Update README.md
Browse files
README.md
CHANGED
@@ -13,7 +13,7 @@ datasets:
|
|
13 |
---
|
14 |
# DeciDiffusion 2.0
|
15 |
|
16 |
-
DeciDiffusion 2.0 is a
|
17 |
|
18 |
## Model Details
|
19 |
|
@@ -24,8 +24,8 @@ DeciDiffusion 2.0 is a 725 million parameter text-to-image latent diffusion mode
|
|
24 |
- **Weights License:** The weights are released under the [CreativeML Open RAIL++-M License](https://huggingface.co/Deci/DeciDiffusion-v1-0/blob/main/LICENSE-WEIGHTS.md)
|
25 |
|
26 |
### Model Sources
|
27 |
-
- **Blog:** [A technical overview
|
28 |
-
- **Demo:** [Experience DeciDiffusion in action](https://huggingface.co/spaces/Deci/DeciDiffusion-
|
29 |
|
30 |
## Model Architecture
|
31 |
|
@@ -63,26 +63,26 @@ The following techniques were used to shorten training time:
|
|
63 |
|
64 |
### Additional Details
|
65 |
#### Phase 1
|
66 |
-
- **Hardware:**
|
67 |
-
- **Optimizer:**
|
68 |
-
- **Batch:**
|
69 |
-
- **Learning rate:**
|
70 |
|
71 |
#### Phases 2-4
|
72 |
-
- **Hardware:** 8 x 8 x H100 (
|
73 |
- **Optimizer:** LAMB
|
74 |
-
- **Batch:**
|
75 |
-
- **Learning rate:** 5e-
|
76 |
|
77 |
## Runtime Benchmarks
|
78 |
|
79 |
-
The following tables provide an image latency comparison between DeciDiffusion
|
80 |
|
81 |
-
DeciDiffusion
|
82 |
-
|Implementation + Iterations| DeciDiffusion
|
83 |
|:----------|:----------|:----------|
|
84 |
-
|
|
85 |
-
|
|
86 |
|
87 |
## How to Use
|
88 |
|
@@ -136,7 +136,7 @@ The model has certain limitations and may not function optimally in the followin
|
|
136 |
- The autoencoding component of the model is lossy.
|
137 |
|
138 |
### Bias
|
139 |
-
The remarkable abilities of image
|
140 |
|
141 |
|
142 |
## How to Cite
|
@@ -147,7 +147,7 @@ Please cite this model using this format.
|
|
147 |
@misc{DeciFoundationModels,
|
148 |
title = {DeciDiffusion 2.0},
|
149 |
author = {DeciAI Research Team},
|
150 |
-
year = {
|
151 |
url={[https://huggingface.co/deci/decidiffusion-v2-0](https://huggingface.co/deci/decidiffusion-v2-0)},
|
152 |
}
|
153 |
```
|
|
|
13 |
---
|
14 |
# DeciDiffusion 2.0
|
15 |
|
16 |
+
DeciDiffusion 2.0 is a 732 million parameter text-to-image latent diffusion model trained on the LAION-v2 dataset and fine-tuned on the LAION-ART dataset. Advanced training techniques were used to speed up training, improve training performance, and achieve better inference quality.
|
17 |
|
18 |
## Model Details
|
19 |
|
|
|
24 |
- **Weights License:** The weights are released under the [CreativeML Open RAIL++-M License](https://huggingface.co/Deci/DeciDiffusion-v1-0/blob/main/LICENSE-WEIGHTS.md)
|
25 |
|
26 |
### Model Sources
|
27 |
+
- **Blog:** [A technical overview](https://deci.ai/blog/decidiffusion-2-0-text-to-image-generation-optimized-for-cost-effective-hardware/)
|
28 |
+
- **Demo:** [Experience DeciDiffusion in action](https://huggingface.co/spaces/Deci/DeciDiffusion-v2-0)
|
29 |
|
30 |
## Model Architecture
|
31 |
|
|
|
63 |
|
64 |
### Additional Details
|
65 |
#### Phase 1
|
66 |
+
- **Hardware:** 6 x 8 x H100 (80GB)
|
67 |
+
- **Optimizer:** LAMB
|
68 |
+
- **Batch:** 8432
|
69 |
+
- **Learning rate:** 5e-03
|
70 |
|
71 |
#### Phases 2-4
|
72 |
+
- **Hardware:** 8 x 8 x H100 (80GB)
|
73 |
- **Optimizer:** LAMB
|
74 |
+
- **Batch:** 7168
|
75 |
+
- **Learning rate:** 5e-03
|
76 |
|
77 |
## Runtime Benchmarks
|
78 |
|
79 |
+
The following tables provide an image latency comparison between DeciDiffusion 2.0 and Stable Diffusion v1.5.
|
80 |
|
81 |
+
DeciDiffusion 2.0 vs. Stable Diffusion v1.5 at FP16 precision
|
82 |
+
|Implementation + Iterations| DeciDiffusion 2.0 on AI 100 (seconds/image) | Stable Diffusion v1.5 on AI 100 (seconds/image) |
|
83 |
|:----------|:----------|:----------|
|
84 |
+
| Compiled 16 Iterations | 1.358 | 3.3216 |
|
85 |
+
| Compiled 10 Iterations | 1.0059 |2.2459 |
|
86 |
|
87 |
## How to Use
|
88 |
|
|
|
136 |
- The autoencoding component of the model is lossy.
|
137 |
|
138 |
### Bias
|
139 |
+
The remarkable abilities of image-generation models can unintentionally amplify societal biases. DeciDiffusion was mainly trained on subsets of LAION-v2, focused on English descriptions. Consequently, non-English communities and cultures might be underrepresented, leading to a bias towards white and western norms. Outputs from non-English prompts are notably less accurate. Given these biases, users should approach DeciDiffusion with discretion, regardless of input.
|
140 |
|
141 |
|
142 |
## How to Cite
|
|
|
147 |
@misc{DeciFoundationModels,
|
148 |
title = {DeciDiffusion 2.0},
|
149 |
author = {DeciAI Research Team},
|
150 |
+
year = {2024}
|
151 |
url={[https://huggingface.co/deci/decidiffusion-v2-0](https://huggingface.co/deci/decidiffusion-v2-0)},
|
152 |
}
|
153 |
```
|