the [CreativeML Open RAIL++-M License](https://huggingface.co/Deci/DeciDiffusion-v1-0/blob/main/LICENSE-WEIGHTS.md)
25
 
26
  ### Model Sources
27
+ - **Blog:** [A technical overview](https://deci.ai/blog/decidiffusion-2-0-text-to-image-generation-optimized-for-cost-effective-hardware/)
28
+ - **Demo:** [Experience DeciDiffusion in action](https://huggingface.co/spaces/Deci/DeciDiffusion-v2-0)
29
 
30
  ## Model Architecture
31
 
 
63
 
64
  ### Additional Details
65
  #### Phase 1
66
+ - **Hardware:** 6 x 8 x H100 (80GB)
67
+ - **Optimizer:** LAMB
68
+ - **Batch:** 8432
69
+ - **Learning rate:** 5e-03
70
 
71
  #### Phases 2-4
72
+ - **Hardware:** 8 x 8 x H100 (80GB)
73
  - **Optimizer:** LAMB
74
+ - **Batch:** 7168
75
+ - **Learning rate:** 5e-03
76
 
77
  ## Runtime Benchmarks
78
 
79
+ The following tables provide an image latency comparison between DeciDiffusion 2.0 and Stable Diffusion v1.5.
80
 
81
+ DeciDiffusion 2.0 vs. Stable Diffusion v1.5 at FP16 precision
82
+ |Implementation + Iterations| DeciDiffusion 2.0 on AI 100 (seconds/image) | Stable Diffusion v1.5 on AI 100 (seconds/image) |
83
  |:----------|:----------|:----------|
84
+ | Compiled 16 Iterations | 1.358 | 3.3216 |
85
+ | Compiled 10 Iterations | 1.0059 |2.2459 |
86
 
87
  ## How to Use
88
 
 
136
  - The autoencoding component of the model is lossy.
137
 
138
  ### Bias
139
+ The remarkable abilities of image-generation models can unintentionally amplify societal biases. DeciDiffusion was mainly trained on subsets of LAION-v2, focused on English descriptions. Consequently, non-English communities and cultures might be underrepresented, leading to a bias towards white and western norms. Outputs from non-English prompts are notably less accurate. Given these biases, users should approach DeciDiffusion with discretion, regardless of input.
140
 
141
 
142
  ## How to Cite
 
147
  @misc{DeciFoundationModels,
148
  title = {DeciDiffusion 2.0},
149
  author = {DeciAI Research Team},
150
+ year = {2024}
151
  url={[https://huggingface.co/deci/decidiffusion-v2-0](https://huggingface.co/deci/decidiffusion-v2-0)},
152
  }
153
  ```