Borys Tymchenko
commited on
Commit
·
ae2e28c
1
Parent(s):
1545cf6
Initial commit
Browse files- .gitignore +192 -0
- feature_extractor/preprocessor_config.json +28 -0
- flexible_unet/config.json +125 -0
- flexible_unet/diffusion_pytorch_model.safetensors +3 -0
- model_index.json +34 -0
- pipeline.py +1010 -0
- safety_checker/config.json +168 -0
- safety_checker/model.safetensors +3 -0
- scheduler/scheduler_config.json +19 -0
- text_encoder/config.json +25 -0
- text_encoder/model.safetensors +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +33 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +68 -0
- unet/diffusion_pytorch_model.safetensors +3 -0
- vae/config.json +32 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
.gitignore
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Created by https://www.toptal.com/developers/gitignore/api/linux,macos,python
|
3 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=linux,macos,python
|
4 |
+
|
5 |
+
### Linux ###
|
6 |
+
*~
|
7 |
+
|
8 |
+
# temporary files which can be created if a process still has a handle open of a deleted file
|
9 |
+
.fuse_hidden*
|
10 |
+
|
11 |
+
# KDE directory preferences
|
12 |
+
.directory
|
13 |
+
|
14 |
+
# Linux trash folder which might appear on any partition or disk
|
15 |
+
.Trash-*
|
16 |
+
|
17 |
+
# .nfs files are created when an open file is removed but is still being accessed
|
18 |
+
.nfs*
|
19 |
+
|
20 |
+
### macOS ###
|
21 |
+
# General
|
22 |
+
.DS_Store
|
23 |
+
.AppleDouble
|
24 |
+
.LSOverride
|
25 |
+
|
26 |
+
# Icon must end with two \r
|
27 |
+
Icon
|
28 |
+
|
29 |
+
|
30 |
+
# Thumbnails
|
31 |
+
._*
|
32 |
+
|
33 |
+
# Files that might appear in the root of a volume
|
34 |
+
.DocumentRevisions-V100
|
35 |
+
.fseventsd
|
36 |
+
.Spotlight-V100
|
37 |
+
.TemporaryItems
|
38 |
+
.Trashes
|
39 |
+
.VolumeIcon.icns
|
40 |
+
.com.apple.timemachine.donotpresent
|
41 |
+
|
42 |
+
# Directories potentially created on remote AFP share
|
43 |
+
.AppleDB
|
44 |
+
.AppleDesktop
|
45 |
+
Network Trash Folder
|
46 |
+
Temporary Items
|
47 |
+
.apdisk
|
48 |
+
|
49 |
+
### Python ###
|
50 |
+
# Byte-compiled / optimized / DLL files
|
51 |
+
__pycache__/
|
52 |
+
*.py[cod]
|
53 |
+
*$py.class
|
54 |
+
|
55 |
+
# C extensions
|
56 |
+
*.so
|
57 |
+
|
58 |
+
# Distribution / packaging
|
59 |
+
.Python
|
60 |
+
*/build/
|
61 |
+
develop-eggs/
|
62 |
+
dist/
|
63 |
+
downloads/
|
64 |
+
eggs/
|
65 |
+
.eggs/
|
66 |
+
lib/
|
67 |
+
lib64/
|
68 |
+
parts/
|
69 |
+
sdist/
|
70 |
+
var/
|
71 |
+
wheels/
|
72 |
+
share/python-wheels/
|
73 |
+
*.egg-info/
|
74 |
+
.installed.cfg
|
75 |
+
*.egg
|
76 |
+
MANIFEST
|
77 |
+
|
78 |
+
# PyInstaller
|
79 |
+
# Usually these files are written by a python script from a template
|
80 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
81 |
+
*.manifest
|
82 |
+
*.spec
|
83 |
+
|
84 |
+
# Installer logs
|
85 |
+
pip-log.txt
|
86 |
+
pip-delete-this-directory.txt
|
87 |
+
|
88 |
+
# Unit test / coverage reports
|
89 |
+
htmlcov/
|
90 |
+
.tox/
|
91 |
+
.nox/
|
92 |
+
.coverage
|
93 |
+
.coverage.*
|
94 |
+
.cache
|
95 |
+
nosetests.xml
|
96 |
+
coverage.xml
|
97 |
+
*.cover
|
98 |
+
*.py,cover
|
99 |
+
.hypothesis/
|
100 |
+
.pytest_cache/
|
101 |
+
cover/
|
102 |
+
|
103 |
+
# Translations
|
104 |
+
*.mo
|
105 |
+
*.pot
|
106 |
+
|
107 |
+
# Django stuff:
|
108 |
+
*.log
|
109 |
+
local_settings.py
|
110 |
+
db.sqlite3
|
111 |
+
db.sqlite3-journal
|
112 |
+
|
113 |
+
# Flask stuff:
|
114 |
+
instance/
|
115 |
+
.webassets-cache
|
116 |
+
|
117 |
+
# Scrapy stuff:
|
118 |
+
.scrapy
|
119 |
+
|
120 |
+
# Sphinx documentation
|
121 |
+
documentation/_build/
|
122 |
+
documentation/build/
|
123 |
+
|
124 |
+
# PyBuilder
|
125 |
+
.pybuilder/
|
126 |
+
target/
|
127 |
+
|
128 |
+
# Jupyter Notebook
|
129 |
+
.ipynb_checkpoints
|
130 |
+
|
131 |
+
# IPython
|
132 |
+
profile_default/
|
133 |
+
ipython_config.py
|
134 |
+
|
135 |
+
# pyenv
|
136 |
+
# For a library or package, you might want to ignore these files since the code is
|
137 |
+
# intended to run in multiple environments; otherwise, check them in:
|
138 |
+
# .python-version
|
139 |
+
|
140 |
+
# pipenv
|
141 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
142 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
143 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
144 |
+
# install all needed dependencies.
|
145 |
+
#Pipfile.lock
|
146 |
+
|
147 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
148 |
+
__pypackages__/
|
149 |
+
|
150 |
+
# Celery stuff
|
151 |
+
celerybeat-schedule
|
152 |
+
celerybeat.pid
|
153 |
+
|
154 |
+
# SageMath parsed files
|
155 |
+
*.sage.py
|
156 |
+
|
157 |
+
# Environments
|
158 |
+
.env
|
159 |
+
.venv
|
160 |
+
env/
|
161 |
+
venv/
|
162 |
+
ENV/
|
163 |
+
env.bak/
|
164 |
+
venv.bak/
|
165 |
+
|
166 |
+
# Spyder project settings
|
167 |
+
.spyderproject
|
168 |
+
.spyproject
|
169 |
+
|
170 |
+
# Rope project settings
|
171 |
+
.ropeproject
|
172 |
+
|
173 |
+
# mkdocs documentation
|
174 |
+
/site
|
175 |
+
|
176 |
+
# mypy
|
177 |
+
.mypy_cache/
|
178 |
+
.dmypy.json
|
179 |
+
dmypy.json
|
180 |
+
|
181 |
+
# Pyre type checker
|
182 |
+
.pyre/
|
183 |
+
|
184 |
+
# pytype static type analyzer
|
185 |
+
.pytype/
|
186 |
+
|
187 |
+
# Cython debug symbols
|
188 |
+
cython_debug/
|
189 |
+
|
190 |
+
.idea
|
191 |
+
docs/.doctrees
|
192 |
+
# End of https://www.toptal.com/developers/gitignore/api/linux,macos,python
|
feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
12 |
+
"image_mean": [
|
13 |
+
0.48145466,
|
14 |
+
0.4578275,
|
15 |
+
0.40821073
|
16 |
+
],
|
17 |
+
"image_processor_type": "CLIPImageProcessor",
|
18 |
+
"image_std": [
|
19 |
+
0.26862954,
|
20 |
+
0.26130258,
|
21 |
+
0.27577711
|
22 |
+
],
|
23 |
+
"resample": 3,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"shortest_edge": 224
|
27 |
+
}
|
28 |
+
}
|
flexible_unet/config.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "FlexibleUNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.23.0",
|
4 |
+
"_name_or_path": "/home/borys.tymchenko/qcomdiffusion/checkpoint-286000-2050048000/pipeline/unet",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"attention_type": "default",
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"class_embed_type": null,
|
19 |
+
"class_embeddings_concat": false,
|
20 |
+
"configurations": {
|
21 |
+
"add_downsample": [
|
22 |
+
true,
|
23 |
+
true,
|
24 |
+
false
|
25 |
+
],
|
26 |
+
"add_upsample": [
|
27 |
+
true,
|
28 |
+
true,
|
29 |
+
false
|
30 |
+
],
|
31 |
+
"add_upsample_mid_block": null,
|
32 |
+
"cross_attention_dim": 768,
|
33 |
+
"down_blocks_in_channels": [
|
34 |
+
320,
|
35 |
+
320,
|
36 |
+
640
|
37 |
+
],
|
38 |
+
"down_blocks_num_attentions": [
|
39 |
+
0,
|
40 |
+
1,
|
41 |
+
3
|
42 |
+
],
|
43 |
+
"down_blocks_num_resnets": [
|
44 |
+
2,
|
45 |
+
2,
|
46 |
+
1
|
47 |
+
],
|
48 |
+
"down_blocks_out_channels": [
|
49 |
+
320,
|
50 |
+
640,
|
51 |
+
1280
|
52 |
+
],
|
53 |
+
"mid_num_attentions": 0,
|
54 |
+
"mid_num_resnets": 0,
|
55 |
+
"mix_block_in_forward": true,
|
56 |
+
"num_attention_heads": 8,
|
57 |
+
"prev_output_channels": [
|
58 |
+
1280,
|
59 |
+
1280,
|
60 |
+
640
|
61 |
+
],
|
62 |
+
"resnet_act_fn": "silu",
|
63 |
+
"resnet_eps": 1e-05,
|
64 |
+
"sample_size": 64,
|
65 |
+
"temb_dim": 1280,
|
66 |
+
"up_blocks_num_attentions": [
|
67 |
+
5,
|
68 |
+
3,
|
69 |
+
0
|
70 |
+
],
|
71 |
+
"up_blocks_num_resnets": [
|
72 |
+
2,
|
73 |
+
3,
|
74 |
+
3
|
75 |
+
]
|
76 |
+
},
|
77 |
+
"conv_in_kernel": 3,
|
78 |
+
"conv_out_kernel": 3,
|
79 |
+
"cross_attention_dim": 768,
|
80 |
+
"cross_attention_norm": null,
|
81 |
+
"down_block_types": [
|
82 |
+
"CrossAttnDownBlock2D",
|
83 |
+
"CrossAttnDownBlock2D",
|
84 |
+
"CrossAttnDownBlock2D",
|
85 |
+
"DownBlock2D"
|
86 |
+
],
|
87 |
+
"downsample_padding": 1,
|
88 |
+
"dropout": 0.0,
|
89 |
+
"dual_cross_attention": false,
|
90 |
+
"encoder_hid_dim": null,
|
91 |
+
"encoder_hid_dim_type": null,
|
92 |
+
"flip_sin_to_cos": true,
|
93 |
+
"freq_shift": 0,
|
94 |
+
"in_channels": 4,
|
95 |
+
"layers_per_block": 2,
|
96 |
+
"mid_block_only_cross_attention": null,
|
97 |
+
"mid_block_scale_factor": 1,
|
98 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
99 |
+
"norm_eps": 1e-05,
|
100 |
+
"norm_num_groups": 32,
|
101 |
+
"num_attention_heads": null,
|
102 |
+
"num_class_embeds": null,
|
103 |
+
"only_cross_attention": false,
|
104 |
+
"out_channels": 4,
|
105 |
+
"projection_class_embeddings_input_dim": null,
|
106 |
+
"resnet_out_scale_factor": 1.0,
|
107 |
+
"resnet_skip_time_act": false,
|
108 |
+
"resnet_time_scale_shift": "default",
|
109 |
+
"reverse_transformer_layers_per_block": null,
|
110 |
+
"sample_size": 64,
|
111 |
+
"time_cond_proj_dim": null,
|
112 |
+
"time_embedding_act_fn": null,
|
113 |
+
"time_embedding_dim": null,
|
114 |
+
"time_embedding_type": "positional",
|
115 |
+
"timestep_post_act": null,
|
116 |
+
"transformer_layers_per_block": 1,
|
117 |
+
"up_block_types": [
|
118 |
+
"UpBlock2D",
|
119 |
+
"CrossAttnUpBlock2D",
|
120 |
+
"CrossAttnUpBlock2D",
|
121 |
+
"CrossAttnUpBlock2D"
|
122 |
+
],
|
123 |
+
"upcast_attention": false,
|
124 |
+
"use_linear_projection": false
|
125 |
+
}
|
flexible_unet/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:337322d55ebf3ad224f25121b3ab439e3406f5517bdb61b252d1d2aaea06024d
|
3 |
+
size 2101170216
|
model_index.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DeciDiffusionPipeline",
|
3 |
+
"_diffusers_version": "0.21.4",
|
4 |
+
"_name_or_path": "Deci/DeciDiffusion-v2-0",
|
5 |
+
"feature_extractor": [
|
6 |
+
"transformers",
|
7 |
+
"CLIPImageProcessor"
|
8 |
+
],
|
9 |
+
"requires_safety_checker": true,
|
10 |
+
"safety_checker": [
|
11 |
+
"stable_diffusion",
|
12 |
+
"StableDiffusionSafetyChecker"
|
13 |
+
],
|
14 |
+
"scheduler": [
|
15 |
+
"diffusers",
|
16 |
+
"DDIMScheduler"
|
17 |
+
],
|
18 |
+
"text_encoder": [
|
19 |
+
"transformers",
|
20 |
+
"CLIPTextModel"
|
21 |
+
],
|
22 |
+
"tokenizer": [
|
23 |
+
"transformers",
|
24 |
+
"CLIPTokenizer"
|
25 |
+
],
|
26 |
+
"unet": [
|
27 |
+
"diffusers",
|
28 |
+
"UNet2DConditionModel"
|
29 |
+
],
|
30 |
+
"vae": [
|
31 |
+
"diffusers",
|
32 |
+
"AutoencoderKL"
|
33 |
+
]
|
34 |
+
}
|
pipeline.py
ADDED
@@ -0,0 +1,1010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from functools import partial
|
3 |
+
from typing import Any, Dict, Tuple, Callable
|
4 |
+
from typing import Union, Optional, List
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from diffusers import DPMSolverMultistepScheduler
|
9 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
10 |
+
from diffusers import Transformer2DModel, ModelMixin, ConfigMixin
|
11 |
+
from diffusers import UNet2DConditionModel
|
12 |
+
from diffusers.configuration_utils import register_to_config
|
13 |
+
from diffusers.models.attention import BasicTransformerBlock
|
14 |
+
from diffusers.models.resnet import ResnetBlock2D, Downsample2D, Upsample2D
|
15 |
+
from diffusers.models.transformer_2d import Transformer2DModelOutput
|
16 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput
|
17 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
18 |
+
from diffusers.utils import replace_example_docstring
|
19 |
+
from torch import nn
|
20 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
24 |
+
"""
|
25 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
26 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
27 |
+
"""
|
28 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
29 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
30 |
+
# rescale the results from guidance (fixes overexposure)
|
31 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
32 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
33 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
34 |
+
return noise_cfg
|
35 |
+
|
36 |
+
|
37 |
+
def custom_sort_order(obj):
|
38 |
+
"""
|
39 |
+
Key function for sorting order of execution in forward methods
|
40 |
+
"""
|
41 |
+
return {ResnetBlock2D: 0, Transformer2DModel: 1, FlexibleTransformer2DModel: 1}.get(obj.__class__)
|
42 |
+
|
43 |
+
|
44 |
+
def squeeze_to_len_n_starting_from_index_i(n, i, timestep_spacing):
|
45 |
+
"""
|
46 |
+
:param timestep_spacing: the timestep_spacing array we want to squeeze
|
47 |
+
:param n: the size of the squeezed array
|
48 |
+
:param i: the index we start squeezing from
|
49 |
+
:return: squeezed timestep_spacing
|
50 |
+
Example:
|
51 |
+
timesteps = np.array([967, 907, 846, 786, 725, 665, 604, 544, 484, 423, 363, 302, 242, 181, 121, 60]) (len=16)
|
52 |
+
n = 10, i = 6
|
53 |
+
Expected:
|
54 |
+
[967, 907, 846, 786, 725, 665, 4k, 3k, 2k, k], and if we define 665=5k => k = 133
|
55 |
+
"""
|
56 |
+
assert i < n
|
57 |
+
squeezed = np.flip(np.arange(n)) + 1 # [n, n-1, ..., 2, 1]
|
58 |
+
squeezed[:i] = timestep_spacing[:i]
|
59 |
+
k = squeezed[i - 1] // (n - i + 1)
|
60 |
+
squeezed[i:] *= k
|
61 |
+
|
62 |
+
return squeezed
|
63 |
+
|
64 |
+
|
65 |
+
PREDEFINED_TIMESTEP_SQUEEZERS = {
|
66 |
+
# Tested with DPM 16-steps (reduced 16 -> 10 or 11 steps)
|
67 |
+
"10,6": partial(squeeze_to_len_n_starting_from_index_i, 10, 6),
|
68 |
+
"11,7": partial(squeeze_to_len_n_starting_from_index_i, 11, 7),
|
69 |
+
}
|
70 |
+
|
71 |
+
FlexibleUnetConfigurations = {
|
72 |
+
# General parameters for all blocks
|
73 |
+
"sample_size": 64,
|
74 |
+
"temb_dim": 320 * 4,
|
75 |
+
"resnet_eps": 1e-5,
|
76 |
+
"resnet_act_fn": "silu",
|
77 |
+
"num_attention_heads": 8,
|
78 |
+
"cross_attention_dim": 768,
|
79 |
+
# Controls modules execute order in unet's forward
|
80 |
+
"mix_block_in_forward": True,
|
81 |
+
# Down blocks parameters
|
82 |
+
"down_blocks_in_channels": [320, 320, 640],
|
83 |
+
"down_blocks_out_channels": [320, 640, 1280],
|
84 |
+
"down_blocks_num_attentions": [0, 1, 3],
|
85 |
+
"down_blocks_num_resnets": [2, 2, 1],
|
86 |
+
"add_downsample": [True, True, False],
|
87 |
+
# Middle block parameters
|
88 |
+
"add_upsample_mid_block": None,
|
89 |
+
"mid_num_resnets": 0,
|
90 |
+
"mid_num_attentions": 0,
|
91 |
+
# Up block parameters
|
92 |
+
"prev_output_channels": [1280, 1280, 640],
|
93 |
+
"up_blocks_num_attentions": [5, 3, 0],
|
94 |
+
"up_blocks_num_resnets": [2, 3, 3],
|
95 |
+
"add_upsample": [True, True, False],
|
96 |
+
}
|
97 |
+
|
98 |
+
|
99 |
+
class SqueezedDPMSolverMultistepScheduler(DPMSolverMultistepScheduler):
|
100 |
+
"""
|
101 |
+
This is a copy-paste from Diffuser's `DPMSolverMultistepScheduler`, with minor differences:
|
102 |
+
* Defaults are modified to accommodate DeciDiffusion
|
103 |
+
* It supports a squeezer to squeeze the number of inference steps to a smaller number
|
104 |
+
//!\\ IMPORTANT: the actual number of inference steps is deduced by the squeezer, and not the pipeline!
|
105 |
+
"""
|
106 |
+
|
107 |
+
@register_to_config
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
num_train_timesteps: int = 1000,
|
111 |
+
beta_start: float = 0.0001,
|
112 |
+
beta_end: float = 0.02,
|
113 |
+
beta_schedule: str = "squaredcos_cap_v2", # NOTE THIS DEFAULT VALUE
|
114 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
115 |
+
solver_order: int = 2,
|
116 |
+
prediction_type: str = "v_prediction", # NOTE THIS DEFAULT VALUE
|
117 |
+
thresholding: bool = False,
|
118 |
+
dynamic_thresholding_ratio: float = 0.995,
|
119 |
+
sample_max_value: float = 1.0,
|
120 |
+
algorithm_type: str = "dpmsolver++",
|
121 |
+
solver_type: str = "heun", # NOTE THIS DEFAULT VALUE
|
122 |
+
lower_order_final: bool = True,
|
123 |
+
use_karras_sigmas: Optional[bool] = False,
|
124 |
+
lambda_min_clipped: float = -3.0, # NOTE THIS DEFAULT VALUE
|
125 |
+
variance_type: Optional[str] = None,
|
126 |
+
timestep_spacing: str = "linspace",
|
127 |
+
steps_offset: int = 1,
|
128 |
+
squeeze_mode: Optional[str] = None, # NOTE THIS ADDITION. Supports keys from `PREDEFINED_TIMESTEP_SQUEEZERS` defined above
|
129 |
+
):
|
130 |
+
self._squeezer = PREDEFINED_TIMESTEP_SQUEEZERS.get(squeeze_mode)
|
131 |
+
|
132 |
+
if use_karras_sigmas:
|
133 |
+
raise NotImplementedError("Squeezing isn't tested with `use_karras_sigmas`. Please provide `use_karras_sigmas=False`")
|
134 |
+
|
135 |
+
super().__init__(
|
136 |
+
num_train_timesteps=num_train_timesteps,
|
137 |
+
beta_start=beta_start,
|
138 |
+
beta_end=beta_end,
|
139 |
+
beta_schedule=beta_schedule,
|
140 |
+
trained_betas=trained_betas,
|
141 |
+
solver_order=solver_order,
|
142 |
+
prediction_type=prediction_type,
|
143 |
+
thresholding=thresholding,
|
144 |
+
dynamic_thresholding_ratio=dynamic_thresholding_ratio,
|
145 |
+
sample_max_value=sample_max_value,
|
146 |
+
algorithm_type=algorithm_type,
|
147 |
+
solver_type=solver_type,
|
148 |
+
lower_order_final=lower_order_final,
|
149 |
+
use_karras_sigmas=False,
|
150 |
+
lambda_min_clipped=lambda_min_clipped,
|
151 |
+
variance_type=variance_type,
|
152 |
+
timestep_spacing=timestep_spacing,
|
153 |
+
steps_offset=steps_offset,
|
154 |
+
)
|
155 |
+
|
156 |
+
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
157 |
+
"""
|
158 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
159 |
+
|
160 |
+
Args:
|
161 |
+
num_inference_steps (`int`):
|
162 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
163 |
+
device (`str` or `torch.device`, *optional*):
|
164 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
165 |
+
"""
|
166 |
+
super().set_timesteps(num_inference_steps=num_inference_steps, device=device)
|
167 |
+
if self._squeezer is not None:
|
168 |
+
timesteps = self._squeezer(self.timesteps.cpu())
|
169 |
+
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
170 |
+
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
171 |
+
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
172 |
+
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
173 |
+
self.sigmas = torch.from_numpy(sigmas)
|
174 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
|
175 |
+
self.num_inference_steps = len(timesteps)
|
176 |
+
|
177 |
+
|
178 |
+
class FlexibleIdentityBlock(nn.Module):
|
179 |
+
def forward(
|
180 |
+
self,
|
181 |
+
hidden_states: torch.FloatTensor,
|
182 |
+
temb: Optional[torch.FloatTensor] = None,
|
183 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
184 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
185 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
186 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
187 |
+
):
|
188 |
+
return hidden_states
|
189 |
+
|
190 |
+
|
191 |
+
class FlexibleUNet2DConditionModel(UNet2DConditionModel, ModelMixin):
|
192 |
+
configurations = FlexibleUnetConfigurations
|
193 |
+
|
194 |
+
@register_to_config
|
195 |
+
def __init__(self):
|
196 |
+
super().__init__(
|
197 |
+
sample_size=self.configurations.get("sample_size", FlexibleUnetConfigurations["sample_size"]),
|
198 |
+
cross_attention_dim=self.configurations.get("cross_attention_dim", FlexibleUnetConfigurations["cross_attention_dim"]),
|
199 |
+
)
|
200 |
+
|
201 |
+
num_attention_heads = self.configurations.get("num_attention_heads")
|
202 |
+
cross_attention_dim = self.configurations.get("cross_attention_dim")
|
203 |
+
mix_block_in_forward = self.configurations.get("mix_block_in_forward")
|
204 |
+
resnet_act_fn = self.configurations.get("resnet_act_fn")
|
205 |
+
resnet_eps = self.configurations.get("resnet_eps")
|
206 |
+
temb_dim = self.configurations.get("temb_dim")
|
207 |
+
|
208 |
+
###############
|
209 |
+
# Down blocks #
|
210 |
+
###############
|
211 |
+
down_blocks_num_attentions = self.configurations.get("down_blocks_num_attentions")
|
212 |
+
down_blocks_out_channels = self.configurations.get("down_blocks_out_channels")
|
213 |
+
down_blocks_in_channels = self.configurations.get("down_blocks_in_channels")
|
214 |
+
down_blocks_num_resnets = self.configurations.get("down_blocks_num_resnets")
|
215 |
+
add_downsample = self.configurations.get("add_downsample")
|
216 |
+
|
217 |
+
self.down_blocks = nn.ModuleList()
|
218 |
+
|
219 |
+
for i, (in_c, out_c, n_res, n_att, add_down) in enumerate(
|
220 |
+
zip(down_blocks_in_channels, down_blocks_out_channels, down_blocks_num_resnets, down_blocks_num_attentions, add_downsample)
|
221 |
+
):
|
222 |
+
last_block = i == len(down_blocks_in_channels) - 1
|
223 |
+
self.down_blocks.append(
|
224 |
+
FlexibleCrossAttnDownBlock2D(
|
225 |
+
in_channels=in_c,
|
226 |
+
out_channels=out_c,
|
227 |
+
temb_channels=temb_dim,
|
228 |
+
num_resnets=n_res,
|
229 |
+
num_attentions=n_att,
|
230 |
+
resnet_eps=resnet_eps,
|
231 |
+
resnet_act_fn=resnet_act_fn,
|
232 |
+
num_attention_heads=num_attention_heads,
|
233 |
+
cross_attention_dim=cross_attention_dim,
|
234 |
+
add_downsample=add_down,
|
235 |
+
last_block=last_block,
|
236 |
+
mix_block_in_forward=mix_block_in_forward,
|
237 |
+
)
|
238 |
+
)
|
239 |
+
|
240 |
+
###############
|
241 |
+
# Mid blocks #
|
242 |
+
###############
|
243 |
+
|
244 |
+
mid_block_add_upsample = self.configurations.get("add_upsample_mid_block")
|
245 |
+
mid_num_attentions = self.configurations.get("mid_num_attentions")
|
246 |
+
mid_num_resnets = self.configurations.get("mid_num_resnets")
|
247 |
+
|
248 |
+
if mid_num_resnets == mid_num_attentions == 0:
|
249 |
+
self.mid_block = FlexibleIdentityBlock()
|
250 |
+
else:
|
251 |
+
self.mid_block = FlexibleUNetMidBlock2DCrossAttn(
|
252 |
+
in_channels=down_blocks_out_channels[-1],
|
253 |
+
temb_channels=temb_dim,
|
254 |
+
resnet_act_fn=resnet_act_fn,
|
255 |
+
resnet_eps=resnet_eps,
|
256 |
+
cross_attention_dim=cross_attention_dim,
|
257 |
+
num_attention_heads=num_attention_heads,
|
258 |
+
num_resnets=mid_num_resnets,
|
259 |
+
num_attentions=mid_num_attentions,
|
260 |
+
mix_block_in_forward=mix_block_in_forward,
|
261 |
+
add_upsample=mid_block_add_upsample,
|
262 |
+
)
|
263 |
+
|
264 |
+
###############
|
265 |
+
# Up blocks #
|
266 |
+
###############
|
267 |
+
|
268 |
+
up_blocks_num_attentions = self.configurations.get("up_blocks_num_attentions")
|
269 |
+
up_blocks_num_resnets = self.configurations.get("up_blocks_num_resnets")
|
270 |
+
prev_output_channels = self.configurations.get("prev_output_channels")
|
271 |
+
up_upsample = self.configurations.get("add_upsample")
|
272 |
+
|
273 |
+
self.up_blocks = nn.ModuleList()
|
274 |
+
for in_c, out_c, prev_out, n_res, n_att, add_up in zip(
|
275 |
+
reversed(down_blocks_in_channels),
|
276 |
+
reversed(down_blocks_out_channels),
|
277 |
+
prev_output_channels,
|
278 |
+
up_blocks_num_resnets,
|
279 |
+
up_blocks_num_attentions,
|
280 |
+
up_upsample,
|
281 |
+
):
|
282 |
+
self.up_blocks.append(
|
283 |
+
FlexibleCrossAttnUpBlock2D(
|
284 |
+
in_channels=in_c,
|
285 |
+
out_channels=out_c,
|
286 |
+
prev_output_channel=prev_out,
|
287 |
+
temb_channels=temb_dim,
|
288 |
+
num_resnets=n_res,
|
289 |
+
num_attentions=n_att,
|
290 |
+
resnet_eps=resnet_eps,
|
291 |
+
resnet_act_fn=resnet_act_fn,
|
292 |
+
num_attention_heads=num_attention_heads,
|
293 |
+
cross_attention_dim=cross_attention_dim,
|
294 |
+
add_upsample=add_up,
|
295 |
+
mix_block_in_forward=mix_block_in_forward,
|
296 |
+
)
|
297 |
+
)
|
298 |
+
|
299 |
+
|
300 |
+
class FlexibleCrossAttnDownBlock2D(nn.Module):
|
301 |
+
def __init__(
|
302 |
+
self,
|
303 |
+
in_channels: int,
|
304 |
+
out_channels: int,
|
305 |
+
temb_channels: int,
|
306 |
+
dropout: float = 0.0,
|
307 |
+
num_resnets: int = 1,
|
308 |
+
num_attentions: int = 1,
|
309 |
+
transformer_layers_per_block: int = 1,
|
310 |
+
resnet_eps: float = 1e-6,
|
311 |
+
resnet_time_scale_shift: str = "default",
|
312 |
+
resnet_act_fn: str = "swish",
|
313 |
+
resnet_groups: int = 32,
|
314 |
+
resnet_pre_norm: bool = True,
|
315 |
+
num_attention_heads: int = 1,
|
316 |
+
cross_attention_dim: int = 1280,
|
317 |
+
output_scale_factor: float = 1.0,
|
318 |
+
downsample_padding: int = 1,
|
319 |
+
add_downsample: bool = True,
|
320 |
+
use_linear_projection: bool = False,
|
321 |
+
only_cross_attention: bool = False,
|
322 |
+
upcast_attention: bool = False,
|
323 |
+
last_block: bool = False,
|
324 |
+
mix_block_in_forward: bool = True,
|
325 |
+
):
|
326 |
+
super().__init__()
|
327 |
+
|
328 |
+
self.last_block = last_block
|
329 |
+
self.mix_block_in_forward = mix_block_in_forward
|
330 |
+
self.has_cross_attention = True
|
331 |
+
self.num_attention_heads = num_attention_heads
|
332 |
+
|
333 |
+
modules = []
|
334 |
+
|
335 |
+
add_resnets = [True] * num_resnets
|
336 |
+
add_cross_attentions = [True] * num_attentions
|
337 |
+
for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
|
338 |
+
in_channels = in_channels if i == 0 else out_channels
|
339 |
+
if add_resnet:
|
340 |
+
modules.append(
|
341 |
+
ResnetBlock2D(
|
342 |
+
in_channels=in_channels,
|
343 |
+
out_channels=out_channels,
|
344 |
+
temb_channels=temb_channels,
|
345 |
+
eps=resnet_eps,
|
346 |
+
groups=resnet_groups,
|
347 |
+
dropout=dropout,
|
348 |
+
time_embedding_norm=resnet_time_scale_shift,
|
349 |
+
non_linearity=resnet_act_fn,
|
350 |
+
output_scale_factor=output_scale_factor,
|
351 |
+
pre_norm=resnet_pre_norm,
|
352 |
+
)
|
353 |
+
)
|
354 |
+
if add_cross_attention:
|
355 |
+
modules.append(
|
356 |
+
FlexibleTransformer2DModel(
|
357 |
+
num_attention_heads=num_attention_heads,
|
358 |
+
attention_head_dim=out_channels // num_attention_heads,
|
359 |
+
in_channels=out_channels,
|
360 |
+
num_layers=transformer_layers_per_block,
|
361 |
+
cross_attention_dim=cross_attention_dim,
|
362 |
+
norm_num_groups=resnet_groups,
|
363 |
+
use_linear_projection=use_linear_projection,
|
364 |
+
only_cross_attention=only_cross_attention,
|
365 |
+
upcast_attention=upcast_attention,
|
366 |
+
)
|
367 |
+
)
|
368 |
+
|
369 |
+
if not mix_block_in_forward:
|
370 |
+
modules = sorted(modules, key=custom_sort_order)
|
371 |
+
|
372 |
+
self.modules_list = nn.ModuleList(modules)
|
373 |
+
|
374 |
+
if add_downsample:
|
375 |
+
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op")])
|
376 |
+
else:
|
377 |
+
self.downsamplers = None
|
378 |
+
|
379 |
+
self.gradient_checkpointing = False
|
380 |
+
|
381 |
+
def forward(
|
382 |
+
self,
|
383 |
+
hidden_states: torch.FloatTensor,
|
384 |
+
temb: Optional[torch.FloatTensor] = None,
|
385 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
386 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
387 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
388 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
389 |
+
):
|
390 |
+
output_states = ()
|
391 |
+
|
392 |
+
for module in self.modules_list:
|
393 |
+
if isinstance(module, ResnetBlock2D):
|
394 |
+
hidden_states = module(hidden_states, temb)
|
395 |
+
elif isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
|
396 |
+
hidden_states = module(
|
397 |
+
hidden_states,
|
398 |
+
encoder_hidden_states=encoder_hidden_states,
|
399 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
400 |
+
attention_mask=attention_mask,
|
401 |
+
encoder_attention_mask=encoder_attention_mask,
|
402 |
+
return_dict=False,
|
403 |
+
)[0]
|
404 |
+
else:
|
405 |
+
raise ValueError(f"Got an unexpected module in modules list! {type(module)}")
|
406 |
+
if isinstance(module, ResnetBlock2D):
|
407 |
+
output_states = output_states + (hidden_states,)
|
408 |
+
|
409 |
+
if self.downsamplers is not None:
|
410 |
+
for downsampler in self.downsamplers:
|
411 |
+
hidden_states = downsampler(hidden_states)
|
412 |
+
|
413 |
+
if not self.last_block:
|
414 |
+
output_states = output_states + (hidden_states,)
|
415 |
+
|
416 |
+
return hidden_states, output_states
|
417 |
+
|
418 |
+
|
419 |
+
class FlexibleCrossAttnUpBlock2D(nn.Module):
|
420 |
+
def __init__(
|
421 |
+
self,
|
422 |
+
in_channels: int,
|
423 |
+
out_channels: int,
|
424 |
+
prev_output_channel: int,
|
425 |
+
temb_channels: int,
|
426 |
+
dropout: float = 0.0,
|
427 |
+
num_resnets: int = 1,
|
428 |
+
num_attentions: int = 1,
|
429 |
+
transformer_layers_per_block: int = 1,
|
430 |
+
resnet_eps: float = 1e-6,
|
431 |
+
resnet_time_scale_shift: str = "default",
|
432 |
+
resnet_act_fn: str = "swish",
|
433 |
+
resnet_groups: int = 32,
|
434 |
+
resnet_pre_norm: bool = True,
|
435 |
+
num_attention_heads: int = 1,
|
436 |
+
cross_attention_dim: int = 1280,
|
437 |
+
output_scale_factor: float = 1.0,
|
438 |
+
add_upsample: bool = True,
|
439 |
+
use_linear_projection: bool = False,
|
440 |
+
only_cross_attention: bool = False,
|
441 |
+
upcast_attention: bool = False,
|
442 |
+
mix_block_in_forward: bool = True,
|
443 |
+
):
|
444 |
+
super().__init__()
|
445 |
+
modules = []
|
446 |
+
|
447 |
+
# WARNING: This parameter is filled with number of resnets and used within StableDiffusionPipeline
|
448 |
+
self.resnets = []
|
449 |
+
|
450 |
+
self.has_cross_attention = True
|
451 |
+
self.num_attention_heads = num_attention_heads
|
452 |
+
|
453 |
+
add_resnets = [True] * num_resnets
|
454 |
+
add_cross_attentions = [True] * num_attentions
|
455 |
+
for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
|
456 |
+
res_skip_channels = in_channels if (i == len(add_resnets) - 1) else out_channels
|
457 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
458 |
+
|
459 |
+
if add_resnet:
|
460 |
+
self.resnets += [True]
|
461 |
+
modules.append(
|
462 |
+
ResnetBlock2D(
|
463 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
464 |
+
out_channels=out_channels,
|
465 |
+
temb_channels=temb_channels,
|
466 |
+
eps=resnet_eps,
|
467 |
+
groups=resnet_groups,
|
468 |
+
dropout=dropout,
|
469 |
+
time_embedding_norm=resnet_time_scale_shift,
|
470 |
+
non_linearity=resnet_act_fn,
|
471 |
+
output_scale_factor=output_scale_factor,
|
472 |
+
pre_norm=resnet_pre_norm,
|
473 |
+
)
|
474 |
+
)
|
475 |
+
if add_cross_attention:
|
476 |
+
modules.append(
|
477 |
+
FlexibleTransformer2DModel(
|
478 |
+
num_attention_heads,
|
479 |
+
out_channels // num_attention_heads,
|
480 |
+
in_channels=out_channels,
|
481 |
+
num_layers=transformer_layers_per_block,
|
482 |
+
cross_attention_dim=cross_attention_dim,
|
483 |
+
norm_num_groups=resnet_groups,
|
484 |
+
use_linear_projection=use_linear_projection,
|
485 |
+
only_cross_attention=only_cross_attention,
|
486 |
+
upcast_attention=upcast_attention,
|
487 |
+
)
|
488 |
+
)
|
489 |
+
|
490 |
+
if not mix_block_in_forward:
|
491 |
+
modules = sorted(modules, key=custom_sort_order)
|
492 |
+
|
493 |
+
self.modules_list = nn.ModuleList(modules)
|
494 |
+
|
495 |
+
self.upsamplers = None
|
496 |
+
if add_upsample:
|
497 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
498 |
+
|
499 |
+
self.gradient_checkpointing = False
|
500 |
+
|
501 |
+
def forward(
|
502 |
+
self,
|
503 |
+
hidden_states: torch.FloatTensor,
|
504 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
505 |
+
temb: Optional[torch.FloatTensor] = None,
|
506 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
507 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
508 |
+
upsample_size: Optional[int] = None,
|
509 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
510 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
511 |
+
):
|
512 |
+
|
513 |
+
for module in self.modules_list:
|
514 |
+
if isinstance(module, ResnetBlock2D):
|
515 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
516 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
517 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
518 |
+
hidden_states = module(hidden_states, temb)
|
519 |
+
if isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
|
520 |
+
hidden_states = module(
|
521 |
+
hidden_states,
|
522 |
+
encoder_hidden_states=encoder_hidden_states,
|
523 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
524 |
+
attention_mask=attention_mask,
|
525 |
+
encoder_attention_mask=encoder_attention_mask,
|
526 |
+
return_dict=False,
|
527 |
+
)[0]
|
528 |
+
|
529 |
+
if self.upsamplers is not None:
|
530 |
+
for upsampler in self.upsamplers:
|
531 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
532 |
+
|
533 |
+
return hidden_states
|
534 |
+
|
535 |
+
|
536 |
+
class FlexibleUNetMidBlock2DCrossAttn(nn.Module):
|
537 |
+
def __init__(
|
538 |
+
self,
|
539 |
+
in_channels: int,
|
540 |
+
temb_channels: int,
|
541 |
+
dropout: float = 0.0,
|
542 |
+
num_resnets: int = 1,
|
543 |
+
num_attentions: int = 1,
|
544 |
+
transformer_layers_per_block: int = 1,
|
545 |
+
resnet_eps: float = 1e-6,
|
546 |
+
resnet_time_scale_shift: str = "default",
|
547 |
+
resnet_act_fn: str = "swish",
|
548 |
+
resnet_groups: int = 32,
|
549 |
+
resnet_pre_norm: bool = True,
|
550 |
+
num_attention_heads: int = 1,
|
551 |
+
output_scale_factor: float = 1.0,
|
552 |
+
cross_attention_dim: int = 1280,
|
553 |
+
use_linear_projection: bool = False,
|
554 |
+
upcast_attention: bool = False,
|
555 |
+
mix_block_in_forward: bool = True,
|
556 |
+
add_upsample: bool = True,
|
557 |
+
):
|
558 |
+
super().__init__()
|
559 |
+
|
560 |
+
self.has_cross_attention = True
|
561 |
+
self.num_attention_heads = num_attention_heads
|
562 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
563 |
+
# There is always at least one resnet
|
564 |
+
modules = [
|
565 |
+
ResnetBlock2D(
|
566 |
+
in_channels=in_channels,
|
567 |
+
out_channels=in_channels,
|
568 |
+
temb_channels=temb_channels,
|
569 |
+
eps=resnet_eps,
|
570 |
+
groups=resnet_groups,
|
571 |
+
dropout=dropout,
|
572 |
+
time_embedding_norm=resnet_time_scale_shift,
|
573 |
+
non_linearity=resnet_act_fn,
|
574 |
+
output_scale_factor=output_scale_factor,
|
575 |
+
pre_norm=resnet_pre_norm,
|
576 |
+
)
|
577 |
+
]
|
578 |
+
|
579 |
+
add_resnets = [True] * num_resnets
|
580 |
+
add_cross_attentions = [True] * num_attentions
|
581 |
+
for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
|
582 |
+
if add_cross_attention:
|
583 |
+
modules.append(
|
584 |
+
FlexibleTransformer2DModel(
|
585 |
+
num_attention_heads,
|
586 |
+
in_channels // num_attention_heads,
|
587 |
+
in_channels=in_channels,
|
588 |
+
num_layers=transformer_layers_per_block,
|
589 |
+
cross_attention_dim=cross_attention_dim,
|
590 |
+
norm_num_groups=resnet_groups,
|
591 |
+
use_linear_projection=use_linear_projection,
|
592 |
+
upcast_attention=upcast_attention,
|
593 |
+
)
|
594 |
+
)
|
595 |
+
|
596 |
+
if add_resnet:
|
597 |
+
modules.append(
|
598 |
+
ResnetBlock2D(
|
599 |
+
in_channels=in_channels,
|
600 |
+
out_channels=in_channels,
|
601 |
+
temb_channels=temb_channels,
|
602 |
+
eps=resnet_eps,
|
603 |
+
groups=resnet_groups,
|
604 |
+
dropout=dropout,
|
605 |
+
time_embedding_norm=resnet_time_scale_shift,
|
606 |
+
non_linearity=resnet_act_fn,
|
607 |
+
output_scale_factor=output_scale_factor,
|
608 |
+
pre_norm=resnet_pre_norm,
|
609 |
+
)
|
610 |
+
)
|
611 |
+
if not mix_block_in_forward:
|
612 |
+
modules = sorted(modules, key=custom_sort_order)
|
613 |
+
|
614 |
+
self.modules_list = nn.ModuleList(modules)
|
615 |
+
|
616 |
+
self.upsamplers = nn.ModuleList([nn.Identity()])
|
617 |
+
if add_upsample:
|
618 |
+
self.upsamplers = nn.ModuleList([Upsample2D(in_channels, use_conv=True, out_channels=in_channels)])
|
619 |
+
|
620 |
+
def forward(
|
621 |
+
self,
|
622 |
+
hidden_states: torch.FloatTensor,
|
623 |
+
temb: Optional[torch.FloatTensor] = None,
|
624 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
625 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
626 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
627 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
628 |
+
) -> torch.FloatTensor:
|
629 |
+
hidden_states = self.modules_list[0](hidden_states, temb)
|
630 |
+
|
631 |
+
for module in self.modules_list:
|
632 |
+
if isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
|
633 |
+
hidden_states = module(
|
634 |
+
hidden_states,
|
635 |
+
encoder_hidden_states=encoder_hidden_states,
|
636 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
637 |
+
attention_mask=attention_mask,
|
638 |
+
encoder_attention_mask=encoder_attention_mask,
|
639 |
+
return_dict=False,
|
640 |
+
)[0]
|
641 |
+
elif isinstance(module, ResnetBlock2D):
|
642 |
+
hidden_states = module(hidden_states, temb)
|
643 |
+
|
644 |
+
for upsampler in self.upsamplers:
|
645 |
+
hidden_states = upsampler(hidden_states)
|
646 |
+
|
647 |
+
return hidden_states
|
648 |
+
|
649 |
+
|
650 |
+
class FlexibleTransformer2DModel(ModelMixin, ConfigMixin):
|
651 |
+
@register_to_config
|
652 |
+
def __init__(
|
653 |
+
self,
|
654 |
+
num_attention_heads: int = 16,
|
655 |
+
attention_head_dim: int = 88,
|
656 |
+
in_channels: Optional[int] = None,
|
657 |
+
out_channels: Optional[int] = None,
|
658 |
+
num_layers: int = 1,
|
659 |
+
dropout: float = 0.0,
|
660 |
+
norm_num_groups: int = 32,
|
661 |
+
cross_attention_dim: Optional[int] = None,
|
662 |
+
attention_bias: bool = False,
|
663 |
+
activation_fn: str = "geglu",
|
664 |
+
num_embeds_ada_norm: Optional[int] = None,
|
665 |
+
only_cross_attention: bool = False,
|
666 |
+
use_linear_projection: bool = False,
|
667 |
+
upcast_attention: bool = False,
|
668 |
+
norm_type: str = "layer_norm",
|
669 |
+
norm_elementwise_affine: bool = True,
|
670 |
+
):
|
671 |
+
super().__init__()
|
672 |
+
self.num_attention_heads = num_attention_heads
|
673 |
+
self.attention_head_dim = attention_head_dim
|
674 |
+
self.in_channels = in_channels
|
675 |
+
inner_dim = num_attention_heads * attention_head_dim
|
676 |
+
|
677 |
+
# Define input layers
|
678 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
679 |
+
self.use_linear_projection = use_linear_projection
|
680 |
+
if self.use_linear_projection:
|
681 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
682 |
+
else:
|
683 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
684 |
+
|
685 |
+
# Define transformers blocks
|
686 |
+
self.transformer_blocks = nn.ModuleList(
|
687 |
+
[
|
688 |
+
BasicTransformerBlock(
|
689 |
+
inner_dim,
|
690 |
+
num_attention_heads,
|
691 |
+
attention_head_dim,
|
692 |
+
dropout=dropout,
|
693 |
+
cross_attention_dim=cross_attention_dim,
|
694 |
+
activation_fn=activation_fn,
|
695 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
696 |
+
attention_bias=attention_bias,
|
697 |
+
only_cross_attention=only_cross_attention,
|
698 |
+
upcast_attention=upcast_attention,
|
699 |
+
norm_type=norm_type,
|
700 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
701 |
+
)
|
702 |
+
for _ in range(num_layers)
|
703 |
+
]
|
704 |
+
)
|
705 |
+
|
706 |
+
# Define output layers
|
707 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
708 |
+
if self.use_linear_projection:
|
709 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
710 |
+
else:
|
711 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
712 |
+
|
713 |
+
def forward(
|
714 |
+
self,
|
715 |
+
hidden_states: torch.Tensor,
|
716 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
717 |
+
timestep: Optional[torch.LongTensor] = None,
|
718 |
+
class_labels: Optional[torch.LongTensor] = None,
|
719 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
720 |
+
attention_mask: Optional[torch.Tensor] = None,
|
721 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
722 |
+
return_dict: bool = False,
|
723 |
+
):
|
724 |
+
# 1. Input
|
725 |
+
batch, _, height, width = hidden_states.shape
|
726 |
+
residual = hidden_states
|
727 |
+
|
728 |
+
hidden_states = self.norm(hidden_states)
|
729 |
+
if not self.use_linear_projection:
|
730 |
+
hidden_states = self.proj_in(hidden_states)
|
731 |
+
inner_dim = hidden_states.shape[1]
|
732 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
733 |
+
else:
|
734 |
+
inner_dim = hidden_states.shape[1]
|
735 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
736 |
+
hidden_states = self.proj_in(hidden_states)
|
737 |
+
|
738 |
+
# 2. Blocks
|
739 |
+
for block in self.transformer_blocks:
|
740 |
+
hidden_states = block(
|
741 |
+
hidden_states,
|
742 |
+
attention_mask=attention_mask,
|
743 |
+
encoder_hidden_states=encoder_hidden_states,
|
744 |
+
encoder_attention_mask=encoder_attention_mask,
|
745 |
+
timestep=timestep,
|
746 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
747 |
+
class_labels=class_labels,
|
748 |
+
)
|
749 |
+
|
750 |
+
# 3. Output
|
751 |
+
if not self.use_linear_projection:
|
752 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
753 |
+
hidden_states = self.proj_out(hidden_states)
|
754 |
+
else:
|
755 |
+
hidden_states = self.proj_out(hidden_states)
|
756 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
757 |
+
|
758 |
+
output = hidden_states + residual
|
759 |
+
if return_dict:
|
760 |
+
return (output,)
|
761 |
+
return Transformer2DModelOutput(sample=output)
|
762 |
+
|
763 |
+
|
764 |
+
class DeciDiffusionPipeline(StableDiffusionPipeline):
|
765 |
+
deci_default_squeeze_mode = "10,6"
|
766 |
+
deci_default_number_of_iterations = 16
|
767 |
+
deci_default_guidance_rescale = 0.7
|
768 |
+
|
769 |
+
def __init__(
|
770 |
+
self,
|
771 |
+
vae: AutoencoderKL,
|
772 |
+
text_encoder: CLIPTextModel,
|
773 |
+
tokenizer: CLIPTokenizer,
|
774 |
+
unet: UNet2DConditionModel,
|
775 |
+
scheduler: KarrasDiffusionSchedulers,
|
776 |
+
safety_checker: StableDiffusionSafetyChecker,
|
777 |
+
feature_extractor: CLIPImageProcessor,
|
778 |
+
requires_safety_checker: bool = True,
|
779 |
+
):
|
780 |
+
# Replace UNet with Deci`s unet
|
781 |
+
del unet
|
782 |
+
unet = FlexibleUNet2DConditionModel()
|
783 |
+
|
784 |
+
# Replace with custom scheduler
|
785 |
+
del scheduler
|
786 |
+
scheduler = SqueezedDPMSolverMultistepScheduler(squeeze_mode=self.deci_default_squeeze_mode)
|
787 |
+
|
788 |
+
super().__init__(
|
789 |
+
vae=vae,
|
790 |
+
text_encoder=text_encoder,
|
791 |
+
tokenizer=tokenizer,
|
792 |
+
unet=unet,
|
793 |
+
scheduler=scheduler,
|
794 |
+
safety_checker=safety_checker,
|
795 |
+
feature_extractor=feature_extractor,
|
796 |
+
requires_safety_checker=requires_safety_checker,
|
797 |
+
)
|
798 |
+
|
799 |
+
self.register_modules(
|
800 |
+
vae=vae,
|
801 |
+
text_encoder=text_encoder,
|
802 |
+
tokenizer=tokenizer,
|
803 |
+
unet=unet,
|
804 |
+
scheduler=scheduler,
|
805 |
+
safety_checker=safety_checker,
|
806 |
+
feature_extractor=feature_extractor,
|
807 |
+
)
|
808 |
+
|
809 |
+
@torch.no_grad()
|
810 |
+
def __call__(
|
811 |
+
self,
|
812 |
+
prompt: Union[str, List[str]] = None,
|
813 |
+
height: Optional[int] = None,
|
814 |
+
width: Optional[int] = None,
|
815 |
+
num_inference_steps: int = 16,
|
816 |
+
guidance_scale: float = 7.5,
|
817 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
818 |
+
num_images_per_prompt: Optional[int] = 1,
|
819 |
+
eta: float = 0.0,
|
820 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
821 |
+
latents: Optional[torch.FloatTensor] = None,
|
822 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
823 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
824 |
+
output_type: Optional[str] = "pil",
|
825 |
+
return_dict: bool = True,
|
826 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
827 |
+
callback_steps: int = 1,
|
828 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
829 |
+
guidance_rescale: float = 0.7,
|
830 |
+
):
|
831 |
+
r"""
|
832 |
+
The call function to the pipeline for generation.
|
833 |
+
|
834 |
+
Args:
|
835 |
+
prompt (`str` or `List[str]`, *optional*):
|
836 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
837 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
838 |
+
The height in pixels of the generated image.
|
839 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
840 |
+
The width in pixels of the generated image.
|
841 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
842 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
843 |
+
expense of slower inference.
|
844 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
845 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
846 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
847 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
848 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
849 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
850 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
851 |
+
The number of images to generate per prompt.
|
852 |
+
eta (`float`, *optional*, defaults to 0.0):
|
853 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
854 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
855 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
856 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
857 |
+
generation deterministic.
|
858 |
+
latents (`torch.FloatTensor`, *optional*):
|
859 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
860 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
861 |
+
tensor is generated by sampling using the supplied random `generator`.
|
862 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
863 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
864 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
865 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
866 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
867 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
868 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
869 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
870 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
871 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
872 |
+
plain tuple.
|
873 |
+
callback (`Callable`, *optional*):
|
874 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
875 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
876 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
877 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
878 |
+
every step.
|
879 |
+
cross_attention_kwargs (`dict`, *optional*):
|
880 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
881 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
882 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
883 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
884 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
885 |
+
using zero terminal SNR.
|
886 |
+
|
887 |
+
Examples:
|
888 |
+
|
889 |
+
Returns:
|
890 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
891 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
892 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
893 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
894 |
+
"not-safe-for-work" (nsfw) content.
|
895 |
+
"""
|
896 |
+
# 0. Default height and width to unet
|
897 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
898 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
899 |
+
|
900 |
+
# 1. Check inputs. Raise error if not correct
|
901 |
+
self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
902 |
+
|
903 |
+
# 2. Define call parameters
|
904 |
+
if prompt is not None and isinstance(prompt, str):
|
905 |
+
batch_size = 1
|
906 |
+
elif prompt is not None and isinstance(prompt, list):
|
907 |
+
batch_size = len(prompt)
|
908 |
+
else:
|
909 |
+
batch_size = prompt_embeds.shape[0]
|
910 |
+
|
911 |
+
device = self._execution_device
|
912 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
913 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
914 |
+
# corresponds to doing no classifier free guidance.
|
915 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
916 |
+
|
917 |
+
# 3. Encode input prompt
|
918 |
+
text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
919 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
920 |
+
prompt,
|
921 |
+
device,
|
922 |
+
num_images_per_prompt,
|
923 |
+
do_classifier_free_guidance,
|
924 |
+
negative_prompt,
|
925 |
+
prompt_embeds=prompt_embeds,
|
926 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
927 |
+
lora_scale=text_encoder_lora_scale,
|
928 |
+
)
|
929 |
+
# For classifier free guidance, we need to do two forward passes.
|
930 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
931 |
+
# to avoid doing two forward passes
|
932 |
+
if do_classifier_free_guidance:
|
933 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
934 |
+
|
935 |
+
# 4. Prepare timesteps
|
936 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
937 |
+
timesteps = self.scheduler.timesteps
|
938 |
+
|
939 |
+
# 5. Prepare latent variables
|
940 |
+
num_channels_latents = self.unet.config.in_channels
|
941 |
+
latents = self.prepare_latents(
|
942 |
+
batch_size * num_images_per_prompt,
|
943 |
+
num_channels_latents,
|
944 |
+
height,
|
945 |
+
width,
|
946 |
+
prompt_embeds.dtype,
|
947 |
+
device,
|
948 |
+
generator,
|
949 |
+
latents,
|
950 |
+
)
|
951 |
+
|
952 |
+
# 6. Prepare extra step kwargs.
|
953 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
954 |
+
|
955 |
+
# 7. Denoising loop
|
956 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
957 |
+
with self.progress_bar(total=len(timesteps)) as progress_bar:
|
958 |
+
for i, t in enumerate(timesteps):
|
959 |
+
# expand the latents if we are doing classifier free guidance
|
960 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
961 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
962 |
+
|
963 |
+
# predict the noise residual
|
964 |
+
noise_pred = self.unet(
|
965 |
+
latent_model_input,
|
966 |
+
t,
|
967 |
+
encoder_hidden_states=prompt_embeds,
|
968 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
969 |
+
return_dict=False,
|
970 |
+
)[0]
|
971 |
+
|
972 |
+
# perform guidance
|
973 |
+
if do_classifier_free_guidance:
|
974 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
975 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
976 |
+
|
977 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
978 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
979 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
980 |
+
|
981 |
+
# compute the previous noisy sample x_t -> x_t-1
|
982 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
983 |
+
|
984 |
+
# call the callback, if provided
|
985 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
986 |
+
progress_bar.update()
|
987 |
+
if callback is not None and i % callback_steps == 0:
|
988 |
+
callback(i, t, latents)
|
989 |
+
|
990 |
+
if not output_type == "latent":
|
991 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
992 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
993 |
+
else:
|
994 |
+
image = latents
|
995 |
+
has_nsfw_concept = None
|
996 |
+
|
997 |
+
if has_nsfw_concept is None:
|
998 |
+
do_denormalize = [True] * image.shape[0]
|
999 |
+
else:
|
1000 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1001 |
+
|
1002 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1003 |
+
|
1004 |
+
# Offload all models
|
1005 |
+
self.maybe_free_model_hooks()
|
1006 |
+
|
1007 |
+
if not return_dict:
|
1008 |
+
return (image, has_nsfw_concept)
|
1009 |
+
|
1010 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
safety_checker/config.json
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": "1d0c4ebf6ff58a5caecab40fa1406526bca4b5b9",
|
3 |
+
"_name_or_path": "/home/borys.tymchenko/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/1d0c4ebf6ff58a5caecab40fa1406526bca4b5b9/safety_checker",
|
4 |
+
"architectures": [
|
5 |
+
"StableDiffusionSafetyChecker"
|
6 |
+
],
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"logit_scale_init_value": 2.6592,
|
9 |
+
"model_type": "clip",
|
10 |
+
"projection_dim": 768,
|
11 |
+
"text_config": {
|
12 |
+
"_name_or_path": "",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": null,
|
15 |
+
"attention_dropout": 0.0,
|
16 |
+
"bad_words_ids": null,
|
17 |
+
"begin_suppress_tokens": null,
|
18 |
+
"bos_token_id": 0,
|
19 |
+
"chunk_size_feed_forward": 0,
|
20 |
+
"cross_attention_hidden_size": null,
|
21 |
+
"decoder_start_token_id": null,
|
22 |
+
"diversity_penalty": 0.0,
|
23 |
+
"do_sample": false,
|
24 |
+
"dropout": 0.0,
|
25 |
+
"early_stopping": false,
|
26 |
+
"encoder_no_repeat_ngram_size": 0,
|
27 |
+
"eos_token_id": 2,
|
28 |
+
"exponential_decay_length_penalty": null,
|
29 |
+
"finetuning_task": null,
|
30 |
+
"forced_bos_token_id": null,
|
31 |
+
"forced_eos_token_id": null,
|
32 |
+
"hidden_act": "quick_gelu",
|
33 |
+
"hidden_size": 768,
|
34 |
+
"id2label": {
|
35 |
+
"0": "LABEL_0",
|
36 |
+
"1": "LABEL_1"
|
37 |
+
},
|
38 |
+
"initializer_factor": 1.0,
|
39 |
+
"initializer_range": 0.02,
|
40 |
+
"intermediate_size": 3072,
|
41 |
+
"is_decoder": false,
|
42 |
+
"is_encoder_decoder": false,
|
43 |
+
"label2id": {
|
44 |
+
"LABEL_0": 0,
|
45 |
+
"LABEL_1": 1
|
46 |
+
},
|
47 |
+
"layer_norm_eps": 1e-05,
|
48 |
+
"length_penalty": 1.0,
|
49 |
+
"max_length": 20,
|
50 |
+
"max_position_embeddings": 77,
|
51 |
+
"min_length": 0,
|
52 |
+
"model_type": "clip_text_model",
|
53 |
+
"no_repeat_ngram_size": 0,
|
54 |
+
"num_attention_heads": 12,
|
55 |
+
"num_beam_groups": 1,
|
56 |
+
"num_beams": 1,
|
57 |
+
"num_hidden_layers": 12,
|
58 |
+
"num_return_sequences": 1,
|
59 |
+
"output_attentions": false,
|
60 |
+
"output_hidden_states": false,
|
61 |
+
"output_scores": false,
|
62 |
+
"pad_token_id": 1,
|
63 |
+
"prefix": null,
|
64 |
+
"problem_type": null,
|
65 |
+
"projection_dim": 512,
|
66 |
+
"pruned_heads": {},
|
67 |
+
"remove_invalid_values": false,
|
68 |
+
"repetition_penalty": 1.0,
|
69 |
+
"return_dict": true,
|
70 |
+
"return_dict_in_generate": false,
|
71 |
+
"sep_token_id": null,
|
72 |
+
"suppress_tokens": null,
|
73 |
+
"task_specific_params": null,
|
74 |
+
"temperature": 1.0,
|
75 |
+
"tf_legacy_loss": false,
|
76 |
+
"tie_encoder_decoder": false,
|
77 |
+
"tie_word_embeddings": true,
|
78 |
+
"tokenizer_class": null,
|
79 |
+
"top_k": 50,
|
80 |
+
"top_p": 1.0,
|
81 |
+
"torch_dtype": null,
|
82 |
+
"torchscript": false,
|
83 |
+
"transformers_version": "4.30.2",
|
84 |
+
"typical_p": 1.0,
|
85 |
+
"use_bfloat16": false,
|
86 |
+
"vocab_size": 49408
|
87 |
+
},
|
88 |
+
"torch_dtype": "float32",
|
89 |
+
"transformers_version": null,
|
90 |
+
"vision_config": {
|
91 |
+
"_name_or_path": "",
|
92 |
+
"add_cross_attention": false,
|
93 |
+
"architectures": null,
|
94 |
+
"attention_dropout": 0.0,
|
95 |
+
"bad_words_ids": null,
|
96 |
+
"begin_suppress_tokens": null,
|
97 |
+
"bos_token_id": null,
|
98 |
+
"chunk_size_feed_forward": 0,
|
99 |
+
"cross_attention_hidden_size": null,
|
100 |
+
"decoder_start_token_id": null,
|
101 |
+
"diversity_penalty": 0.0,
|
102 |
+
"do_sample": false,
|
103 |
+
"dropout": 0.0,
|
104 |
+
"early_stopping": false,
|
105 |
+
"encoder_no_repeat_ngram_size": 0,
|
106 |
+
"eos_token_id": null,
|
107 |
+
"exponential_decay_length_penalty": null,
|
108 |
+
"finetuning_task": null,
|
109 |
+
"forced_bos_token_id": null,
|
110 |
+
"forced_eos_token_id": null,
|
111 |
+
"hidden_act": "quick_gelu",
|
112 |
+
"hidden_size": 1024,
|
113 |
+
"id2label": {
|
114 |
+
"0": "LABEL_0",
|
115 |
+
"1": "LABEL_1"
|
116 |
+
},
|
117 |
+
"image_size": 224,
|
118 |
+
"initializer_factor": 1.0,
|
119 |
+
"initializer_range": 0.02,
|
120 |
+
"intermediate_size": 4096,
|
121 |
+
"is_decoder": false,
|
122 |
+
"is_encoder_decoder": false,
|
123 |
+
"label2id": {
|
124 |
+
"LABEL_0": 0,
|
125 |
+
"LABEL_1": 1
|
126 |
+
},
|
127 |
+
"layer_norm_eps": 1e-05,
|
128 |
+
"length_penalty": 1.0,
|
129 |
+
"max_length": 20,
|
130 |
+
"min_length": 0,
|
131 |
+
"model_type": "clip_vision_model",
|
132 |
+
"no_repeat_ngram_size": 0,
|
133 |
+
"num_attention_heads": 16,
|
134 |
+
"num_beam_groups": 1,
|
135 |
+
"num_beams": 1,
|
136 |
+
"num_channels": 3,
|
137 |
+
"num_hidden_layers": 24,
|
138 |
+
"num_return_sequences": 1,
|
139 |
+
"output_attentions": false,
|
140 |
+
"output_hidden_states": false,
|
141 |
+
"output_scores": false,
|
142 |
+
"pad_token_id": null,
|
143 |
+
"patch_size": 14,
|
144 |
+
"prefix": null,
|
145 |
+
"problem_type": null,
|
146 |
+
"projection_dim": 512,
|
147 |
+
"pruned_heads": {},
|
148 |
+
"remove_invalid_values": false,
|
149 |
+
"repetition_penalty": 1.0,
|
150 |
+
"return_dict": true,
|
151 |
+
"return_dict_in_generate": false,
|
152 |
+
"sep_token_id": null,
|
153 |
+
"suppress_tokens": null,
|
154 |
+
"task_specific_params": null,
|
155 |
+
"temperature": 1.0,
|
156 |
+
"tf_legacy_loss": false,
|
157 |
+
"tie_encoder_decoder": false,
|
158 |
+
"tie_word_embeddings": true,
|
159 |
+
"tokenizer_class": null,
|
160 |
+
"top_k": 50,
|
161 |
+
"top_p": 1.0,
|
162 |
+
"torch_dtype": null,
|
163 |
+
"torchscript": false,
|
164 |
+
"transformers_version": "4.30.2",
|
165 |
+
"typical_p": 1.0,
|
166 |
+
"use_bfloat16": false
|
167 |
+
}
|
168 |
+
}
|
safety_checker/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11cfe53105625af8c00faac32a430626641cce686454f3c39d837f14397d858b
|
3 |
+
size 1215981832
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.23.0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "squaredcos_cap_v2",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"dynamic_thresholding_ratio": 0.995,
|
10 |
+
"num_train_timesteps": 1000,
|
11 |
+
"prediction_type": "v_prediction",
|
12 |
+
"rescale_betas_zero_snr": true,
|
13 |
+
"sample_max_value": 1.0,
|
14 |
+
"set_alpha_to_one": true,
|
15 |
+
"steps_offset": 1,
|
16 |
+
"thresholding": false,
|
17 |
+
"timestep_spacing": "trailing",
|
18 |
+
"trained_betas": null
|
19 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/borys.tymchenko/qcomdiffusion/checkpoint-286000-2050048000/pipeline/text_encoder",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.30.2",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22928c6a6a99759e4a19648ba56e044d1df47b650f7879470501b71ec996a3ef
|
3 |
+
size 492265880
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
+
"do_lower_case": true,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|endoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"errors": "replace",
|
22 |
+
"model_max_length": 77,
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"tokenizer_class": "CLIPTokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<|endoftext|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unet/config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.23.0",
|
4 |
+
"_name_or_path": "/home/borys.tymchenko/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/1d0c4ebf6ff58a5caecab40fa1406526bca4b5b9/unet",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"attention_type": "default",
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"class_embed_type": null,
|
19 |
+
"class_embeddings_concat": false,
|
20 |
+
"conv_in_kernel": 3,
|
21 |
+
"conv_out_kernel": 3,
|
22 |
+
"cross_attention_dim": 768,
|
23 |
+
"cross_attention_norm": null,
|
24 |
+
"down_block_types": [
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"DownBlock2D"
|
29 |
+
],
|
30 |
+
"downsample_padding": 1,
|
31 |
+
"dropout": 0.0,
|
32 |
+
"dual_cross_attention": false,
|
33 |
+
"encoder_hid_dim": null,
|
34 |
+
"encoder_hid_dim_type": null,
|
35 |
+
"flip_sin_to_cos": true,
|
36 |
+
"freq_shift": 0,
|
37 |
+
"in_channels": 4,
|
38 |
+
"layers_per_block": 2,
|
39 |
+
"mid_block_only_cross_attention": null,
|
40 |
+
"mid_block_scale_factor": 1,
|
41 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
42 |
+
"norm_eps": 1e-05,
|
43 |
+
"norm_num_groups": 32,
|
44 |
+
"num_attention_heads": null,
|
45 |
+
"num_class_embeds": null,
|
46 |
+
"only_cross_attention": false,
|
47 |
+
"out_channels": 4,
|
48 |
+
"projection_class_embeddings_input_dim": null,
|
49 |
+
"resnet_out_scale_factor": 1.0,
|
50 |
+
"resnet_skip_time_act": false,
|
51 |
+
"resnet_time_scale_shift": "default",
|
52 |
+
"reverse_transformer_layers_per_block": null,
|
53 |
+
"sample_size": 64,
|
54 |
+
"time_cond_proj_dim": null,
|
55 |
+
"time_embedding_act_fn": null,
|
56 |
+
"time_embedding_dim": null,
|
57 |
+
"time_embedding_type": "positional",
|
58 |
+
"timestep_post_act": null,
|
59 |
+
"transformer_layers_per_block": 1,
|
60 |
+
"up_block_types": [
|
61 |
+
"UpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D",
|
63 |
+
"CrossAttnUpBlock2D",
|
64 |
+
"CrossAttnUpBlock2D"
|
65 |
+
],
|
66 |
+
"upcast_attention": false,
|
67 |
+
"use_linear_projection": false
|
68 |
+
}
|
unet/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d27cd69d4a0aa32105087a619f32a51bc087e133be93fe23da92f3c0bcc07d79
|
3 |
+
size 3438167536
|
vae/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.23.0",
|
4 |
+
"_name_or_path": "stabilityai/stable-diffusion-2-1",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"block_out_channels": [
|
7 |
+
128,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
512
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D"
|
17 |
+
],
|
18 |
+
"force_upcast": true,
|
19 |
+
"in_channels": 3,
|
20 |
+
"latent_channels": 4,
|
21 |
+
"layers_per_block": 2,
|
22 |
+
"norm_num_groups": 32,
|
23 |
+
"out_channels": 3,
|
24 |
+
"sample_size": 768,
|
25 |
+
"scaling_factor": 0.18215,
|
26 |
+
"up_block_types": [
|
27 |
+
"UpDecoderBlock2D",
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D",
|
30 |
+
"UpDecoderBlock2D"
|
31 |
+
]
|
32 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2aa1f43011b553a4cba7f37456465cdbd48aab7b54b9348b890e8058ea7683ec
|
3 |
+
size 334643268
|